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c Department of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
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a b s t r a c t

One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain

described by the Lotka–Volterra type dynamics is globally asymptotically stable whenever it exists. This arti-

cle extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov

function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Nu-

merical simulations show that as the number of food chains increases, the real part of the leading eigenvalue,

while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of

food chains in the web.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Competition is one of the main driving forces reducing biodiver-

sity in complex food webs. The “competitive exclusion principle” for-

mulated by Gause [1] excludes coexistence of two species that com-

pete for a single resource. Levin [2] proved that n competing species

cannot coexist at a population equilibrium if they are limited by less

than n limiting factors. As species are often limited by a few nutri-

ents (e.g., phosphorus and/or nitrogen in lakes) how is it then possi-

ble that many species do survive [3]? Several mechanisms explaining

species coexistence were proposed. These include, but are not limited

to non-equilibrium dynamics due to environmental [3] or internal [4]

fluctuations in population dynamics, relative nonlinearity in species

responses to competition [5,6], predation on competing species [7,8],

or adaptive foraging [9,10]. These mechanisms fit into two broad cat-

egories [5]: (i) stabilizing mechanisms that tend to increase neg-

ative intraspecific interactions relative to interspecific interactions

(density dependent mechanisms, e.g., the logistic population growth)

and (ii) equalizing mechanisms that tend to decrease average fitness

differences between species. These latter mechanisms are often ex-

pressed through changes in evolutionary/behavioral traits.
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The interplay of these two mechanisms on stability and persis-

ence in di- and tri-trophic food webs were studied in [11]. That

tudy was motivated by “the paradox of phytoplankton” where in

akes a large number of phytoplankton species survives on just one

r two common resources (e.g., phosphorus) [3]. One of the food web

odules considered assumed that each of the phytoplankton species

as regulated by a specialized predator (e.g., a zooplankton species)

Fig. 1). Thus the n consumer species were competing for a single re-

ource, but as each of them was consumed by a specialized preda-

or, there were n + 1 limiting factors so that the exclusion princi-

le did not apply. Indeed, numerical simulations confirmed that all

pecies could coexist. Such a food web is a generalization of a single

ri-trophic food chain studied intensively in ecology [12,13]. Using a

yapunov function, Harrison [14] proved that the interior equilibrium

f the tri-trophic food chain is globally asymptotically stable when-

ver it exists. However, numerical simulations show that as the num-

er of food chains sharing a common resource increases the stabiliz-

ng effect of the negative resource density dependence (modeled by

he logistic resource growth) dilutes and numerical simulations are

nconclusive with respect to the asymptotic stability of the interior

quilibrium (more details are given in Section 3).

In this article we extend the result on the asymptotic equilibrium

tability for a single tri-trophic food chain to many food chains shar-

ng a common resource. Using a Lotka–Volterra type Lyapunov func-

ion we show that the resource density converges to an equilibrium

nd on the attractor each food chain dynamics are described by a

otka–Volterra predator-prey model. However, these Lotka–Volterra

http://dx.doi.org/10.1016/j.mbs.2015.10.005
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Fig. 1. Food web with n tri-trophic chains sharing a common resource.
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redator-prey models are not independent as their trajectories sat-

sfy a constraint. Using this information we prove in Section 2.1 that

or two food chains sharing a common resource the population equi-

ibrium is globally asymptotically stable. We extend this result in

ection 2.2 where we prove that the population equilibrium is locally

symptotically stable for any number of food chains.

. Model

We consider a tri-trophic food-web consisting of a common re-

ource (x), n consumers (y1, . . . , yn) and top specialist predators

z1, . . . , zn) illustrated in Fig. 1. Such a food web topology can de-

cribe e.g., a single plant species with several aphid species each of

hem parasitized by a specialized parasitoid [15]. The Lotka–Volterra

onceptualization of population dynamics in such a food web is

dx

dt
= rx

(
1 − x

K

)
−

n∑
i=1

λiyix

dyi

dt
= yi(eiλix − mi − �izi) i = 1, . . . , n

dzi

dt
= zi(Ei�iyi − Mi) i = 1, . . . , n,

(1)

here r is the resource specific growth rate, K is the resource envi-

onmental capacity, λi (�i) is the consumer (predator) search rate

or resource (consumer) i, ei (Ei) is the efficiency rate with which the

esources (consumers) are converted to new consumers (predators),

nd mi (Mi) is the consumer (predator) mortality rate [11]. In what

ollows we assume that all these parameters are positive and we con-

ider only solutions of (1) that are non-negative (i.e., all initial condi-

ions are positive). The interior equilibrium of (1) is

∗ = K

(
1 − 1

r

n∑
i=1

λiMi

Ei�i

)

∗
i

= Mi

Ei�i

i = 1, . . . , n

∗
i

= eiλix
∗ − mi

�i

i = 1, . . . , n.

(2)

his equilibrium is positive provided the intrinsic per capita resource

opulation growth rate is high enough so that

>

n∑
i=1

λiMi

Ei�i

(3)

nd the resource environmental carrying capacity satisfies(
1 − 1

r

n∑
i=1

λiMi

Ei�i

)
>

mi

eiλi

, i = 1, . . . , n. (4)

n what follows we will assume the above two inequalities hold and

e study stability of equilibrium (2).
First we observe that the resource density x(t) converges to the

quilibrium x∗.

roposition 1. Positive solutions of (1) are bounded and component

(t) of every solution converges to the equilibrium x∗.

roof. Let

= x − x∗ − x∗ ln
x

x∗ +
n∑

i=1

1

ei

(
yi − y∗

i − y∗
i ln

yi

y∗
i

)

+
n∑

i=1

1

eiEi

(
zi − z∗

i − z∗
i ln

zi

z∗
i

)
.

hen V(x∗, y∗
1
, . . . , y∗

n, z∗
1
, . . . , z∗

n) = 0, V is non-negative and

dV

dt
= − r

K
(x − x∗)2 (5)

long trajectories of model (1). Thus V is a Lyapunov function and all

rajectories of model (1) are bounded.

Let us consider a non-trivial solution of (1) and let us assume that

(t) does not converge to x∗. There exists a sequence of times ts → ∞
nd δ1 > 0 so that |x(ts) − x∗| > δ1. Because the trajectory is bounded,

ts derivative is bounded as well and there exists δ2 > 0 such that

x(t) − x∗| > δ1/2 for t ∈ (ts − δ2, ts + δ2) and all ts. Thus, (5) implies

hat V cannot be non-negative for all t’s, a contradiction with non-

egativity of V. �

Second, let us consider an ω-limit solution (xω(t), yω(t), zω(t)) of

1). It follows from Proposition 1 that xω(t) = x∗ for every t ∈ R and

herefore from (1)

n

i=1

λiy
ω
i (t) = r

(
1 − x∗

K

)
. (6)

oreover, the ω-limit solution satisfies the following Lotka–Volterra

ystem of paired equations

dyω
i

dt
= yω

i (eiλix
∗ − mi − �iz

ω
i ) i = 1, . . . , n

dzω
i

dt
= zω

i (Ei�iy
ω
i − Mi) i = 1, . . . , n.

(7)

hese equations are pairs of the Lotka–Volterra predator-prey

quations so that on the attractor we have the following Lyapunov

unctions

i = 1

ei

(
yω

i − y∗
i − y∗

i ln
yω

i

y∗
i

)

+ 1

eiEi

(
zω

i − z∗
i − z∗

i ln
zω

i

z∗
i

)
, i = 1, . . . , n. (8)

e want to prove that the only ω-limit solution of system (7) that

atisfies (6) is the constant solution coinciding with equilibrium (2).

he case of a single food chain (n = 1) was studied in [14] so we

egin with the case n = 2.

.1. The case of two competing food chains.

We start with a system consisting of two food chains with a com-

on limiting resource (x)
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dx

dt
= rx

(
1 − x

K

)
− λ1y1x − λ2y2x

dy1

dt
= y1(e1λ1x − m1 − �1z1)

dy2

dt
= y2(e2λ2x − m2 − �2z2)

dz1

dt
= z1(E1�1y1 − M1)

dz2

dt
= z2(E2�2y2 − M2).

(9)

All parameters in (9) are assumed to be positive and conditions (3)

and (4) imply that the interior equilibrium (2) exists.

Theorem 1. The interior equilibrium (2) (with n = 2) of (9) is globally

asymptotically stable.

Proof. We prove that the only ω-limit solution

(xω(t), yω
1
(t), yω

2
(t), zω

1
(t), zω

2
(t)) of trajectories starting from an

interior point of R
5+ = {(x1, . . . , x5)|x1 > 0, . . . , x5 > 0} is the

interior equilibrium. The ω-limit solution must satisfy (6),

λ1yω
1 (t) + λ2yω

2 (t) = c := r

(
1 − x∗

K

)
for all t ∈ R. (10)

Differentiating this equality and substituting, we get

λ1yω
1 (t)(e1λ1x∗ − m1 − �1zω

1 (t))

+λ2yω
2 (t)(e2λ2x∗ − m2 − �2zω

2 (t)) = 0. (11)

Due to (7) we also know that the limit solution is periodic. Let {tn}∞
n=1

be a sequence of times such that zω
2
(tn) = z∗

2. Then (11) implies that

zω
1
(tn) = z∗

1
. We remark that yω

i
(tn) �= y∗

i
, i = 1, 2.

For t’s close to but different from tn, zω
2
(t) �= z∗

2
. In what follows

we will show that yω
1
(tn) is independent of tn, i.e., constant and equal

to the equilibrium point. From (11) we get

λ2yω
2 (t)

λ1yω
1
(t)

= −e1λ1x∗ − m1 − �1zω
1 (t)

e2λ2x∗ − m2 − �2zω
2
(t)

for t’s close to but different from tn for all n. Using L’Hospital’s rule

we get

λ2yω
2 (tn)

λ1yω
1
(tn)

= − lim
t→tn

e1λ1x∗ − m1 − �1zω
1 (t)

e2λ2x∗ − m2 − �2zω
2
(t)

= �1(zω
1 )′(tn)

�2(zω
2
)′(tn)

.

Substituting derivatives of zω
i

from (7) gives

λ2yω
2 (tn)

λ1yω
1
(tn)

= −�1zω
1 (tn)(E1�1yω

1 (tn) − M1)

�2zω
2
(tn)(E2�2yω

2
(tn) − M2)

.

Substituting yω
2
(t) = (c − λ1yω

1
(t))/λ2, c = λ1M1

E1�1
+ λ2M2

E2�2
and solving

the resulting quadratic equation for unknown yω
1
(tn) we obtain two

solutions: yω
1
(tn) = y∗

1 and

yω
1 (tn) = �2z∗

2(E1M2�1λ2 + E2M1�2λ1)

E1�1(E1�
2
1
λ2z∗

1
+ E2λ1�

2
2
z∗

2
)

. (12)

Solution yω
1
(tn) = y∗

1
corresponds to the equilibrium point (y∗

1
, z∗

1
).

Equality (10) implies that yω
2
(tn) = y∗

2
for all tn. Thus, the correspond-

ing ω-limit solution is the equilibrium.

There is no ω-limit solution corresponding to the other solution

(12). Indeed, any non-constant periodic solution must attain two dif-

ferent values yω
1
(tn) and yω

1
(tn+1)(one which is larger and one which

is smaller than y∗
1
). However, we obtained only one such solution

(12). �

2.2. The case of several competing food chains.

In this section we prove local asymptotic stability of equilibrium

(2) for any number of food chains. We use the following lemmas.
emma 1. There exists a constant K > 0 such that

max
=1,...,n

{yω
i (t), zω

i (t)} ≤ K, t ∈ R

or every ω-limit solution (yω, zω) ∈ R
2n of (1).

roof. Every ω-limit solution (yω(t), zω(t)) ∈ R
2n of (1) is periodic

nd satisfies equality (6). As we consider only non-negative solutions,

t follows from (6) that y-coordinates of the solution are bounded,

.e., yω
i
(t) < K1 for all i = 1, . . . , n and all t ∈ R. Now we prove that

-coordinates are bounded too.

For every food chain (i = 1, . . . , n) there exists a sequence of times

i,k → ∞ such that zω
i
(ti,k) = z∗

i
. Thus, from (8) it follows that for all

i,k

i(ti,k) = 1

ei

(
yω

i (ti,k) − y∗
i − y∗

i ln
yω

i
(ti,k)

y∗
i

)
, i = 1, . . . , n. (13)

s we already know that yω
i
(t) are bounded and Vi ≥ 0 is constant

long (yω
i
(t), zω

i
(t)) we get that zω

i
(t), i = 1, . . . , n are bounded too.

his concludes the proof. �

The next result follows from the existence of the Lyapunov func-

ion Vi defined by (8).

emma 2. There exists a function η(ε) defined for ε > 0, limε→0 η(ε) =
, limε→∞ η(ε) = ∞ such that if ω-limit solution (yω

i
(t), zω

i
(t)) satis-

es

max
=1, ... , n

√
(yi(t0) − y∗

i
)2 + (zi(t0) − z∗

i
)2 < ε

or some t0 ∈ R then

up
t∈R

max
i=1, ... , n

√
(yω

i
(t) − y∗

i
)2 + (zω

i
(t) − z∗

i
)2 < η(ε).

The next lemma is a crucial part of the proof of local asymptotic

tability of (2). We prove that in a small neighborhood of the equi-

ibrium the only ω-limit solution of model (1) is the equilibrium so-

ution. The proof is by induction with respect to the number of food

hains. In what follows we set

i = eiλix
∗ − mi, bi = �i, ci = Ei�i, di = Mi, ωi =

√
aidi.

(14)

e remark that 2π /ωi is the approximate period of small oscillations

n the Lotka–Volterra predator-prey model at the equilibrium [16].

emma 3. Let ωi �= ωj for i �= j, i, j = 1, . . . , n. Then there exists ε > 0

o that the only ω-limit solution of model (1) satisfying

min
=1,...,n

inf
t∈R

√
(yω

i
(t) − y∗

i
)2 + (zω

i
(t) − z∗

i
)2 < ε

s the equilibrium solution (x∗, y∗, z∗) ∈ R
2n+1 given by (2).

roof. The proof is by induction with respect to the number of food

hains n.

For n = 1 it follows from (6) that any ω-limit solution y1(t) must

e constant so the condition is met.

Let us assume that Lemma 3 holds for any system consisting of

− 1 food chains and it does not hold for a system consisting of

food chains. This means that there exists a sequence of ω-limit

olutions {yk(t), zk(t)} ∈ R
2n of (7) and a non-empty set of indexes

= {i1, . . . , is}, 1 ≤ s ≤ n such that

nf
∈R

√
(yk

j
(t) − y∗

j
)2 + (zk

j
(t) − z∗

j
)2 < 1/k, j ∈ I.

For all other indexes J = {1, . . . , n} \ I we have

in
j∈J

inf
t∈R

√
(yk

j
(t) − y∗

j
)2 + (zk

j
(t) − z∗

j
)2 > δ



I. Vrkoč, V. Křivan / Mathematical Biosciences 270 (2015) 90–94 93

f

a

q

f

s

t

e

f

h

t

i

y

i

u

v

w

s

(

A

u

v

∑
q

s

s

(

W

u

a

v

F

∑

a

∑

T

∑

w

t

−

W

ω

t

∑

A

−

W

ω

t

∑

R

n

A

e

s

t

T

l

P

s

s

c

i

T

3

s

l

t

a

[

f

w

n

r

s

or some δ > 0. Lemma 2 implies that for every j ∈ J , (yk
j
(t), yk

j
(t))

re bounded and we can choose an uniformly converging subse-

uence whose limit is again a component of an ω-solution different

rom the equilibrium solution.

There are two possibilities. First, not all components of the ω-limit

olution converge to the components of the equilibrium, i.e., s < n. In

his case some components of the ω-limit solution converge to the

quilibrium point which contradicts the induction assumption that

or n − 1 food chains there are no ω-limit solutions in the neighbor-

ood of the equilibrium that are different from the equilibrium.

Second, all components (s = n) of the ω-limit solutions converge

o the equilibrium point, i.e., for all k ∈ N

min
=1, ... , n

inf
t∈R

√
(yk

i
(t) − y∗

i
)2 + (zk

i
(t) − z∗

i
)2 < 1/k. (15)

Using (14) we write system (7) in the form

′
i = yi(ai − bizi), i = 1, . . . , n

z′
i = zi(ciyi − di), i = 1, . . . , n. (16)

Let εk =
√∑n

i=1 (yk
0i

− y∗
i
)2 + (zk

0i
− z∗

i
)2 where (y0i, z0i) ∈ R

2n are

nitial conditions for (16) and

k
i (t) = yk

i
(t) − y∗

i

εk
,

k
i (t) = zk

i
(t) − z∗

i

εk

here u∗
i

= y∗
i

= di/ci and v∗
i

= z∗
i

= ai/bi. The transformed variables

atisfy

uk
i )

′(t) = −bivk
i (t)(εkuk

i (t) + u∗
i ), i = 1, . . . , n

(vk
i )

′(t) = ciu
k
i (t)(εkvk

i (t) + v∗
i ), i = 1, . . . , n.

s k tends to infinity, εk tends to 0. Moreover since

k
0i = yk

i
(0) − y∗

i

εk
,

k
0i = zk

i
(0) − z∗

i

εk
,

n
i=1 (uk

0i
)2 + (vk

0i
)2 = 1, and we can choose a convergent subse-

uence of initial conditions that converges to (ṽ0i, ṽ0i). The corre-

ponding ω-limit solutions converge to the solution of the linear

ystem

uk
i )

′(t) = −bivk
i (t)u∗

i , i = 1, . . . , n

(vk
i )

′(t) = ciu
k
i (t)v∗

i , i = 1, . . . , n.

e define

˜i(t) = lim
k→∞

uk
i (t) = ũ0i cos (tωi) − ṽ0i

bi

ci

√
di

ai

sin (tωi) (17)

nd

˜ i(t) = lim
k→∞

vk
i (t) = ṽ0icos(tωi) + ũ0i

ci

bi

√
ai

di

sin (tωi). (18)

rom (6) we get

n

i=1

λiu
k
i (t) = 0

nd

n

i=1

λiũi(t) = 0. (19)
o

he last equality can be written as

n

i=1

(αi cos (ωit) + βi sin (ωit)) = 0

here αi and β i depend on the initial conditions. By double differen-

iation we obtain

n∑
i=1

ω2
i (αi cos (ωit) + βi sin (ωit)) = 0.

e add this equation with equation

2
1

n∑
i=1

(αi cos (ωit) + βi sin (ωit)) = 0

o get

n

i=2

(ω2
1 − ω2

i )(αi cos (ωit) + βi sin (ωit)) = 0.

gain, by double differentiation we obtain

n∑
i=2

ω2
i (ω

2
1 − ω2

i )(αi cos (ωit) + βi sin (ωit)) = 0.

e add this equation with equation

2
2

n∑
i=2

(
ω2

1 − ω2
i

)
(αi cos (ωit) + βi sin (ωit)) = 0,

o get

n

i=3

(ω2
1 − ω2

i )(ω
2
2 − ω2

i )(αi cos (ωit) + βi sin (ωit)) = 0.

epeating double derivation and summation n times we finally get

−1∏
i=1

(ω2
i − ω2

n)(αn cos (ωnt) + βn sin (ωnt)) = 0.

s the last term cannot be equal to 0 (ωn =
√

andn > 0 and consid-

red solutions are non-trivial), we obtain a contradiction with the as-

umption that ωi �= ωj for i �= j. It follows that the lemma holds for n

oo. �

heorem 2. Let ωi �= ωj for i �= j, i, j = 1, . . . , n. Then the interior equi-

ibrium (x∗, y∗, z∗) ∈ R
2n+1
+ of model (1) is locally asymptotically stable.

roof. Because (x∗, y∗, z∗) is a stable equilibrium of (1), solutions that

tart close to this point stay in a vicinity of this point. If there was a

olution of (1) such that for some i ∈ {1, . . . , n}, yi(t), zi(t) did not

onverge to the equilibrium point, there would exist an ω-solution

n a neighborhood of the equilibrium different from the equilibrium.

his contradicts Lemma 3. �

. Discussion

In this article we proved that species in a food web consisting of

everal tri-trophic food chains with a shared resource can coexist in a

ocally asymptotically stable interior equilibrium. In particular, when

here are only two such food chains, the interior equilibrium is glob-

lly asymptotically stable. These results extend the work of Harrison

14] who proved that the interior equilibrium of a single tri-trophic

ood chain is globally asymptotically stable whenever it exists.

The food web with n-food chains that share a common resource

as considered in [11]. It was suggested there that population dy-

amics converge to the interior equilibrium whenever this equilib-

ium exists. The problem is that numerical simulations document

uch convergence clearly for low dimensional systems (i.e., one, two,

r three food chains) but for many food chains convergence is not that
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Fig. 2. This plot shows simulations of model (1) with 50 consumer and predator

species (n = 50 in model (1)). For clarity only three trajectories for consumers and

predators are shown. Simulations were done in Mathematica 10 using NDSolve func-

tion. Parameters of model (1) were generated at random from the normal distribu-

tion N(ν , σ ) with mean ν and standard deviation σ : r = N(2, 0.4), λ = N(0.1, 0.02),

� = N(1, 0.2), m = N(0.2, 0.04), M = N(0.1, 0.02), e = N(0.5, 0.1), E = N(0.5, 0.1),

K = N(50, 10).

Fig. 3. Dependence of the largest real part eigenvalue of model (1) on the number of

food chains n in the food web. Dots show averages of 30 simulations and bars are ±
1 standard error. Parameters of model (1) were generated at random from the normal

distribution N(ν , σ ) with mean ν and standard deviation σ same as in those used in

Fig. 2.
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clear. For example, numerical simulations in Mathematica 10 as those

in Fig. 2 show small persistent fluctuations of trajectories around the

equilibrium for a food web consisting of 50 food chains. From the eco-

logical point of view the reason is that stability of the interior equi-

librium is driven by negatively density dependent resource growth

(i.e., the per capita population growth rate decreases as the popula-

tion density increases) modeled by the logistic equation. As the num-

ber of food chains increases, this negative density dependence “di-

lutes” which is manifested by increasing values of the real part of the

leading eigenvalue associated with consumer and predator species

(Fig. 3). Albeit these largest real parts are still negative, they are very

small in absolute value for large number of food chains. Thus, the bot-

tom up regulation of the food web gets weaker with the number of

food chains and the consumer and resources are more prone to oscil-

lations after a disturbation. This shows that ecological resilience [17],

defined as the rate with which a system returns to its equilibrium af-

ter a perturbation, decreases with the number of food chains in the

food web. The resilience is measured as the absolute value of the real

part of the dominant eigenvalue and the inverse of resilience is of-

ten termed the return time. Our results show that the return time
ncreases with the number of food chains supported by a single re-

ource. This shows that although mathematically stable, the real food

ebs consisting of several food chains sharing a common resource

ill be oscillating around the equilibrium.

We proved that the global asymptotic convergence to equilib-

ium holds for any parameter values for which the interior popula-

ion equilibrium for two food chains exists. For the case of more than

food chains we were unable to extend this proof and we used a

lightly different approach based on linearization of the original sys-

em at the interior equilibrium. This linearization led to the require-

ent that the parameters of the model are such that the periods of

he oscillations of the linearized model are pairwise different (i.e., ωi

ωj in Theorem 2). It is likely that the result holds even without this

dditional assumption and the stability is global.
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