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We consider a host-solitary parasitoid system with three categories of individuals: para- 
sitoids, healthy hosts and parasitized hosts. Parasitoids are assumed to discriminate perfectly 
between the two kinds of hosts and they can reject those which are already parasitized. If 
parasitoids systematically accept or reject superparasitism or behave randomly, the system is 
always unstable. Using an optimal foraging model, we determine the behavior of parasitoids 
which leads to maximization of the instantaneous reproductive rate. When following this 
adaptive decision rule, parasitoids accept or refuse superparasitism according to the densi- 
ties of both healthy and parasitized hosts. We study the dynamics of the system when 
parasitoids follow the optimal rule and show that under certain conditions it possesses a 
locally stable equilibrium point. In addition, our model predicts that at equilibrium para- 
sitoids show partial preferences for superparasitism. © 1997 Society for Mathematical 
Biology 

Introduction. In solitary parasitoids, the number of offspring that emerge 
from a particular host is never greater than 1, regardless of the number of 
eggs laid in that host (Godfray, 1994). When a host is superparasitized, i.e. 
parasitized several times, the parasitoid larvae compete until, at most, one 
survives (Salt, 1961). Although many parasitoid species are able to distin- 
guish healthy from parasitized hosts, and to reject the parasitized hosts (van 
Lenteren, 1981; Bakker et al., 1985), superparasitism is a common phe- 
nomenon (van Alphen and Visser, 1990). 

* Author to whom correspondence should be addressed. 
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In many cases, there is a non-negligible probability that the winning 
parasitoid larva is originated, not from the female that oviposited first in 
the host, but from a female that superparasitized. Hence, superparasitism 
has a non-zero payoff (e.g. Salt, 1961; Visser et al., 1992b; van Baaren et al., 
1995). The choice between acceptance or rejection of already parasitized 
hosts affects the reproductive success of each individual for two reasons. 
First, it influences the mean number of offspring produced per oviposition, 
since ovipositions in healthy hosts have a higher payoff than ovipositions in 
parasitized hosts (Visser et al., 1992b; Mangel, 1989a). Second, it influences 
the total number of ovipositions realized during the whole life span of 
parasitoids, since superparasitism is egg and time consuming, whereas 
rejection of parasitized hosts is only time consuming (Iwasa et al., 1984; 
Mangel, 1989a; Speirs et al., 1991; Weisser and Houston, 1993). The payoff 
from superparasitism is under certain circumstances large enough to make 
superparasitism adaptive (e.g. Mangel, 1989a; Weisser and Houston, 1993). 
Numerous theoretical studies explored these circumstances; for a review, 
see Speirs et al. (1991). The occurrence of superparasitism in solitary 
parasitoids can thus be caused by the selection of that particular behavior, 
rather than by imperfect discrimination between healthy and parasitized 
hosts (van Lenteren, 1981). 

In this paper, we investigate the influence of individual adaptive behavior 
of parasitoids toward superparasitism on the host-parasitoid dynamics. We 
build a general model describing the dynamics of a host-parasitoid system 
with a control parameter which represents the tendency of parasitoids to 
superparasitize. When parasitoids behave randomly, i.e. they superpara- 
sitize with certain fixed probability, the dynamics is unstable. This also 
covers the cases when parasitoids always accept or always reject superpara- 
sitism. However, we assume in the model that due to natural selection the 
behavioral strategy adopted by parasitoids maximizes the individual fitness. 
This adaptive rule predicts that parasitoids will adopt different strategies 
toward superparasitism when the densities of healthy and parasitized hosts 
vary. We show that adaptive superparasitism stabilizes the host-parasitoid 
dynamics, and partial preferences toward superparasitism occur. 

Model. First we derive host-parasitoid population dynamics. Let us con- 
sider a single parasitoid during a short time interval T. We consider the 
following three activities of parasitoids during this time interval: searching 
for hosts, detecting upon an encounter whether the host is already para- 
sitized and ovipositing. We denote by T s the time spent searching for hosts 
(searching time) while the time spent detecting whether the encountered 
hosts are already parasitized and ovipositing is denoted by T n (handling 
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time), i.e. T = T s + T h. T h e  density of healthy hosts is denoted by x 1 while 
the density of already parasitized hosts is x 2. The parasitoid density is 
denoted by x 3. Parameter h 1 denotes the time a parasitoid needs to find 
out if the host encountered is already parasitized or not, and h e denotes 
the time to lay one egg. The expected encounter rate of a parasitoid with 
hosts is assumed to be linearly related to host density. Thus, a given 
parasitoid encounters on average )tx~ healthy and Ax 2 parasitized hosts 
per unit of searching time. Whereas parasitoids always accept unparasitized 
hosts, they may or may not reject parasitized ones. We assume perfect host 
discrimination by parasitoids (van Lenteren, 1981). The control parameter 
0 < u < 1 describes the probability that upon an encounter with an already 
parasitized host, parasitoids will superparasitize. If u = 0, then parasitoids 
never superparasitize, while if u = 1, they always superparasitize. We as- 
sume (see below) that all parasitoids adopt the same decision rule. Follow- 
ing derivation of the Holling disc equation (Holling, 1959) we get 

and 

Z h = A(xl(h 1 + h 2) +x2(h I + uh2))Ts  

T 

Zs = 1 4- A ( x l ( h  1 q- h2)  + x 2 ( h  1 -k- uh2)  ) " (1) 

Now we may derive the population dynamics. We assume that the host 
population is growing exponentially in the absence of parasitoids, with the 
growth parameter r. Parameter c denotes the emergence rate of para- 
sitoids. This allows us to write the following difference equations (remem- 
ber that T is a short time interval): 

xl(t + T) =xa(t) + rx l ( t )T-  AXl(t)x3(t)Ts, 

x2(t -k- T) =x2(t) + AXl(t)x3(t)T s - -  CXz(t)T , 

x3(t + T) =x3(t) + cx2(t)T-mx3(t)T.  

Using (1) and taking the limit for T tending to zero, we get the following 
continuous dynamics: 

X~ ~ FX 1 -- 

f 

.X2 ~ 

A x l x 3  

1 -I- ~.(Xl(h 1 q- h2)  q -x2(h  1 --}- uh2)  ) ' 

l ~ X l X  3 
- c x 2 ,  

1 + ~(Xl(h I + h2) -~- x2(h 1 --]- uh2)  ) 

xr3 = c x  2 - re .X3.  (2) 
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Parasitoids superparasitize randomly. Here  we assume that  the control  
pa ramete r  u is fixed, i.e. it does not  depend  on the state of the system. This 
is the case when  parasi toids behave randomly when they encounte r  para- 
sitized hosts. For  example, if parasitoids accept superparasi t ism as often as 
they reject it, then  u = 0.5; if they always superparasitize, then  u = 1; if 
they never  superparasitize,  u = 0. Then  (2) has the trivial equil ibrium and 
one non-trivial ecological equil ibrium 

E* = ( cm,  mr ,  cr ). 
A(c - Chlm - ch2m - h l m r  - h2mru)  

This equil ibrium is positive provided 

m <  
ch 1 + ch 2 + h l r  + h2ru 

Stability analysis shows that  this equil ibrium is unstable for all values of u 
be tween 0 and 1 (see Appendix  1). Numerical  simulations show that  
trajectories spiral outward f rom the equil ibrium with increasing ampli tude.  
Thus,  this case resembles the Nicholson-Bai ley  discrete-t ime model  which 
has also an unstable equil ibrium with u n b o u n d e d  trajectories. 

Parasitoids superparasitize in order to maximize fitness. Now we assume 
that  the control  pa rame te r  u changes in t ime in such a way that  the fitness 
of each parasi toid is maximized. Let  e 1 and e 2 denote  the expected number  
of offspring f rom an oviposition in a healthy host and in an already 
parasitized host, respectively, with e 2 < e 1 (Mangel,  1989a). The  average 
payoff during the t ime interval T is 

E 
g ~ -  

T '  

where  E denotes  the n u m b e r  of offspring expected over the t ime interval 
T. Since 

E = A(xle 1 +x2e2u)Ts, 

using (1) we get 

R ( u )  = 
A(xle 1 +x2e2u) 

1 + A(Xl(h 1 + h  2) + x 2 ( h  1 + u h 2 )  ) " 
(3) 
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We assume that, as a result  of natural  selection, each parasitoid behaves in 
such a way that  the rate of fitness gain R is maximized at every moment .  
The  value of the control  pa ramete r  u which maximizes R corresponds to 
the opt imal  strategy. In Appendix  2 the opt imal  strategy is derived. It is 
shown there  that  the opt imal  strategy is as follows: 

(I) If 

el  e2 

h 1 + h 2 - h2 ,  

the opt imal  strategy is always to superparasit ize (u = 1), because 
parasit ized hosts provide a large payoff  a n d / o r  require a long t ime 
to be recognized. 

(II) If 

el  e2 

h i + h 2 h2 ' 

the following three cases must  be distinguished: 
(a) If 

I A x l ( e l h 2 -  e2(ha + h 2 ) )  - e2 
X 2 <  

e 2 Ah i 

the opt imal  strategy is to never  superparasitize, i.e. u = 0. This is 
due to the fact that  unparasi t ized hosts are abundant  and it pays 
off to parasitoids to search only for healthy hosts. Let  us note  
that  the above inequality can be satisfied only if 

e2 

x 1 >x~  = A ( e l h 2 _ e 2 ( h l  + h 2 )  ) . 

Thus,  if x 1 ~_~ X~, parasitoids will always superparasitize.  
(b) If 

A x l ( e l h  2 - e 2 ( h  I + h2 )  ) - e 2 
x 2 > 

e2Ahl 

the opt imal  strategy is to always superparasitize,  i.e. u = 1. This 
is due to the fact that  healthy hosts are scarce, compared  to 
already parasit ized ones. 
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(c) If 

Axa(e lh  2 - e2(h  1 + h2) ) - e 2 
x2 = e 2 Ahl  ' 

the strategy of the parasitoids cannot be determined from the 
optimality criterion only, because all values of u between 0 and 1 
lead to the same value of the fitness measure. In this case we say 
that the strategy of the parasitoids is partial superparasitism. 

For the density x = (x 1, x2, X 3) w e  define the strategy map S ( x )  as the set 
of values of the control parameter u which maximize the fitness measure 
R. 

The dynamics which is governed by optimal strategy is described by (2) 
with u ~ S ( x ) .  Note that the optimal strategy is not uniquely given provided 
the case (c) occurs. Despite this non-uniqueness in the dynamics of (2), it is 
proved in Appendix 3 that (2) has for every initial condition an unique 
solution. Thus, our model is well posed. 

Qualitative behavior  o f  the system under  optimality condition. First, let us 
assume the case (I) holds, i.e. 

e 1 e2 

h 1 + h 2 - h2 

Then the optimal strategy for parasitoids is to superparasitize systematically 
(u = 1). The corresponding system (2) possesses one non-trivial equilibrium 

E 2 = ( c m ,  m r ,  c r ) ,  (4) 
h( c - c h l m  - c h 2 m  - h l m r  - h 2 m r )  

which is unstable (see Appendix 1). If 

el  e2 
- - >  

h i + h 2  h-7' 

then there are three different optimal strategies depending on the values of 
x 1 and x 2. We denote by G 1 the part of the space where the optimal 
strategy is to always reject superparasitism, by G 2 the part of the space 
where the optimal strategy is to always superparasitize and by G O the 
part of the space where the optimal strategy is partial superparasitism; see 
Fig. 1. 
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X1 * X1 

Figure 1. Division of the space into three parts G °, G 1 and G 2. In 01 
parasitoids never superparasitize, while in G 2 they always superparasitize. The 
region in G o bounded by curves yl and y2 is the sliding region where partial 
preferences of parasitoids for superparasitism do occur. 

Let us consider dynamics (2) in the three regions G 1, G 2 and G O 
separately. In G 1 parasitoids always reject superparasitism and the corre- 
sponding dynamics has one non-trivial equilibrium 

E 1 = ( c m ,  m r ,  c r ) .  
h(  c - C h l m  - c h 2 m  - h l m r )  

Similarly, in G 2 parasitoids always accept superparasitism and there exists 
one non-trivial equilibrium E 2 given by (4). The equilibria E 1 and E 2 a r e  

unstable (see Appendix 1). We are interested in the case when parasitoids 
follow the optimal strategy. This means that the parasitoids choose the 
optimal strategy according to the density of healthy and already parasitized 
hosts. If, for example, we start with a system consisting only of healthy hosts 
with density higher than x~, parasitoids according to the optimal strategy 
will never superparasitize. This means that the trajectory of the system 
moves in G 1. Since the number of parasitized host will increase, at a certain 
time the system may reach the set G o where both pure strategies (i.e. never 
to superparasitize or always to superparasitize) give the same fitness. Now 
there are two possibilities: 

(i) The trajectory will start to move along G °, i.e. partial superparasitism 
will occur. After some time the trajectory may leave G o and move 
either to G 1 or to G 2. 
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(ii) The  trajectory will cross G o in a direction toward G 2, i.e. there  is a 
switching in the behavior  of parasitoids f rom systematic rejection to 
systematic acceptance of superparasit ism. 

It is shown in Appendix  4 that  a trajectory which hits G o cannot  leave G o 
as long as the inequality 

holds, with 

y l ( x  1) < x  3 < y 2 ( x  1) (5) 

and 

e lh l  
yl(Xl)  -- _ _  

e 1 - e 2 

(C q- r ) ( e l h  2 -  e2(h I q- h2) ) c 1 

e2hl  X l  t ~ h l  ) 

y2(Xl) = --yl(Xl)  
e 2 + AXl(h 1 + h 2 ) ( e  2 -  el) 

Aelh lX  1 

It can easily be shown that  we always have 

0 < y l ( x  1) <y2(Xl ) .  (6) 

We define the sliding region as the part  of G o where  condi t ion (5) is 
satisfied; see Fig. 1. We note  that  when  the system moves in the sliding 
region, then  the strategy of parasitoids is partial superparasit ism. 

Since G o is a two-dimensional  plane, the system of equat ions which 
governs the dynamics of  (2) in the sliding region is also two-dimensional:  

ce 2 

X~ = A h 2 ( e l _  e2 ) + 

c ( e l h  2 - e2(h I + h2)) - e2h lr  

h2(e 2 - el) x l '  

c c ( e l h  2 - e2(h  1 + h2) ) 
! 

x 3 = - - -  + x 1 - m x 3 ;  (7) 
hhl ezh I 

see Appendix  4. This system has a non-trivial equil ibrium E ° in GO: 

1 ( ce2r) 
E 0 _~ m 

A ( - c e 2 h  1 + Celh 2 -  ce2h 2 -  e2h l r )  ce2' m " 



ADAPTIVE SUPERPARASITISM AND HOST-PARASITOID DYNAMICS 31 

The eigenvalues for this equilibrium are 

ce2hl - celh2 + ce2h2 + e2hlr 1 
- m ,  ~e --e2-~2 ). 

Thus, we see that this equilibrium is locally stable in G o provided it is 
positive, i.e. 

c(elh 2 - e 2 ( h  I +h2) ) 
r < (8) 

e2hl 

Since the dynamics in G o is described by a system of linear differential 
equations (7), equilibrium E ° is also globally asymptotically stable in the 
sliding domain. This means that every trajectory of (2) which stays in the 
sliding domain converges to E °. 

We will study the behavior of trajectories of (2) when they hit the set G °. 
It is shown in Appendix 4 that trajectories of (2) will pass through G o in 
direction from G 1 to G 2 if x 3 > y Z ( x  1) and in direction from G 2 to G 1 if 
x 3 <y l (x l ) .  This means that if the density of parasitoids is high when the 
system reaches G °, then parasitoids will switch from systematic rejection to 
systematic acceptance of superparasitism, and vice versa if the density of 
parasitoids is low. However,  if (5) holds when the system reaches G °, then 
partial superparasitism will occur and the system will move for some time 
along G °. If E ° belongs to the sliding domain of G °, then the system may 
tend to this equilibrium. Assuming that E ° is positive, we get that E ° 
belongs to the sliding domain for those mortality rates of parasitoids m 
which satisfy 

ce 2 e 2 
< m < - -  (9) 

celh 2 + e2h2 r elh2 • 

Thus, if (8) together with (9) are satisfied, the system (2) has a locally stable 
equilibrium E °. The mechanism which leads to stability is the following. 
Assume that a trajectory of (2) falls at a certain time into the sliding 
domain. Then this trajectory will move toward E ° and, provided the whole 
trajectory is in the sliding domain, the trajectory will converge to E ° (see 
Fig. 2). However,  it may also happen that the trajectory of (2) does not fall 
into the sliding domain and then it will tend to infinity (see Fig. 3). We note 
that for this reason E ° is not globally stable. 

We may compute directly the probability u ° that parasitoids will super- 
parasitize at ecological equilibrium E ° (see Appendix 4): 

c ( e 2 - e l h 2  m) 
u ° = (10) 

ezhzmr 
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x 3 .~ 

Xl 6 

Figure 2. The  trajectory of (2) converges to the locally stable equilibrium which 
is inside the sliding region. Thus, at the equilibrium, partial preferences do 
appear. Parameters: Xl(0)=5 ,  x2(0)= 5, x3(0)= 1.5, r =  1, m = 1.7, e 1 = 1, 
e 2 = 0.2, h I = 0.09, h 2 = 0.1, A = 1, c = 0.8. 

We note that due to the assumption (9), u ° is strictly between zero and one, 
which means that at equilibrium parasitoids do exhibit partial preferences 
for superparasitism. 

Conclusion. In the present paper, we study how the dynamics of a 
host-solitary parasitoid system is affected when parasitoids accept or reject 
superparasitism according to an optimality criterion. 

7.5 
5 x 
.53 

-"--.~ I /1o ~2 x 

Figure 3. Simulation of (2) as in Fig. 2 but with different initial conditions. In 
this case the trajectory does not tend to the equilibrium; thus this equilibrium is 
not globally stable. 
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The question of mechanisms which stabilize host-parasitoid dynamics 
led to taking into account several aspects of parasitoid behavior. Obviously, 
interference (Hassell and Varley, 1969) is one mechanism which may lead 
to stability of the host-parasitoid dynamics. Another mechanism was pro- 
posed in Hassel and May (1973), where it was shown that strong aggrega- 
tion of parasitoids in patches with high host density may also lead to 
stabilization of the otherwise unstable discrete-time Nicholson-Bailey 
model. More generally, heterogeneity in the risk of parasitism is a strong 
stabilizing factor (Chesson and Murdoch, 1986; Pacala et al., 1990). For 
continuous Lotka-Volterra or Holling types of dynamics the effect of 
aggregation of parasitoids (or predators) on the stability of host-parasitoid 
(or predator-prey) systems was studied in Murdoch and Stewart-Oaten 
(1975, 1989), Godfray and Pacala (1992), Colombo and K~ivan (1993), 
K~ivan (1996, 1997). The implication of these studies on the stability of 
host-parasitoid systems depends on the meaning of aggregation. In Mur- 
doch and Stewart-Oaten (1989) this term is defined in terms of the variance 
in parasitoid distribution and the covariance between the distributions of 
host and parasitoids, and then it was shown that aggregation typically has a 
destabilizing effect. 

In order to study the impact of natural selection at the population level, 
several studies focused on optimal foraging rules for parasitoids and showed 
that they may stabilize host-parasitoid systems [response of parasitoids to 
host distribution: Comins and Hassell, 1979; optimal choice between hosts 
of different values: Mangel and Roitberg, 1992; optimal time sharing 
between searching for food and searching for hosts: Sirot and Bernstein, 
1996) and K~ivan and Sirot, (1996); host-feeding: Yamamura and Yano, 
1988)]. Driessen and Visser (1993) suggested that optimality rules concern- 
ing patch time and superparasitism may have a stabilizing effect on popula- 
tion equilibrium, since they contribute to reduce the overall population 
efficiency. However, they did not consider the dynamics explicitly. 

In our model, the population dynamics is described by a system of 
differential equations. This corresponds to populations with overlapping 
generations, which is a common situation in host-parasitoid systems 
(Murdoch et al., 1987). When generations overlap and the assumption is 
made that each female transmits the integrality of her genotype to the next 
generation, the instantaneous growth rate of the number of copies of a 
given genotype is an appropriate measure of fitness for that genotype (Sibly, 
1989; Nur, 1984; Stenseth, 1984). In order to get simple decision rules, we 
made the assumption that ovipositions could be counted in terms of 
immediate fitness gain. As a first step, this assumption is quite reasonable 
and should not lead to important discrepancies with reality. In that condi- 
tion, the quantity to be maximized is the instantaneous reproductive rate 
of parasitoids. Thus, our optimality rule corresponds to the classical rate- 
maximizing theory (Stephens and Krebs, 1986). The optimal foraging part 
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of our model predicts that the response of parasitoids should be influenced 
by the abundance of both healthy and parasitized hosts. If the densities are 
the same, parasitoids should superparasitize if the density of healthy hosts 
is below a certain threshold and refuse to superparasitize if it is above. 
Qualitatively, this prediction is similar to more accurate optimality models, 
based on dynamic programming (Mangel, 1989a; Iwasa et al., 1984; Weisser 
and Houston, 1993). In fact, the individual part of our model is similar to 
other models for parasitoid diet, which take into account the recognition 
time (e.g. Visser et al., 1992a; Janssen, 1989). We make the simplifying 
assumption that the payoffs resulting from ovipositions in healthy and 
parasitized hosts, respectively, are constant. Normally, these two quantities 
depend on the probability that the host may be superparasitized in the 
future and on the number of eggs already present in that host. More 
complicated models have explored how parasitoids should adjust their 
behavior to the number of competitors and the number of eggs in para- 
sitized hosts (van der Hoeven and Hemerik, 1990; Visser et al., 1992a), but 
this makes the link between individual behavior and population dynamics 
more complex (Driessen and Visser, 1993). 

We showed that the adaptive individual behavior of parasitoids may 
stabilize an unstable (and non-persistent) dynamics; see Fig. 2. In this case, 
condition (9) is satisfied and, despite the fact that for both u = 1 and u = 0 
the trajectories of the system are moving outward from the corresponding 
unstable equilibria, the system in which parasitoids choose whether to 
superparasitize or not according to the criteria we introduced in this paper 
possesses a locally stable equilibrium point. However, we want to stress that 
E ° need not be globally stable; see Fig. 3. 

The effect of the optimal individual behavior on the population dynamics 
comes from the fact that the situation where all parasitoids maximize the 
rate of increase of the number of copies of their genotype does not 
correspond to the maximization of the instantaneous growth rate of the 
population of parasitoids. When parasitoids superparasitize, they may get a 
new offspring, but from the population point of view it is a waste of 
searching time, and the resort to superparasitism leads to a decrease of the 
population efficiency. Indeed, if parasitoids do not superparasitize (i.e. 
u = 0), then they will have more time to search for hosts. This would result 
in higher growth rate of the parasitized hosts and thus to the higher growth 
rate of parasitoids. However, from the point of view of an individual 
parasitoid it pays off to superparasitize if the number of hosts is low, since 
this will increase its fitness. This mechanism is responsible for the stabiliza- 
tion that we showed. 

Though the part of our work which is dedicated to individual behavior is 
similar to classical theory, the population dynamics flame of our study led 
us to consider a particular case more precisely. Actually, we showed that 
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our system may have a locally stable equilibrium point in the region where 
the optimal criterion alone cannot be used to predict the strategy of 
parasitoids. However, this criterion, together with the host-parasitoid dy- 
namics described by (2) leads to the unique description of the system 
trajectory and to the unique value of the parameter which controls the 
probability that a parasitoid will superparasitize at ecological equilibrium. 
We showed that our model predicts partial preferences for parasitized 
hosts, i.e. partial superparasitism. 

Classical diet models (e.g. Stephens and Krebs, 1986) predict that, 
depending on circumstances, one particular type of prey should always be 
rejected or always be accepted (as in G 1 and G 2 in our model, parasitized 
hosts being considered as prey). Thus, these models lead to a "zero-one" 
rule, but they do not pay attention to the limit case where acceptance and 
rejection of the prey are equivalent for the predator (G o in our model; 
Stephens and Krebs, 1986, p. 23). Here we showed that a system in which 
parasitoids behave optimally may evolve toward an equilibrium where this 
limit case is met, which stresses the ecological importance of this particular 
situation. 

Partial preferences are a common pattern in the behavior of both 
parasitoids (van Dijken et al., 1986; Kraaijeveld and van Alphen, 1986; Sirot 
et aI., 1996) and predators (Rechten et al., 1983; Krebs et al., 1977; Lea, 
1979). A few general kinds of explanations were given for the apparent 
discrepancy between this phenomenon and the failure of the classical diet 
model to predict them. One is that this deterministic model assumes that 
the animal has a perfect knowledge of the parameter values (McNamara 
and Houston, 1987), whereas "errors" may happen when the animal dis- 
criminates between different kinds of items (Krebs et al., 1977; Rechten et 
al., 1983; Krebs and McCleery, 1984) and when it estimates the densities of 
these kinds of items (Snyderman, 1983; Krebs and McCleery, 1984). An- 
other explanation is that even if the zero-one rule is followed by each 
individual, the threshold determining the switching is not the same for all 
the animals and for all the states of the same animal (Stephens, 1985; 
Mangel, 1989b). These explanations are based on real processes and they 
are highly relevant. However, we have shown that a host-parasitoid system 
may reach a locally stable equilibrium point where the behavior of para- 
sitoids toward superparasitism is strict partial preferences, even within the 
frame of the classical diet model. From the ecological point of view, we 
think that three aspects make our work relevant. The first one is that 
superparasitism is known to play an important role in population processes 
(Driessen and Visser, 1993). Second, although it is not possible analytically 
define the attraction area of the equilibrium point, numerical results 
suggest that it is wide; see Fig. 4. So, it is a strong prediction of our model 
that optimal strategy of parasitoids should tend to bring the system near the 
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Figure 4. Approximation of the domain of attraction of the equilibrium. The 
points xl(O) and x2(O) are plotted from which the corresponding trajectory of (2) 
with x3(0) = 1.5 converges to equilibrium. 

equilibrium, where partial preferences are predicted. Third, the relation- 
ships upon which our predictions lie are simple enough to be tested in real 
systems. As a first step, the strategy of parasitoids toward superparasitism 
could be tested using different densities of healthy and parasitized hosts, 
two factors which are known to influence parasitoids decisions (for a 
review, see Godfray, 1994). 
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APPENDIX 1: INSTABILITY OF THE ECOLOGICAL 
EQUILIBRIUM OF (2) 

For fixed u, the characteristic polynomial is 

~ 3  + (c  + m + h 2 m r ( u  - 1))o -2 + m r (  - c h  1 - ch 2 - h 2 m  - h l r  + h 2 m u  - h 2 r u ) t r  

+ m r ( c  - c h l m  - c h z m  - h l m r  - h z m r u ) .  

Assuming that the equilibrium E* is positive implies that c - C h l m - c h 2 m - h l m r -  
h z m r u  > 0. Since 0 < u < 1, the coefficient of tr is negative, which means that there is an 
eigenvalue with a positive real part (Yodzis, 1989, p. 184). 
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APPENDIX 2: OPTIMAL STRATEGY 

T h e  de r iva t ive  of  R is 

R'(u) 
Ax2(e 2 + A X l ( e2h  I -- e l h  2 + e2h 2) + A h l e 2 x  2) 

(1 + A ( x l ( h  1 + h  2) q - x 2 ( h  I q'- u h 2 ) ) )  2 

I f  

e 1 e2 
- - <  

h 1 + h 2 -- h 2 '  

t h e n  R ' ( u )  > 0 a n d  t he  o p t i m a l  c o n t r o l  u = 1. I f  

el  e2 
- - >  
h I + h 2 h2 ' 

we  ge t  t ha t  R ( u )  is m a x i m i z e d  for  

l 
= O, if x 2 < 

u = 1, if  x 2 > 

[0 ,1 ] ,  if x 2 =  

A x l ( e l h  2 - e 2 ( h  2 + h i ) )  - e 2 

e2Ah l  

A x l ( e l h  2 - e2 (h  2 + h i ) )  - e 2 

e2Ah 1 

A x l ( e i h  2 - e 2 ( h  2 + h i ) )  - e 2 

e 2 Ah I 

L e t  

a n d  

APPENDIX 3: EXISTENCE AND UNIQUENESS 
OF SOLUTIONS OF (2) 

G 1 := {(x1, x2, x 3) ~ R 3 Ix 2 < 

G 2 := {(x l ,  x2, x3) E R 3 I x 2 > 

G O := { ( x l , x 2 , x 3 )  ~ R3+ I x2 = 

A x l ( e l h  2 - e 2 ( h  1 + h z ) )  - e 2 

e2Ahl  / 

A x l ( e l h  2 - e2 (h  1 + h 2 ) )  - e 2 

e2Ahl  f 

A x l ( e l h  2 - e z ( h  I + h 2 ) )  - e 2 

e 2 Ah i f 

e l h 2 _  e 2 ( h  1 + h 2) ) 
n = e2h l  , 1 , 0  

( A 1 )  
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is a perpendicular vector to G °, oriented from G 1 toward G 2. Denot ing by f l ( x l ,  x2, X3) the 
right-hand side of (2) for u = 0 and by f2 (x l ,  x2, x 3) for u = 1, we get on G O 

</'/, f l ( x 1 ,  X2, X3) > = </'t, f 2 ( x 1 ,  X2, X3) > -b 
(e I - e2) (Ax l (e lh  2 - e2(h I + h2)) - e2)x 3 

e lh l ( - - e  2 + AXl(h 1 A- h 2 ) ( e  1 - e2)) 

Since in G O , 

e 2 

X 1 > h ( e l h 2  -- e2 (h  1 + h 2 ) )  ' 

it follows that 

( e  I -- e 2 ) ( A X l ( e l h 2  - e 2 ( h  I + h 2 ) )  - e 2 ) x  3 

e l h l ( - e  2 + hx l (h  1 + h2)(e  1 - e2) ) 
> 0 .  

Thus, either 

<n, f2> >_ 0 

and consequently (n ,  f l )  > 0 or 

( n ,  f 2 )  < O. 

We see that either ( n , f  1 ) > 0 or ( n , f  2 ) < 0. Let f denote the right-hand side of (2). Then  
for every u ~ S(x), 

d (e2 - el)h 2 a2xlx2x3 

--~u (n ' f ( x ) )  e2hl(l + A(hl +h2)(xl +x2))2 
< 0  

in R 3. These are the conditions that ensure existence and uniqueness of trajectories of (2); 
see Theorem 3, p. 113 in Filippov (1988). 

APPENDIX 4: BEHAVIOR OF TRAJECTORIES ON G O 

We assume that 

el e2 - - >  
h 1 + h 2 h2 • 

For u = 1 we denote the right-hand side of (2) by f2  and for u = 0 by f l .  We will study the 
behavior of a solution when it falls on G °. This behavior is given by projections of vector 
fields f l  and f2  on the vector n given by (A1). We get 

c (c + r)(e2(h I + h 2) - e lh2)x  1 e I - e 2 
<n, f l> = ~ + e2h, + elh----~x3 
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and 

c (c +r)(e2(h 1 + h  2) -e lh2)x  1 e 2 - e  1 

( n , f  2) = hh 1 + e2hl + e2 + hxl(hl +h2) (e2-e  1) AXlX3" 

Let 

and 

yl(Xl)= eJ2--1 ( (c +r)(e lh2-e2(hl  e2hl xl--~lc ) 

y2(x l )  = --yl(xl) 
(e 2 + Axl(h I + h 2 ) ( e  2 -  el)  ) 

AelhlX 1 

We get that ( n , f  1) > 0  if x3>yl(xl)  and ( n , f  2) > 0  if x3>y2(xl ). We note that the 
curves yl  and y2 intersect at x~ and 

x** = 
ce 2 

A(c + r)(elh 2 - e2(h 1 + h2)) ' 

i.e., x~* <x~.  When a trajectory of (2) falls on G °, we have to distinguish four possible cases 
(see Fig. 1): 

(i) ( n , f  1) > 0, ( n , f  2) < 0, which means that trajectories of (2) will stay in G °. This 
occurs for y l (x  1) < x  3 <y2(x l ) .  

09  ( n , f  1) > O, ( n , f  2) > 0, which means that trajectories of (2) will pass through G o 
from G 1 to G 2. This occurs for x 3 >y2(x l ) .  

(iii) ( n , f  1) < O, ( n , f  2) < 0, which means that trajectories of (2) will pass through G o 
from G 2 to G 1. This occurs for x 3 < y l ( x l ) .  

(iv) ( n , f  1) < O, ( n , f  2) > 0, which means that trajectories of (2) which start on G o will 
move either to G 1 or to G 2. This case cannot occur; see Appendix 3. 

Under  the condition (i), a trajectory which hits G o stays there as long as (i) holds. This 
allows us to derive uniquely a value of u along G °. Let us assume that a solution of (2) is in 
the part of G o where (i) holds. Since in this case it cannot leave G °, it must hold that 

X' 2 =X' 1 e lh2-  e2(h 1 + h  2) 

e2hl 

This allows us to compute explicitly u(x D x3). Substituting this u into t he  dynamics (2) gives 
(7). 
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