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Abstract
In natural conditions, pheromones released continuously by female moths are broken in discontinuous clumps and filaments.
These discontinuities are perceived by flying male moths as periodic variations in the concentration of the stimulus, which have
been shown to be essential for location of females. We study analytically and numerically the evolution in time of the activated
pheromone-receptor (signaling) complex in response to periodic pulses of pheromone. The 13-reaction model considered
takes into account the transport of pheromone molecules by pheromone binding proteins (PBP), their enzymatic deactivation
in the perireceptor space and their interaction with receptors at the dendritic membrane of neurons in Antheraea polyphemus
sensitive to the main pheromone component. The time-averaged and periodic properties of the temporal evolution of the
signaling complex are presented, in both transient and steady states. The same time-averaged response is shown to result from
many different pulse trains and to depend hyperbolically on the time-averaged pheromone concentration in air. The depen-
dency of the amplitude of the oscillations of the signaling complex on pulse characteristics, especially frequency, suggests that
the model can account for the ability of the studied type of neuron to resolve repetitive pulses up to 2 Hz, as experimentally
observed. Modifications of the model for resolving pulses up to 10 Hz, as found in other neuron types sensitive to the minor
pheromone components, are discussed.
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Introduction

The present paper is based on two lines of thought. The first
one comes from the realization that temporal discrimination
is an essential feature of odorant perception in insects. It
has been shown in natural conditions that air turbulence
physically breaks the initially continuous pheromone plume
into spatially and temporally discontinuous patches (Murlis
et al., 1992). For an insect flying in the plume the dis-
continuities appear as a temporally structured signal. Males
of Bombyx mori orient  upwind  only  when  the signal  is
pulsed (Kramer, 1986, 1992). Behavioral (Kennedy et al.,
1980, 1981; Willis and Baker, 1984; Vickers and Baker, 1992)
and neurophysiological (Christensen and Hildebrand, 1988;
Rumbo and Kaissling, 1989; Marion-Poll and Tobin, 1992;
Kodadová, 1996) experiments indicate that the optimum fre-
quency of the periodic stimulation is in the range 1–10 Hz.

The second line of thought comes from the recent
progress in the understanding of perireceptor and receptor
events [reviewed in (Stengl et al., 1999)].  On this basis,
Kaissling (Kaissling, 2001) proposed an integrated model of

the network of reactions taking place up to receptor
activation, in the case of the receptor neuron of the moth
Antheraea polyphemus sensitive to the main component of
the sexual pheromone. Significant improvements have been
brought with respect to previous models (Kaissling, 1998a,b;
Rospars et al., 2000; Lánský et al., 2001; K¡ivan et al., 2002).
These improvements are qualitative, with the introduction
of pheromone binding protein (PBP) and of a more realistic
deactivation of the pheromone molecules  which can  be
removed by two enzymatic reactions, the first one (enzyme
E) degrading the free ligand, the other one (hypothetical
enzyme N) deactivating the PBP–ligand complex. They are
also quantitative with the estimation of all reaction rate
constants involved in the system.

Putting the two lines of thought together led us to determine
the properties of the activated receptor complex resulting
from this realistic network of reactions under periodic pulse
stimulation. We investigate how the concentration of the
complex evolves in time during the transient and steady
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states. The static and oscillating components in both states
are distinguished and their temporal and concentration
characteristics are determined. We are especially interested
in the amplitude of the oscillations of the receptor complex
in the cell type sensitive to the main component of the
pheromone which follows pulses only up to ~2 Hz (Rumbo
and Kaissling, 1989; Kodadová, 1996). We extend this
investigation to two other cell types sensitive to the minor
components (Meng et al., 1989) which are able to discrim-
inate pulses up to 10 Hz. Clearly, intuitive understanding
of the behavior of such systems is difficult and only quan-
titative simulations can lead to definite conclusions.

Model

Reaction network

Schematically the model involves two types of reactions: the
activating reactions and the deactivating ones (Table 1). The
activating reactions form the main sequence. This sequence
starts with the pheromone molecules (ligand) in the air. The
molecules that are adsorbed on the cuticle can diffuse at the
surface of the olfactory hairs (Kaissling, 1987), cross the
cuticle through small pores (Steinbrecht, 1997) and finally
reach the sensillum lymph. In Table 1 this is modelled as
translocation from air (Lair) to perireceptor space (L).
Pheromone molecules then react with the reduced form Bred
of the pheromone binding protein PBP (Pelosi and Maida,
1995; Ziegelberger, 1995) that protects and transports them
to the neuron membrane where the PBP–ligand complex
reacts with the receptor protein in a two-step reaction
(binding and activation). The deactivating reactions are
catalyzed reactions in which the active form L of the ligand
is deactivated into inactive forms L, LBox and LBox, where
Box stands for the oxidized form of the PBP molecule
(Kaissling, 1998b).

The set of differential equations describing this system is
given in Appendix A. The variables of  interest are L (free
ligand in sensillum lymph), LBred (ligand bound to PBP,
denoted P), LBredR (LBred bound to receptor, denoted O)
and principally LBredR*, the activated form of the receptor
protein. We denote C this activated (signaling) complex
and C(t) its concentration at time t. The perireceptor and
receptor network so defined is only part of a larger system
which is preceded by cuticular adsorption and diffusion, and
followed by biochemical transduction (amplifying stage)
and electric phenomena (conduction of the signal along the
dendrite and soma of the receptor neuron). The latter steps
are not taken into account here.

The model given in Table 1 was studied in its complete
form. However, simulations showed that, at least with used
parameter values, some reactions have only a very small
influence on concentration C(t). These are called ‘secondary
reactions’ in Table 1.

Parameter values

Kaissling was able to determine the values of all the
parameters in the model (Table 2) for the cell type sensitive
to the main  pheromone  component (E,Z-6,11-hexadeca-
dienyl acetate) of the saturniid moth Antheraea polyphemus
(Kaissling, 2001). These values come from three sources: (i)
biochemical experiments, as reported in the literature or
done by the author and his co-workers; (ii) electrophysio-
logical experiments, based mostly on measurements of the
receptor potential and the elementary receptor potentials
(transient potential changes which are thought to result
from single receptor protein activations); and (iii)
calculations based on the steady-state solution of the model
and several approximations. Obtaining such  values  is a
difficult task because it is based on a deep familiarity with

Table 1 Kaissling’s (2001) redox model for reactions involved in
perireception and reception of pheromone molecules in the moth
Antheraea polyphemusa

aWith the notation used the main reactant (pheromone L) and its
products are written on the line. The other reactants appear above the
line and the other products below the line.
bFirst sequence: activating reactions. Pheromone molecules (L) in the
sensillum lymph bind to the reduced form (Bred) of the pheromone
binding protein (PBP). The complex LBred binds to the receptor molecule
R and activates it (LBredR*). Initial translocation reactions Lair Lcut Lpore

L, i.e. adsorption of pheromone molecules in air (Lair) on the cuticle
(Lcut) and diffusion through pores to the sensillum lymph (L), are not
detailed here.
cSecond sequence: deactivation reactions of L bound to PBP. The complex
LBred binds to the hypothetical enzyme N which catalyzes its conversion
into the oxidized form LBox. This complex is then degraded by enzyme E
into LBox.
dDegradation by enzyme E of free L in L. The reaction network is
incomplete for L, which accumulates.
eDegradation by enzyme E of LBred in LBred. The network is also
incomplete for PBP because Box and Bred are not regenerated from the
end products LBox, LBox and LBred which consequently also accumulate.
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the system. For this reason and for the sake of comparison,
we have taken the parameter values as originally published.
However, to account for the temporal characteristics of cell
types responding to the minor pheromone components
(E,Z-6,11-hexadecadienal and E,Z-4,9-tetradecadienal), we
studied also a modified set of parameter values.

Constant stimulation

Although the subject of this paper is pulsed stimulation, the
response to a periodic stimulus cannot be understood
without reference to the simpler constant (or step) stimu-
lation. When the system is stimulated at constant ligand
concencentration from time zero, the concentration Cc(t) of
the signaling complex initially increases, then approaches a
constant level. As shown in Appendix B, this equilibrium
response, denoted Cc, was determined without approxima-
tions as a result of a long but straightforward calculation
and found to be a hyperbolic function (equation B3 or B6)
of the constant concentration of ligand Lc in air surround-
ing the antenna. This steady-state concentration of the sig-
naling complex Cc is not a quantity of much behavioral
interest, but is an important reference value from a theor-
etical point of view. These symbols and all those introduced
below are defined in Table 3.

Pulsed stimulation

The concentration  of ligand in the air surrounding the
antenna is described by periodically repeated square pulses,
in the form

(1)

where j = {0, 1, . . .}, tH is the duration of the pulses (at
concentration LH), tL is the inter-pulse duration. It follows
from (1) that any stimulation protocol is characterized by
the triplet (LH, tH, tL). The stimulation frequency is

f = (tL + tH)–1 (2)

Thus, the stimulation frequency (2) can be changed either
by modifying tL or tH. The temporal average of   the
concentration of ligand in air is

(3)

When the interpulse tL decreases and tends to zero, L
increases and tends to the limiting value LH, which corres-
ponds to a permanent stimulation.

Concentration of ligand in air and flux from air to
perireceptor space

Pheromone molecules in the air can cross the hair wall
through pores and reach the perireceptor space in the
vicinity of the cell membrane. The rate at which they enter
the sensillum lymph can be considered, at any time t, as
proportional to the pheromone concentration in air Lair(t)
expressed in nM:

φ(t) = kiLair(t) (4)

where φ(t) expressed in µM/s denotes the inward flux of
molecules at time t and ki expressed in s–1 is the rate constant
characterizing the translocation (Rospars et al., 2000). It
follows from (4) that the intensity of stimulation can be
equivalently expressed as a concentration in air Lair (molar-
ity) or as a flux φ (molarity per time unit). For example, a
constant stimulation Lc generates a flux φc = kiLc and during
a pulse of height LH the flux is φH = kiLH. Experiments in
Antheraea with 3H-labeled pheromone lead to ki = 2.9 ×
104 s–1 (K.-E. Kaissling, personal communication). Note
that this value is smaller than the value ki = 106 s–1 used in
our previous work (Rospars et al., 2000). We will use
Kaissling’s estimate in the present work. With this rate a
concentration of 1 nM corresponds to a flux of 29 µM/s. In
the following, concentration Lair is always expressed in nM
and flux φ in µM/s.
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Table 2 Values of parameters used in numerical simulations of the cell
type sensitive to main pheromone component (E,Z-6,11-hexadecadienyl
acetate) of Antheraea polyphemus, from Kaissling (Kaissling, 2001)

Protein concentrationsa

R0 = 1.64 µM
Bred = 3500 µM Box = 500 µM
N = 1 µM E = 0.4 µM

Rate constantsb

ki = 2.9 × 104 s–1c

k2 = 0.17 s–1 µM–1 k–2 = 0.01 s–1

k3 = 0.209 s–1 µM–1 k–3 = 7.9 s–1

k4 = 16.8 s–1 k–4 = 98 s–1

k5 = 4 s–1 µM–1 k–5 = 98.9 s–1

k6 = 29.7 s–1

k7 = 1.7 × 10–4 s–1 µM–1 k–7 = 10–5 s–1

k8 = 150 s–1 µM–1 k–8 = 300 s–1

k9 = 30 s–1

k10 = 0.15 s–1 µM–1 k–10 = 300 s–1

k11 = 30 s–1

k12 = 0.15 s–1 µM–1 k–12 = 300 s–1

k13 = 30 s–1

aThe concentration of the membrane receptors R0 is expressed with
respect to the volume of the hair V = 2.6 × 10–12 l (Keil, 1984).
bSee corresponding reactions in Table 1. Forward reactions (left, with
positive subscript) and backward reactions (right, with negative
subscript).
cTranslocation rate constant (Kaissling, personal communication).
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Results
All numerical results are based on the constants given in
Table 2, except those in the section on ‘Modified parameters
for a higher temporal resolution’.

Response as a function of time

When periodic pulses of ligand molecules in air are applied
to the system, the concentration L(t) of free ligand in the
perireceptor space follows the stimulus without much distor-
tion (Figure 1A). This is not the case of the concentrations
of the three next species along the activation pathway,
P(LBred), O(LBredR) and C(LBredR*), which all initially
increase for several periods, then reach steady-state oscil-
lations (Figure 1). Now, these ‘steady’ states are actually
periodic, P(t), O(t) and C(t) fluctuating around constant
values with different amplitudes and the same period T.
Period T is always equal to that, tL + tH, of the stimulation

(Figure 2). This means that the intermediate species and the
signaling complex merely follow, with a time lag and a more
or less severe deformation, the time course of the stimulus.
The responses oscillate between a lower bound (trough)
and an upper bound (crest). During each pulse the response
increases and tends to a horizontal asymptote that can be
closely approached only if  the pulse is of sufficiently long
duration. Then, the response decays and tends to the zero
level, which similarly can be reached only if the interpulse is
sufficiently long. For all stimulations shown in Figure 2,
the response of the complete system, with all 13 reactions, is
practically identical to the response of the simplified 10-
reaction system shown in Table 1 (main reactions).

Because the concentrations fluctuate around average
levels they can be analyzed as the sum of a monotonic
component (average of response over one period), which is
studied in the next two sections, and an oscillating com-
ponent, examined in the two final sections. For the sake of

Table 3 List of main symbols and abbreviations

Symbol Definition Unit

A amplitude of oscillations of C for periodic pulse stimulation µM
Box, Bred pheromone binding protein (PBP), oxidized and reduced forms –
Box, Bred concentrations of Box and Bred µM
C activated receptor complex LBredR* –
C(t) concentration of C at time t in response to pulsed stimulation µM
C time-averaged concentration of C(t) over one period at steady state µM
Cc(t) concentration of C at time t in response to step stimulation Lc µM
Cc equilibrium concentration of Cc(t) µM
Cmax maximum of Cc and C, asymptote of Cc vs. Lc and C vs. L curves µM
CD concentration detector –
E enzyme deactivating L (in L) and LBox (in LBox) –
FD flux detector –
GFD generalized flux detector –
f frequency of stimulation, f = 1/T Hz
kj rate constants of the 13 reactions (21 constants, see Tables 1 and 2) s–1, s–1 µM–1

KD apparent equilibrium dissociation constant for Cc vs. Lc, KD ≡ L50 µM
Kj equilibrium dissociation constant of reaction j, Kj = k–j/kj µM
L ligand E,Z-6,11-hexadecadienyl acetate (main pheromone component) –
L metabolic products resulting from enzymatic degradation of L –
L(t) concentration of L in perireceptor space (lymph) at time t µM
Lair(t) concentration of L in air at time t nM
L time-averaged concentration of L in air over one period (pulsed stim.) nM
Lc constant concentration of L in air (step stimulation) nM
LH constant concentration of L in air during pulses (pulse height) nM
N hypothetical enzyme deactivating LBred into LBox –
φ(t) flux of L from air into perireceptor space at time t, φ(t) = kiLair(t) µM/s
φc time-averaged constant flux of L into perireceptor space, φc = kiLc µM/s
φH constant flux of L into perireceptor space during pulses, φH = kiLH µM/s
φ50 apparent equilibrium dissociation constant for Ceq vs. φc, φ50 = kiKD µM/s
R receptor of L on the neuron membrane –
R0 concentration of R with respect to the sensillum volume µM
tH pulse duration ms
tL interpulse duration s or ms
T period of stimulation, T = tH + tL s or ms
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simplicity only the concentration C(t) of the signaling
complex LBredR* is studied in detail. It is called here the
response of the system.

Monotonic component of the response during the steady
state

Once the steady state is reached, the (constant) monotonic
component can be estimated by averaging C(t), over one
period T. It can be shown numerically that this average C is
equal to the equilibrium response Cc of the system to a con-
stant stimulation Lc delivering each period the same amount
of ligand L as the periodic pulses (Figure 3), i.e. Lc = L,
where L is given by equation  (3).  This  is  a  noteworthy
simplification for the analysis of the system because  it
implies that, for studying the monotonic component at
steady state, attention can be restricted to constant stimu-
lations without any loss of information. The response Cc
can be determined exactly (see Appendix B); this is the only
feature of the response to a periodic pulsed stimulation that
can be derived analytically. It follows from equation (3) that
the same mean steady-state level of  the signaling complex
can be achieved in several ways with pulses of different
heights, durations or interpulse lengths.

When L increases, C also increases as shown in Figure 4.
In the standard plot C vs. L, identical to Cc vs. Lc (Figure
4A), is a branch of hyperbola that tends to an asymptotic
maximum Cmax given by equation (B4). The ligand con-
centration at half-maximum response, C/Cmax=0.5, given by
equation (B5), is KD = L50 � 1 nM (corresponding to a flux
φ50 = 30.2 µM/s) for parameters of Table 1. In the semilog
plot C vs. log L, identical to Cc vs. log Lc (Figure 4B), is a

logistic curve with an inflection point at KD. The dynamic
range of the curve between L1 at 1% saturation (C/Cmax =
0.01) and L99 at 99% saturation is 4 log units, which is a
general property of logistic curves (Rospars et al., 1996). For
L � L10, i.e. 0.12  nM, the hyperbola can be very  well
approximated by the straight line given by equation (B7). In
this range, the system is practically linear.

Monotonic component of the response during the
transient state

The transient response to a periodic stimulus, like the steady
state, can be described as the summation of a monotonic
component (that yielded by the corresponding step stimu-
lation) and an oscillating one (Figure 5). Thus the char-
acteristics of the monotonic component are those derived
from a step stimulation of intensity Lc = L. How the
transient state changes into the steady state C for different
values of L, or equivalently Cc for different values of Lc, is
shown in Figure 5A. It is difficult to judge from this figure
whether the time needed to come close to the steady state is
the same or not. This can be better seen using the ratio
C(t)/C, which allows one to compare the kinetics of the
signaling complex at different stimulation strengths in-
dependently of the asymptotic concentrations (Figure 5B).
Then it appears that the time to reach the steady state C of
the signaling complex decreases when L increases. For all
ligand concentrations L < L1 the C(t)/C curves are very
similar, which means that the duration of their transient

Figure 1 Concentrations of activated receptors C(t) as a function of time.
Amplitude of C at steady state is 2.43 × 10–7 µM (0.38 molecules/cell).
Bottom trace shows the timing of the odor pulses (height of pulses is not to
scale). Input variables: LH = 3.4 × 10–4 nM in air (i.e. flux 10–2 µM/s), tH =
20 ms, tL = 480 ms; thus Lc = 1.36 × 10–5} nM and f = 2 Hz, maximum
frequency of cell type sensitive to main pheromone component.
Parameters: as in Table 2. In this and other figures, the flux from air into
perireceptor space expressed in µM/s is 29 times the concentration in air
expressed in nM.

Figure 2 Concentrations of the signaling complex, C(t), as a function of
time for different frequencies of stimulation f. The transient and steady
states are shown for the same pulse height LH and duration tH at different
interpulse tL. C(t)’s oscillate between an upper bound and a lower bound.
Except for tL = 4.98 s decay to level close to zero is not observed because
the pulse trains are too fast to allow the response to develop with full ampli-
tude. Input variables: LH = 3.4 × 10–4 nM (i.e. φH = 10–2 µM/s), tH = 20
ms, and from bottom to top tL = {4.98, 1.98, 0.98, 0.38, 0.18, 0.08 s} or
equivalently f = {0.2, 0.5, 1, 2.5, 5, 10 Hz} . Note that 20 ms pulses merge
in a continuous stimulation at 50 Hz. For tH and tL fixed, the relative posi-
tions of the curves and their relative amplitudes remain identical to those
shown here in the range 0 < φH < 100 µM/s. Parameters: as in Table 2.
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states are very close, ~5.58 s to reach 99% of C. For KD the
transient time is noticeably shorter, 4.55 s to reach the same
99% level.

Oscillating component of the response during the steady
state

The oscillating component of the steady state can be shown
in isolation by substracting the response Cc(t)  to  a  step
stimulation from the response C(t) to a pulsed stimulation.
The oscillating component calculated in this way is shown in
Figure 6. The main characteristic of interest, the amplitude
of the oscillations, i.e. half of the distance between extrema
of C(t), has to be calculated numerically.

Contrary to the average magnitude C, the amplitude A of
the response during the steady state does not depend on the
quantity L but on the individual characteristics LH, tH and tL
of the pulses. Before studying these dependencies it is useful
to introduce the notion of the ‘natural pulse’ of the system;
it reverses the usual point of view of observing the response
yielded by a specified stimulation by modifying the stimu-
lation in order to obtain a specified response. The periodic
stimulus is ‘natural’ for the system if the pulse duration is

Figure 3 Comparison of the concentrations of the signaling complex in
response to a step stimulation Cc(t) (dashed line) and a periodic pulsed
stimulation C(t) (solid line) for the same amounts of ligand molecules
delivered per time unit at two frequencies 1 Hz (A) and 2 Hz (B). For any
amount Lc, the height of the periodic pulses is given by LH = Lc(tH + tL)/tH,
see equation (3). The response to a step stimulation is always within the
range of variation of the response to periodic pulses. The asymptotic level Cc

for the step stimulation is given by equation (B3); it is equal to that of the
periodic response averaged over one period C. Input variables: Lc = 3.4 ×
10–2 nM (i.e. φc = 1 µM/s), tH = 0.1 s and tL = 0.9 s (1 Hz, A), tL = 0.4 s
(2 Hz, B). Parameters: as in Table 2.

Figure 4 Monotonic component. Mean concentration of the signaling
complex in the steady state Ceq (µM, dashed line in Figure 3) as a function
of the concentration of ligand molecules Lc (nM) or corresponding flux φc

(µM/s). Lc can be obtained by various combinations of LH, tH and tL as shown
by equation (3). The same curves would be obtained with step stimulations
of intensities Lc. (A) Hyperbolic curve Cc vs. Lc as given by equation (B3) in
Appendix B. Concentrations L10 = 0.117 nM and L50 = KD = 1.04 nM at
10% and 50% respectively of maximum response Cmax are shown. For Lc <
L10 the hyperbola is very well approximated by line C1 = 0.23L (dashed line);
line C2 = 0.19L (dotted line) is slightly better for Lc > L10. (B) Corres-
ponding logistic curve Cc vs. logLc, with concentrations logL0.1 = –3 (log φ0.1

= 1.52), logL1 = –2 (logφ1 = –0.52), logKD = 0 (logφ50 = 1.48), logL99 =
2 (logφ99 = 3.46) at which 0.1%, 1%, 50% and 99% respectively of Cmax =
max(Cc) = 0.24 µM are reached. Curves C1 (dashed) and C2 (dotted) are also
shown.

Figure 5 Kinetics  of the monotonic component Cc of the signaling
complex. (A) Concentration Cc as a function of time for various stimulus
intensities Lc = {L0.1, L1, L50 = KD} (from bottom to top) (see Figure 4). (B)
Same curves for relative concentration Cc(t)/Ceq; the curves for L0.1 and L1

(solid line) are superimposed. The times needed to reach half-saturation
(Cmax/2), t50 = {0.6, 0.98 s} , 90% of saturation, t90 = {2.05, 2.88 s} , and
99% of saturation t99 = {4.55, 5.58 s} , are indicated. Note that, as shown
in Figure 3, the steady-state concentration for a step stimulation is equal to
Cc, the time averaged concentration for periodic pulses, C, so these graphs
are valid for both types of stimulations.
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such that C(t), can rise to 99% of its maximum asymptotic
value , and the interpulse long enough for C(t) to decay
to 1% of . These pulse characteristics define the ‘natural
frequency’ of the system because it is the highest frequency
which gives the (almost) maximum possible amplitude. For
any higher frequency, the response cannot go so close to
the asymptotes and thus the amplitude of the oscillations is
only a fraction of the distance between the asymptotes. The
natural frequency depends on LH but in the range of
stimulus concentration L up to ~0.1 nM in air (i.e. a flux
of 3 µM/s), in which the system is practically linear, it is
constant, f = 0.082 Hz and the corresponding ‘natural
period’ is T = 12 s (Figure 7). The natural frequency of
the whole system is ~10 times lower than that of the
receptor–ligand interaction reactions considered in isolation
(0.88 Hz), which indicates that the transport and degrad-
ation reactions are responsible for this slowing down.

In the simplest case, where both tH and tL are longer than
in the ‘natural pulse’, C(t) can first approach the asymptote
C = Cc corresponding to a constant stimulation of intensity
L (upper bound), then approach zero (lower bound), so that
the amplitude is (almost) fully expressed and A � C/2. Then
equation (B3) applies: amplitude A grows hyperbolically
with L and tends to Cmax/2 when the concentration of
activated receptors approaches its maximum. However, for
any frequency higher than the natural frequency, the ampli-
tude of the oscillations is limited to a fraction of this range
because the pulses stop before the upper bound is reached
and start again before decay to the lower bound.

The basic protocol for studying how the amplitude
depends on the input variables consists in maintaining the
third variable constant (e.g. tH) and plotting A vs. the first
variable (e.g. LH) for a series of fixed values of the second

variable (tL), in practice different frequencies. Using this
approach we investigated how amplitude changes when
pulse height LH is increased for extreme values of tH (1 and
50 ms; Figure 8) and frequency (1 and 10 Hz; Figure 9).

Figure 8 shows that, for a biologically meaningful range
of values of tH and tL, logA first increases linearly with
logLH, reaches a maximum, then decreases linearly (Figure
8A). Equivalently, the relative amplitude A/C remains
constant then decreases linearly (Figure 8B). The latter
representation confirms that, in the left part of the curve, A
depends linearly on LH and that the slope of  this straight
line is not a constant but depends on f and tH. The ligand
concentration in air at which the maximum amplitude
occurs depends on tH, it is ~3.4 nM (i.e. flux 100 µM/s) for
tH = 100 ms and ~3.4 × 103 nM (i.e. flux 105 µM/s) for tH =
1 ms.

Figure 8 shows that the amplitude of oscillations depends
first of all on pulse height, secondarily on frequency and
marginally on pulse duration; the effect of LH is greater by
several orders of magnitude than that of tH. Practically, only
LH is important since the curves of A for extreme values of
tH and f are very similar (Figure 8A). On the contrary, for
relative amplitude A/C only frequency is decisive, LH and tH
being negligible (Figure 8B). The final decline of A for high
LH results from the fact that the ‘saturation’ of the receptors
prevents the upper bound from moving further up while the
lower bound of the oscillations still moves up with LH. It
follows from these simulations that the optimum LH of the

~
Cc ~

Cc

Figure 6 Oscillating component. Oscillation of the signaling complex at
the transient and steady states shown in isolation as the difference C(t) –
Cc(t), where Cc(t) is the response to the step stimulation corresponding (with
same Lc) to the pulsed one giving C(t) (see justification in Figure 3). Two
different periodic pulsed stimulations are shown for LH = 0.34 nM
(10 µM/s), tH = 0.1 s, tL = 0.9 s in (A), and LH = 0.17 nM (5 µM/s), tH = 0.1
s, tL = 0.4 s in (B); in both cases Lc = 3.4 × 10–2 nM (1 µM/s). The first five
or ten oscillations correspond to the transient state and the following ones
to the steady state. The duration of the transient state depends only on Lc

(see Figure 5). Input variables: same as Figure 3.

Figure 7 Natural periods of various system components: single-step
receptor–ligand interaction (R + LBred ¾ LBredR only, one-step CD; dotted
line), double-step receptor–ligand interaction (R + LBred ¾ LBredR ¾
LBredR*, double- step CD; dashed line), and complete system as shown in
Table 1, either with standard parameter values (thick solid line), or with k3

increased 6-fold (thin solid line). Each system was stimulated with a train of
square pulses of the same height 10–2 nM (0.30 µM/s) and different
temporal characteristics. Pulse durations were determined so that at the end
of the pulse the concentration of signaling complex (LBredR or LBredR*) was
99% of its equilibrium value Cc, and the interpulse durations so that this
concentration was allowed to decay to 1% of Cc. These ‘natural’ periods are
1.16, 1.13, 12.22 and 13.83 s respectively, i.e. natural frequencies are 0.86,
0.88, 0.082 and 0.072 Hz. Periods and relative concentrations would be the
same with any pulse height in the linear range, i.e. L < 0.12 nM (see Fig. 4).
Parameters: Same as in Table 2, except k3 which was increased 6-fold (from
standard 0.209 to 1.254) for thin solid curve only.
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system, that which gives the greatest amplitude, is close to
L99 for tH � 10 ms and moves towards KD for tH > 100 ms.

The amplitude decreases steeply with respect to stimu-
lation frequency (Figure 9B, thick line). This behavior
follows from the observation above that, when frequency
increases, the signaling complex has not enough time first to
reach the upper bound then to return to the lower bound. At
the highest frequency resolved by the cell type modeled
(2 Hz) (Rumbo and Kaissling, 1989), with 20 ms pulses, the
amplitude is 2.42 × 10–6 µM for LH = 3.4 × 10–3 nM, i.e. flux
0.1 µM/s. It means that the signaling complex fluctuates by
3.8 molecules/cell around its average level which is 50 mol-
ecules/cell. These numbers can be considered as compatible
with periodic threshold crossing and firing of the cell.
However, because the average level of signaling complex C
grows linearly with frequency (Figure 9A), the relative

amplitude declines still faster than amplitude with pulse
frequency (Figure 9B, dashed line), so that the oscillations
become progressively lost on top of a growing steady-state
number of activated molecules. For example, amplitude is
reduced four times (0.95 activated molecules/cell for an
average of 12 activated molecules/cell) with a 4-fold decrease
of pulse height and about 4 times (0.86 molecules/cell for an
average of 200) with a 4-fold increase of frequency. So, the
cell  becomes  unable to follow pulses either because  the
amplitude falls below one activated receptor molecule per
cell, at low ligand concentration, or because the relative
amplitude becomes too small, at high concentration.

Oscillating component of the response during the
transient state

The oscillating component of the transient state can be
shown in isolation by substracting the response Cc(t) to a
step stimulation from the transient  response C(t) under
pulsed stimulation. As seen before, response Cc(t) grows to
constant Cc, whereas C(t) finally oscillates around the same

Figure 8 Amplitude of the periodic oscillations of signaling-complex
concentration as a function of pulse height LH. (A) Amplitude A vs. height
LH with both axes in log scale, at pulse frequency f = 2 Hz, pulse duration
tH = 20 ms and either standard k3 (thick solid line) or k3 increased 6-fold
(thin solid line). Other lines are for comparison at two pulse frequencies, f =
1 Hz (dashed lines) and 10 Hz (dotted lines) and two pulse durations, tH =
1 ms (stars on horizontal axis) and 50 ms (circles). The horizontal line at A =
10–6.2 µM corresponds to activation of a single receptor molecule. Along
this line from left to right: (20 ms, 2 Hz, increased k3), (50 ms, 1 Hz), (20 ms,
2 Hz), (50 ms, 10 Hz), (1 ms, 1 Hz), (1 ms, 10 Hz). (B) Same plot for relative
amplitude A/C, with C time-averaged steady state concentration of
signaling complex. Values for 10 Hz (dotted lines at the bottom) were
multiplied by 10. Parameters: Same as in Table 2 except k3 which was
increased 6-fold (from standard 0.209 to 1.254) for thin solid curves.

Figure 9 Time-averaged level and amplitude of the oscillating
concentration of signaling complex LBredR* as a function of pulse frequency
f between 0.5 and 10 Hz. (A) Time-averaged steady-state concentration C
vs. f for tH = 20 ms and LH = 3.4 × 10–3 nM (equivalent to φH = 0.1 µM/s)
for standard k3 (thick solid line) or k3 increased 6-fold (thin solid line). C =
10–3 µM corresponds to 1566 molecules/cell. (B) Amplitude A (in µM, solid
lines; A = 2.5 × 10–5 µM corresponds to about 40 molecules/cell) and
relative amplitude A/C (dashed line) as a function of f. Increasing k3 modifies
C and A but not A/C. Parameters: Same as in Table 2 except k3 which was
increased 6-fold (from standard 0.209 to 1.254) for thin solid curves only.
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level C = Cc. The oscillating component calculated in this
way is shown in Figure 5. It can be seen that the oscillating
component is not identical during the transient and the
steady states. However both fluctuate with the same period
and with a similar amplitude. So, contrary to the impression
given by Figure 3, for example, the oscillations of the ligand
concentration are immediately encoded in the oscillations of
the signaling complex, although in a distorted way.

Modified parameters for a higher temporal resolution

In order to follow pulses up to 10 Hz, as the cell types
responding to the minor pheromone components, the model
parameters of Table 2 must be modified. It seems reason-
able to modify the parameters so that the amplitude of 3.8
molecules of signaling complex per cell, found at 2 Hz with
the previous parameters, is now reached at 10 Hz. This
implies that the amplitude of the new system at 2 Hz should
be considerably increased. To have larger amplitude, at least
one of two conditions must be fulfilled: (i) the system must
react faster, i.e. transient state must be shortened; or (ii) the
steady-state level must be increased. In the activation
pathway (first line of Table 1) these conditions are achieved
by changing the forward kj and backward k–j rate constants
(with j = 2, 3, 4) for which the ratio Kj = k–j/kj is large. If Kj
is small, the change is not efficient. In the present case, with
K2 = 0.0638, K3 = 37.46 and K4 = 5.667, the best results are
obtained by increasing k3, which controls the binding of
the loaded PBP to the receptor. In the deactivation pathway
(second line of Table 1) the reaction that controls the
binding of the loaded PBP to the enzyme N is the most
important. Increase of amplitude is achieved by decreasing
K5. Since in differential equations (Appendix A) k5 always
appears in the product k5N, where N is the constant
concentration of enzyme N, it is equivalent to increase k5 or
N. However, any increase of k5N lengthens the transient
state. This slowing down can be compensated by increasing
k6 but then the amplitude is decreased.

Due to these complex effects, the simplest candidate for
improving the temporal resolution of the extracellular

reaction network is k3.  A  6-fold increase of k3 with  no
change of  the other parameters results in an amplitude of
3.7 molecules at 10 Hz, with pulses of 3.4 × 10–3 nM (flux
0.1 µM/s) in height (see Discussion) and 20 ms duration
as used in experiments (Rumbo and Kaissling, 1989;
Kodadová, 1996) (see Table 4). This is approximately the
same amplitude as that obtained at 2 Hz with the original
value of k3 without much slowing down the system (the
natural period remains approximately the same, see Figure
7). Of course, the average level C of the signaling complex
does not remain the same; it grows from 50 molecules/cell
for k3 = 0.209 (Figure 9A, thick line) to ~1500 molecules/cell
for k3 = 1.254 s–1 µM–1 (Figure 9A, thin line). Interestingly,
Figure 9B (dashed line) shows that the resulting fast decline
of the relative amplitude A/C is not influenced by k3.
Therefore improving relative amplitude can only be attained
through the modification of constants other than k3.

Discussion

Basic properties

Studying how the pheromone sensory system responds to a
periodic train of identical pulses offers an idealized equiv-
alent of how a moth ‘sees’ a pheromone plume when it flies
through it. We investigated this problem at the level of the
sensory membrane of receptor neurons. All events affecting
pheromone molecules up to receptor activation, i.e. trans-
location from external air to sensillum lymph, transport via
PBP, enzymatic deactivation and receptor interactions, were
taken into account. However, to simplify the interpretation
of the results the transduction of activated receptors into
receptor potential was not considered.

We show, using computer simulation of a reaction net-
work model proposed by Kaissling (Kaissling, 2001), that,
after a transient state, the concentration of activated recep-
tor proteins (signaling complex) at the surface of receptor
neurons oscillates in time around a constant value, with
a constant amplitude and with the same period as the
stimulus. This is an important feature of the model that

Table 4 Concentration C and amplitude A of signaling complex LBredR* at steady statea

k3 (s–1 µM–1) Frequency, f (Hz) Concentration, C Amplitude, A A/C (%)

µM mol/cellb µM mol/cellb

0.209 2 3.17 × 10–5 50 2.42 × 10–6 3.79 7.64
0.209 10 1.59 × 10–4 248 4.02 × 10–7 0.62 0.25

1.254 2 1.90 × 10–4 298 1.36 × 10–5 21.35 7.18
1.254 10 9.48 × 10–4 1484 2.39 × 10–6 3.74 0.25

aInput variables: LH = 3.4 × 10–3 nM (i.e. φH = 0.1 µM/s), tH = 20 ms, f = 2 or 10 Hz. Parameters: Same as in Table 2 except k3, either standard
(0.209) or increased 6-fold (1.254).
bMolecules per cell.
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the response can be considered at each instant as the sum of
two components, one monotonic (average on time) and the
other oscillating, whose properties are very different.

The characteristics of the monotonic component, i.e. the
time-averaged concentration of signaling complex and the
duration of the transient state, are the simplest to describe
because they depend only on the time-averaged amount L of
ligand delivered to the system, as given by equation (3).
Therefore the time-averaged response to a train of pulses is
identical to the response to a constant (step) stimulation at
concentration Lc of pheromone molecules in the air sur-
rounding the antenna equal to L. It implies that many
different pulse trains differing in their intensity (LH) and
temporal structure (tH and tL) yield the same monotonic
component of the response, provided they have the same L.
For this reason the quantity L of equation (3) appears as a
major feature of the pulse trains.

On the contrary, the properties of the oscillating com-
ponent depend on the detailed characteristics of the pulses,
i.e. their height LH, duration tH and separation tL. Although
the period of the response is the same as that of the stimulus,
T = tH + tL, its amplitude A is a more complex quantity that
depends simultaneously on all three pulse characteristics.
However, analysis of the model (see Figure 8) showed that
amplitude is influenced much more by period T than by tH
and tL taken individualy, so that what is important is again
the stimulation frequency f = 1/T. For example, an increase
of tH compensated by a decrease in tL which leaves frequency
unchanged, is much less influential than the same increase
of tH with unchanged tL, which increases frequency. This
conclusion is valid only for concentrations of the signaling
complex far from zero and saturation (see natural period
below).

Comparison with other models

Kaissling (Kaissling, 1998a) distinguished two types of
chemosensory sensilla, ‘concentration detectors’ (CDs) and
‘flux detectors’ (FDs). CDs (Kaissling, 1998a; Lansky et al.,
2001; K¡ivan et al., 2002) are characterized by unrestricted
back and forth access of external ligand molecules to the
receptor layer, which is not the case of the various FDs in
which there is only a forward flux into the perireceptor space
compensated by a deactivation of the ligand. The CD
model is a realistic description of CO2-sensitive sensilla, for
example, but not of pheromone-sensitive sensilla, which are
better described by a FD model. The present 13-reaction
system is an example of relatively complex FD. However, it
behaves qualitatively like much simpler FDs in which the
perireceptor space and reactions taking place in it are
considered in a simplified form, and even like CDs for cer-
tain properties. For this reason it is interesting to compare
the system studied here to these much simpler variants,
which differ by the receptor–ligand interactions (CDs and
FDs) and the ligand deactivation (FDs only).

For each type of detector, one-step and two-step receptor–

ligand interactions were studied. In one-step interaction
only the binding of pheromone to receptor, with reaction
rates k3 and k–3, is considered (Kaissling, 1988a,b; Lánský et
al., 2001; K¡ivan et al., 2002), whereas in two-step inter-
action, binding is followed by activation with reaction rates
k3, k–3, k–4 and k–4 (Rospars et al., 2000; Kaissling, 2001).
As shown below, both one-step and two-step systems are
qualitatively, but not quantitatively, equivalent.

Ligand deactivation in FDs was considered as taking
place only after the ligand is released from the receptor, the
receptor acting as an enzyme, or before the interaction with
the receptors, via enzymes present in the sensillum lymph.
The first mechanism (receptor-enzyme) was studied by
Kaissling (Kaissling, 1998a,b) and Rospars et al. (Rospars
et al., 2000) and the second one (separate enzymes) by
(Kaissling, 1998a, 2001) and in the present paper. A variant
of these models, which uses both receptor-enzyme and a
flux-limiting process equivalent to separate-enzyme deacti-
vation, is the ‘generalized flux detector’ (GFD) (Rospars et
al., 2000).

Consider first the static properties of these systems, i.e.
the dependence of the steady-state concentration C on L. As
shown in Appendix B, contrary to Kaissling’s conclusion, in
both the one-step FD with separate enzyme (Kaissling,
1998a) and the present 13-reaction network (Kaissling,
2001), this dependence is hyperbolic. So, these systems
behave qualitatively like CDs, in which the static curve Cc vs.
Lc is also a hyperbola (Kaissling, 1998a; Rospars et al.,
2000). From a quantitative point of view, the closest of the
simple models to the present model is the two-step GFD.
This is manifest for the position of the static curve along the
concentration axis as quantified by the ligand concentration
in air at half-maximum response, i.e. the apparent equil-
ibrium dissociation constant KD. For the one-step CD, it
is KD = k–3/k3 = 37.8 µM, and for the two-step CD, KD =
k–3k–4/k3(k–4 + k4) = 32.3 µM, from equation (13) in Rospars
et al. (Rospars et al., 2000), whereas it is KD� 1 nM for both
GFDs and for the present system (equation B5 and Figure 4,
with ki = 2.9 × 104 s–1). So, at steady state, the curve Cc vs.
logLc of all flux detectors is shifted to the left by log ki, i.e.
4.5 log units, with respect to that of concentration detectors.

The dynamic responses C(t) are qualitatively equivalent in
the concentration and flux detectors as can be easily judged
by comparing Figure 9 in Rospars et al. (Rospars et al.,
2000) for the two-step CD, Figure 2 in K¡ivan et al. (K¡ivan
et al., 2002) for the one-step CD and Figure 2 in the present
article. But again the quantitative differences are conspicu-
ous, because the 13-reaction system appears slower than
those we studied previously. This is best illustrated by
the ‘natural’ period of the system, i.e. the minimum period
tH + tL such that ‘on’ and ‘off ’ durations allow for maximum
amplitude of the response (see Figure 7). This period is
~12 s, compared with ~1.15 s for both the one-step and
two-step CDs, so that the respective ‘natural’ frequencies are
0.08 and 0.9 Hz. Thus, using the same parameter values, the
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present complete FD system is ~10 times slower than
the corresponding CDs.

Transient phase

However, the slowness of the 13-reaction system to reach
steady state and to return to resting level is not necessarily
an important feature as far as pheromone detection is con-
cerned.

First, the rise of the transient monotonic state (dashed
line in Figure 3) can be detected without waiting for the
steady state. This is probably important in natural con-
ditions where the pulses are irregular in height, duration and
separation.

Second, with a a pulse train, the individual pheromonal
pulses are also detectable right from the beginning of the
transient response, much before the steady-state oscillations
are reached. In practice, as shown in Figure 6, the period T
and amplitude A can be approximately determined from the
first oscillation and, again, there is no need to wait for the
steady state. Then the following analysis of amplitude
during the steady state holds also true for the amplitude
during the transient period.

Amplitude

The dynamic properties of a periodic stimulation are reflec-
ted in the amplitude of  the signaling-complex oscillations.
This is the number of molecules of LBredR* that are added
at each pulse to the time-averaged number of molecules of
activated receptor complex.

In the biologically relevant range of pheromone concen-
trations, amplitude A (see Figure 8C) and relative amplitude
A/C, where C is the time-averaged concentration of signal-
ing complex at steady state over one period, have similar
properties with respect to stimulation frequency: both
decrease quasi-exponentially when frequency is increased.
However, they differ radically with respect to pulse height
LH because A increases with LH (Figure 8A), whereas A/C is
independent of it (Figure 8B). This implies that amplitude
reflects both pulse height  and  pulse frequency, whereas
relative amplitude reflects only frequency.

The neuron type studied, which is sensitive to the main
pheromone component, can follow periodic 20 ms pulses up
to 2 Hz (Rumbo and Kaissling, 1989; Kodadova, 1996). The
stimulating apparatus used in these experiments, loaded with
5 × 10–3 µg of pheromone, was different from the standard
one which produced the 2 s step stimulations used for deter-
mining the parameters of Table 2. Although the pulse height
LH and corresponding flux delivered by the pulse stimulator
were not determined, they are known to be about two orders
of magnitude higher for the same load than those of the
standard apparatus (Kaissling, personal communication).
With this 100-fold factor, the 5 × 10–3 µg load would yield a
concentration in air LH = 3.4  ×  10–3 nM and a corres-
ponding flux of 0.1 µM/s. This means, if the present model
is essentially correct, that this cell type can detect

oscillations of the concentration of signaling complex
LBredR* with amplitude as low as 2.4 × 10–6 µM  for  a
steady-state level of 3.2 × 10–5 (Table 4; Figure 2D). These
molarities correspond, for a perireceptor-space volume of
2.6 × 10–12 l (Keil, 1984), to 3.8 receptor molecules oscil-
lating on top of an average level of 50 molecules (Table 4,
Figure 9B). These results suggest that the present model,
whose parameters were determined from responses to step
stimulations of 2 s duration, can also account for periodic
pulse stimulations. It constitutes an encouraging indepen-
dent test of the essential validity of these parameters.

Extensions of the model

The other  cell  types,  sensitive to the minor pheromone
components, can resolve pulses up to 10 Hz (Rumbo and
Kaissling, 1989). Assuming  the same network of extra-
cellular reactions is present in these cells as in the cell type
sensitive to the main component, the difference in temporal
resolution of pulses can be ascribed to changes in rate
constants or initial concentrations of reactants whose
effect would be to increase the amplitude of the periodic
oscillations of the activated receptor (signaling complex),
expressed in both absolute, i.e. number of molecules taking
part to the oscillations, and relative terms, i.e. with respect to
the total time-averaged number of activated receptors.

Investigation of the sensitivity of the absolute amplitude
to parameter values showed that a key factor is the balance
between the two pathways that the ligand–PBP complex
(LBred) can follow, i.e. either the activation or the de-
activation pathway (see Table 1). Although this balance can
be modified in several ways, the rate constant k3, which
controls the binding of LBred to the receptor, was found
to be a major factor. A 6-fold increase of k3 from 0.209 to
1.254 s–1 µM–1 (Table 4), with no change of the other
parameters, increases 6-fold the amplitude of the signaling
complex at 2 Hz and yields the same amplitude at 10 Hz as
the original system at 2 Hz without slowing down of the
system (the duration  of transient state  and the natural
period remain the same).

However, modifying k3 has no influence on relative
amplitude, so that the amplitude remains the same small
fraction (0.25%) of the average number of activated
receptors whatever k3. It seems unlikely that such a small
relative variation can be detected by the cell. The deter-
mination of parameters improving both amplitude and
relative amplitude which would permit the system to resolve
10 Hz pulses remains an open problem.

The observed decrease of the amplitude of the con-
centration of the signaling complex when the stimulation
frequency increases can be discussed in a wider context.
Indeed, Samoilov et al. (Samoilov et al., 2002) proved that
this is a general property of any linear chemical network
driven by a single external oscillatory input signal. All such
networks act as low-pass frequency filters. Moreover, their
theoretical results show that if a reaction network is
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selectively sensitive to some stimulation frequencies (band-
pass filtering), then either it has another source of oscillations
or it is nonlinear. Since our system is linear only at low
ligand concentration, this rises the question of knowing
whether the present model could behave as a band-pass filter
at high concentration, i.e. a model in which the signaling
complex reaches its highest amplitude at some preselected
stimulation frequency (e.g. 2 Hz). An alternative approach,
used by Lánský et al. (Lánský et al., 2001) for a simplified
version of the present network, is to consider not only the
amplitude of the signaling complex but the product of the
amplitude and another variable (speed of change of the
amplitude). This product presents a maximum and thus an
optimum frequency. This effect, which evokes a band-pass
filter, is certainly present also in the network studied here.

Experimental vs. natural conditions

The results reported here are useful for interpreting labora-
tory experiments in which identical pulses are periodically
applied. For example, Figures 2 in Rumbo and Kaissling
(Rumbo and Kaissling, 1989) and Kodadová (Kodadová,
1996), showing receptor potential and spike recording of the
aldehyde cell under such conditions, are qualitatively com-
parable to our Figure 3, assuming the receptor potential
reflects the level of signaling complex and a spike is fired
when this level crosses a certain threshold. However, caution
must be exerted in applying them to natural conditions in
which the pulses are known to be quite irregular (Murlis et
al., 1992). We intend to develop the present approach to
study the response of the perireceptor and receptor system
to pulses with stochastic characteristics.

Appendix A: differential equations
To avoid notational complexity, all multiple-letter symbols
for the various chemical species are replaced by single-letter
symbols, i.e. P = [LBred], O = [LBredR], C = [LBredR*], β =
[LBox], γ = [LE], ν = [LBredN], η = [LBredE], κ = [LBoxE].
The other symbols (L, Bred, Box, R, N, E) are  kept un-
changed. The 10 time-variable concentrations are L(t), γ(t),
P(t), R(t), O(t), C(t), ν(t), β(t), κ(t), η(t). All other concen-
trations R0, Bred, Box, E, N are constant. With this notation
and omitting variable t the system of differential equations
describing the model given in Table 1 is

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

All time-variable concentrations are equal to zero at time
zero, except R(t) for which R(0) = R0.

Species E, N and B are external species, i.e. with constant
concentrations despite entering in different reactions, in
contrast to R, whose free amount is decreased by bound and
activated states. The reaction network is incomplete for L,
which accumulates, and for B since Bred is not regenerated
from the end product MBox which consequently also accu-
mulates.

Appendix B: receptor concentrations at
equilibrium
Differential equations (A1)–(A9) at equilibrium, i.e. for
dL/dt = 0, dγ/dt = 0 etc., result in a system of nine algebraic
equations with nine unknowns which can be solved exactly.
The calculations are long but straightforward. We give
here the solutions (B1)–(B3) obtained for the pheromone
receptor.

At any time the receptor proteins are in three states, as
given by equation (A10): free R, occupied LBredR (denoted
O) and activated LBredR* (denoted C). For a step stimu-
lation Lc, the conservation equation at equilibrium can be
written R0 = Rc + Oc + Cc. For a periodic pulsed stimu-
lation, the same equation holds at steady state, R0 = R + O +
C, where R, O and C are time-averaged concentrations over
one period. It can be shown numerically (see Results) that R
= Rc, O = Oc and C = Cc,  for L = Lc, where L is the
time-averaged concentration of ligand in the air surrounding
the antenna, see equation (3). Therefore the following results
established for a constant stimulation are also true for the
time-averaged response to the equivalent periodic pulsed
stimulation. The concentrations of the three receptor states
are given by

(B1)
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(B2)

(B3)

where

α = k–3k–4E(k8k9a4 + k7k10k11a2Box)[k12k13a1E + a3(k–2a1
+ k5k6N)] + k–3k–4Ek2Breda2(k12k13a1a4 + k10k11a3k5k6N)

β = k2k3a1a2a3a4Bred

in which a1 = k–5 + k6, a2 = k–8 + k9, a3 = k–12 + k13, a4 =
k10k11E + (k–10 + k11)k–7. For the simplified 10-reaction
model characterized by k7 = 0 and k12 = 0, the expressions
for α and β simplify as follows:

α = k–3k–4[(k8k9E + k2Breda2)(k12a1E + k5k6N)
+ k–2a1k8k9E]

β = a1a2k2k3Bred

in which a1 = k–5 + k6, a2 = k–8 + k9.
The concentration of the signaling complex at saturation

and the ligand concentration at half-saturation are given by

(B4)

(B5)

Note that k4 + k–4 (rate constants of receptor activation and
deactivation) controls in opposite directions the amount of
activated receptor produced and the position of the curve
along the Lc-axis (sensitivity). With this notation, equation
(B3) reads

(B6)

Equations (B3) and (B6) are hyperbolas with respect to Lc
(or equivalently φc). Consequently the curve Cc vs. logLc (or
log φc) is a logistic whose dynamic range is ∆Lc � –2 log ε
decades (Rospars et al., 1996), where ε is a fraction of Cmax.
For example, the horizontal distance between 1% (close to
threshold) and 99% of Cmax is always ∆Lc = 4 log units
(see Figure 4), so that the ratio of concentrations L99/L1,
(respect. fluxes φ99/φ1) at 99% saturation and at 1% threshold
is always 104, whatever the values of Cmax and KD.

With the parameter values given in Table 2, α/β = 3468.4
µM/s2, Cmax = 0.24 µM and KD = 1.042 nM (i.e. flux φ50 =
30.21 µM/s). For a hair volume of 2.6 pl, the total number of
molecules per neuron is R0 = 2.56 × 106 and Cmax � 3.75 ×

105. The level Cc = 1 receptor molecule activated (threshold)
is reached for a pheromone concentration in air Lc = 2.8 ×
10–6 nM corresponding to flux φc = 8 × 10–5 µM/s, i.e. 125
molecules/s.

For Lc << KD, hyperbola (B6) can be approximated by the
linear expression

(B7)

or, using fluxes, (Cmax/φ50)φc. The slope of line (B7) is

(B8)

With the parameter values of Table 2, Cmax/KD = 0.23
with KD and Lc in nM, and Cmax and Cc in µM, and for the
flux equation the slope is φ50/Cmax = 125.9 with all terms in
µM. With these parameters the hyperbola is rather flat (see
Figure 4A) so that, in practice, the line Cc = φc/126 (i.e.
0.23Lc) is an excellent approximation in the range 0 ≤ φc ≤
1 µM/s. The line Cc = φc/150 (i.e. 0.19Lc), as used by
Kaissling (Kaissling, 2001), is a better approximation for
φc > 1 µM/s.

Note. The equation relating φc to Cc was also derived as
equation (4) in Kaissling (Kaissling, 2001) for the present
13-reaction system, and as equation (18) in Kaissling
(Kaissling, 1998a) for a simplified three-reaction network
with one-step activation and a separate enzyme. In both
cases the system of differential equations describing the
networks are correct but the equations giving Cc at equil-
ibrium are not. The exact solutions for Cc are hyperbolic
functions of the form (B6), i.e. the –1 term appearing in the
denominator of both equations (18) and (4) must be re-
moved. Because of this term, it was wrongly concluded that
the Cc vs. φc curves were not hyperbolic and that there was a
limiting flux φsat. Other consequences will be examined else-
where (K.-E. Kaissling and J.-P. Rospars, in preparation).
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