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Abstract
Transduction in chemosensory cells begins with the association of ligand molecules to receptor proteins borne by the
cell membrane. The receptor–ligand complexes formed act as signaling compounds that trigger a G-protein cascade. This
receptor–ligand interaction, described here by a single-step or double-step reaction, depends on factors controlling the access
of the ligand molecules to the cell membrane. Two basic mechanisms can be distinguished: concentration detectors (CD), in
which the ligand can freely diffuse to the membrane, and flux detectors (FD), in which it accumulates irreversibly in a distinct
perireceptor space where it is chemically deactivated. These two systems, plus their generalization, are investigated and
compared. The transient and steady-state numbers of complexes are studied as a function of the external ligand concentration.
The biological significance of the results is shown in a well-studied example of FD, the insect sex-pheromone olfactory receptor
neuron. How the number of complexes can code for the intensity of stimulation is analyzed using the size, dynamic range and
sensitivity of the steady-state responses, and the time needed to reach a predefined level of the transient responses. It is shown
that the FD design affords a large increase in sensitivity (a shift of the threshold response towards low concentration) with
respect to the CD design, which is paid for by a lesser ability to follow fast changes in stimulus intensity.

Introduction
Olfactory receptor cells are able to transduce chemical
stimuli present in their environment into an electrical
response [reviewed in (Ronnett and Snyder, 1992; Shepherd,
1992; Lancet and Ben-Arie, 1993; Ache, 1994; Buck, 1996;
Schild and Restrepo, 1998); see also (Lauffenburger and
Linderman, 1993; Hildebrand and Shepherd, 1997)]. A
crucial step in this transduction process is the interaction of
the ligand molecules with receptor proteins borne by the cell
membrane. Following the ligand–receptor binding and the
subsequent receptor activation, a GTP-binding G-protein
is activated which in turn acts on enzymes that generate
second messengers (e.g. cyclic AMP). These second messen-
gers open a large number of ion channels which change the
membrane potential. This response can essentially be re-
garded as an amplified version of the weak signal resulting
from the initial binding.

In our previous work (Lánský and Rospars, 1993, 1995;
Rospars et al., 1996a,b) we studied simple models of these
transduction events. Concerning ligand–receptor inter-
actions, we considered two basic types of interaction: in
the first, the transduction cascade was triggered by mere

binding of the ligand to the receptor to form a complex
(single-step interaction); in the second, additionally, an
activation of the receptor–ligand complex was required
(two-step interaction). The simpler of these two descriptions
dates back to Lasareff, who proposed a model in which the
effect was proportional to the number of bound receptors at
equilibrium state (Lasareff, 1922). Lasareff ’s model led to
several generalizations. Beidler considered a population of
different receptors yielding a linear combination of the
original characteristics, and also a mixture of different odor
ligands (Beidler, 1962). Later, Tateda (Tateda, 1967; Ennis,
1991) suggested that several ligand molecules had to bind to
the receptor to activate it. These models were investigated
and implemented in a range of different applications (Getz
and Akers, 1995; Malaka et al., 1995; Getz, 1999). All of
them  can  be classified as concentration detectors (CDs),
using the terminology introduced by Kaissling (Kaissling,
1998a), because the sensory membrane is assumed to be
directly exposed to the external stimulus.

However, in several systems of interest, the cell membrane
is only part of a larger system, so that the ligand–receptor
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interaction cannot be considered in isolation (Kaissling,
1974). Ligand molecules, being originally in the external
environment, must be transported to the vicinity of the
membrane, into the so-called perireceptor space. In insects,
for example, olfactory receptor neurons are located within
hairs. Odorant molecules are caught on the hairs, diffuse at
their surface, enter the hair lumen through small holes in the
cuticle and are transported by olfactory binding proteins
(Pelosi, 1996) across the lumen to the dendritic membrane
of receptor neurons. Because odorant molecules cannot
leave the system (Kanaujia and Kaissling, 1985) they
must be degraded to prevent their accumulation in the peri-
receptor space. This involves various enzymatic mechanisms
acting on different time scales [slow (Kasang et al., 1988);
fast (Ziegelberger, 1995)]. Recently Kaissling, studying
olfactory mechanisms in insect sensilla, proposed a model
taking into account the perireceptor space and the degrada-
tion reactions (Kaissling, 1998a,b). These flux detectors
(FDs), which offer an elegant solution to the shortcomings
of the previous approach (Lánský and Rospars, 1998),
might apply to olfactory receptors in both invertebrates and
vertebrates.

In the present work we undertake a systematic compari-
son of the properties of these various perireceptor and
receptor models, with the aim of better understanding their
signal processing features and, therefore, their biological
meaning. We not only consider the CDs and FDs in their
pure forms, but also introduce a more general model,
denoted GD, that admits the concentration and flux
detectors as special cases. For all three detector models, the
single- and double-step types of ligand–receptor inter-
actions are studied. Consequently the results obtained can
be used for modeling a wide range of chemosensory systems.
The relative merits of these models depend on the specific
system under examination. For example, CD models are
more appropriate for describing systems in which the ligand
can relatively freely access and leave the perireceptor space,
as seems to be the case in insect carbon dioxide receptors
(Stange, 1996), taste receptors, hormone receptor systems
and unicellular organisms. FD models can be considered
for systems in  which  the diffusion  of the ligand to  the
perireceptor space is irreversible, as in insect olfactory
sensilla. For systems in which the diffusion to and from the
perireceptor space is asymmetrical, the more flexible GD
model appears as a better choice than the extreme CDs
and FDs. Other features differentiating the models from
a signal-processing point of  view are described and might
suggest selecting one of them for further consideration.
In all cases single-step models are simpler, which is a good
reason to study them because they might give a sufficiently
accurate description of some systems. In the present paper,
the description is limited to the insect sex-pheromone
receptor neuron (we show that CD cannot account for its
known properties whereas FD, and its generalized version
GFD, can). This is why the analysis of the GD model is not

treated in its full generality. However, the approach followed
is intended to be applicable to any chemosensory system.

The response of the model systems to stimuli of various
strengths and time courses are analyzed. First, we analyze
how the steady-state levels of the signaling (bound or
activated) complex depend on a stimulation of constant
strength. In addition to this steady-state response, we
investigate the kinetics of the response when the systems are
exposed to a stimulus varying in time. We determine and
compare the times the systems need to approach equilibria
(or to reach any predefined levels) using their response to
a stepwise increase of the external stimulus concentration.
The square wave stimulation enables us to describe their
post-stimulus time evolution and the times they need to
return to their resting state. Finally, we also consider
periodic stimuli, which are better approximations to natural
odorant stimuli than constant ones because, both in air and
water, turbulence breaks odor plumes into discontinuous
patches (Kramer, 1986; Murlis, 1997). The periodic stimuli
allow us to compare the diverse ability of these systems to
follow rapidly fluctuating concentrations of ligands. For
analyzing the static and dynamic aspects of these responses,
we use biologically meaningful characteristics. The static
characteristics based on the steady-state conditions include
the stimulus concentration at threshold, which measures the
sensitivity of the system, and the range of concentrations
discriminated. The time to reach a predefined level (e.g.
half-maximum steady-state response) or latency is used to
characterize the dynamic properties of the systems.

This comparison of various types of detectors is pre-
sented in two parts. In the first part (The models and their
analytical description) equations describing their behavior
are reviewed, and the problems that can and cannot (or not
easily) be described analytically are indicated. In the second
part (Numerical results), using the analytical results when
available or numerical simulations otherwise, the properties
of the detectors, including their sensitivity, dynamic range
and latency, are compared. The comparisons illustrate the
advantages and drawbacks of the CD and FD systems using
the moth sex-pheromone olfactory sensillum as a case ex-
ample, based on the classical investigations by Kaissling and
co-workers and on recent numerical estimates of the main
parameter values of this system (Kaissling, 1998b).

The models and their analytical description

Stimulations, detectors and receptor–ligand interactions

All symbols used are defined in Table 1. Table 2 gives a
synopsis of the six models investigated.

Step, square and periodic stimulations

The ligand molecules L are diluted at time t in the carrier
medium (water or air) at a concentration Lex(t). This ex-
ternal concentration can be constant or varying in time
in a way that is controllable or at least measurable by an
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experimenter. Four types of stimulation are considered in
this article:

Step stimulation. At time t = 0 the concentration of the
ligand changes abruptly from zero to a constant level Lex and
remains at this level (Figure 1a). This stimulation allows one
to investigate the steady-state behavior of the system.

Square pulse stimulation. The same change in concentra-
tion at time t = 0, from zero to level Lex, is followed at t = t0

by an abrupt reset to zero (Figure 1b). It permits one to study
the effect of removing the stimulus and the effect of the
stimulus duration t0. The total amount of ligand delivered in
this type of stimulation is proportional to Lext0. The effects
of square pulses, either strong and short or weak and long,
delivering the same amounts of ligand can be compared.

Periodic stimulations. Two kinds of periodic stimulations
were used. The first one (Figure 1c) consists of a series of

square  pulses with fixed length t0 and fixed height Lex,
which were presented at different frequencies ω (number of
pulses per time unit). It has the advantage of being directly
comparable to real experimental situations. Unfortunately,
in this kind of stimulation changing the frequency also
changes the amount of ligand delivered per unit of time. For
this reason, we also considered a stimulation described by a
sinus wave initiated at time 0 (Figure 2d)

Lex(t) = λ0 + λ1sin(ωt) for t ≥ 0 (1)

where the parameters are the angular frequency ω (in rad/s,
i.e. the period is T = 2π/ω, expressed in s), the amplitude λ1

and the level of the constant component λ0 (both in µmol/l).
The amplitude λ1 has to be smaller than or equal to λ0,
so that Lex(t) ≥ 0. The constant component may be seen as
the amount of ligand delivered per unit of time, which is

Table 1 List of symbols and abbreviations

Symbol Definition Unit

C receptor–ligand complex RL; in the simplified model, C is replaced by M –
C* activated complex RL; in the simplified model, C* is replaced by M* –
C(t) concentration of C at time t (dynamic response); see also M(t) µmol/l
C*(t) concentration of C* at time t (dynamic response); see also M*(t) µmol/l
CD concentration detector –
∆t time to response, C(∆t) = S or C*(∆t) = S s
FD [pure] flux detector –
GD generalized detector (can be CD or FD) –
GFD generalized flux detector (more realistic FD) –
k1 rate constant of binding reaction R + L → C µmol/l/s
k–1 rate constant of release reaction C → R + L s–1

k2 rate constant of activation reaction C → C* s–1

k–2 rate constant of deactivation reaction C* → C s–1

ki rate constant of the influx of L in perireceptor space s–1

k–i rate constant opposing influx in generalized detector s–1

ko rate constants of the degradation reaction R + L → R + L s–1

L ligand molecule –
L degraded ligand molecule –
Lex constant concentration of ligand molecules in external space µmol/l
Lex(t) concentration of ligand molecules in external space at time t µmol/l
L(t) concentration of ligand in the perireceptor space at time t µmol/l
LM(t) concentration of L in perireceptor space at time t for simplified model µmol/l
λ0 constant level of periodic stimulation µmol/l
λ1 amplitude of periodic stimulation µmol/l
M(t) concentration of C at time t in simplified model µmol/l
M*(t) concentration of C*at time t in simplified model µmol/l
N constant concentration of receptors R µmol/l
ω angular frequency of periodic stimulation rad/s
φ(t) influx to the perireceptor space at time t µmol/l/s
R protein receptor in the cell membrane –
R(t) concentration of free (‘non-interacting’) receptors at time t µmol/l
R(t) concentration of R bound to L (‘interacting’) at time t, N = R(t) + R(t) µmol/l
S minimum concentration of C or C*initiating a response µmol/l
t0 final instant of stimulation s
∞ in index, steady-state response –
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independent of the frequency of stimulation. In the periodic
stimulation the main variable of interest is its frequency,
which may correspond to some external conditions, e.g.
breathing in vertebrate animals or segmentation of the air
plume in insects. Stimulation (1) for small t is interesting for
studying the transient effects at onset; for large t the
solutions converge to a periodic solution (quasi-steady
state).

All four stimulation types permit the study of the
response of the system at the onset of stimulation, thus
solving the problem of initial detection. However, if an
organism can detect only concentrations varying in time and
loses its ability to perceive a constant stimulus, which is, for
example, the case of male moths in a pheromone plume
(Kennedy et al., 1980; Willis and Baker, 1984), a periodic
stimulation is more appropriate and ω becomes one of the
most important parameters.

Concentration, flux and generalized detectors

Ligand molecules L present in the external environment can
reach the perireceptor space in the vicinity of the cell
sensory membrane. Their concentration there is denoted
by L(t). In accordance with Kaissling (Kaissling, 1998a,b),
two kinds of transfer between the external space and the
perireceptor space are investigated: fast (immediate) and
reversible—concentration detection—in contrast with slow
and irreversible—or flux detection (Figure 2).

Concentration detector. This is the classical system in which
the odorant concentration L(t) in the perireceptor space is
always equal to the concentration Lex in the external space,

L(t) = Lex(t). The molecules can move freely and instantly
between the two spaces, which are therefore indistinguish-
able. No parameters other than those used for characterizing
the receptor–ligand interaction are needed for describing
this fast and reversible system (Table 2, CD1 and CD2).

Flux detector. On the contrary, in this system the external
and perireceptor spaces are physically distinct and the mol-
ecules can move inward only from the first into the second.
It follows that the ligand molecules must be degraded in the

Table 2 Main models studied (CD, FD, GFD) and their one- and
two-step versionsa

aAll symbols are defined in Table 1, except , translocation of ligand
from external space to perireceptor space; , reversible reaction; →,
irreversible reaction.

Figure 1 Ligand concentration Lex(t) in the external medium as a function
of time in the four types of stimulation studied, not periodic (a, b) and
periodic (c, d).

Figure 2 Schematic diagrams of the concentration (CD) and flux (FD)
detectors in the case of the single step interaction (CD1 and FD1). In the CD,
ligand molecules L (plain circles) in the external medium (Ext) can reach
directly and reversibly the cell membrane (Mb) and interact with the
receptor protein (R). In the FD, L molecules are collected on a barrier (e.g.
cuticle Cuti of an insect sensillum), irreversibly accumulated in the inter-
posed perireceptor space (Peri) and inactivated as molecules L (empty circles)
that cannot bind with R [redrawn from (Kaissling, 1998a)].
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perireceptor space to prevent their indefinite accumulation
there. The influx in the perireceptor space is

φ(t) = kiLex(t) (2)

and the outflow (degradation flux) is koC(t) or koC*(t),
where C(t) and C*(t) are the concentrations of the signaling
receptor–ligand complex in one- and two-step interactions
respectively (see below Single- and double-step ligand inter-
action with receptors). So, two parameters are needed, the
rate constant ki, characterizing the velocity of the transloca-
tion, and the rate constant ko, characterizing the velocity of
the transformation of the ligand molecules L into a degraded
form L that cannot interact with the receptors (Table 2, FD1
and FD2; note that the arrow denotes a translocation, in
contrast to →, which denotes a chemical reaction).

Generalized detector. However, the two detectors above can
be considered as ideal (extreme) cases, whereas many real
systems are likely intermediate. Moreover, the FD models
can lead to unrealistic consequences if the stimulation is
high or the degradation is not sufficient (see below), because
the influx to the perireceptor space is independent of the
ligand concentration there. This unrealistic behavior can be
prevented if the influx φ(t) slows down when the concen-
tration in the perireceptor space grows. This is the case if it
obeys the following kinetics

φ(t) = kiLex(t) – k–iL(t) (3)

because the added term k–iL(t), where k–i is a positive
constant, increases with L(t), which counterbalances the
influx term kiLex(t). Equation (3) does not prevent a
backward flow of ligand molecules from the perireceptor
space if the external concentration decreases and kiLex(t)
becomes less than k–iL(t). So, the influx of this generalized
detector is reversible, as in the pure concentration detector.

A special case of GD, which we call generalized flux
detector (GFD), prevents ligand outflow. It obeys the
following kinetics

φ(t) = max(0, kiLex(t) – k–iL(t)) (4)

Choosing the maximum of zero and kiLex(t) – k–iL(t)
prevents a backward flow in the condition stated above. So,
the influx of the GFD may be seen as irreversible, like the
pure flux detector. This GFD model remains realistic even
at high concentrations and, moreover, it behaves at stimulus
onset like either the CD or the FD, depending on the values
of ki and k–i (see Generalized flux detector GFD). Only
GFD, not GD, is studied in the present paper.

Single- and double-step ligand interaction with receptors

A patch of sensory membrane uniformly covered with
identical receptors R is considered (total concentration N).
Ligand molecules L can bind to R and create various

complexes. The number of different forms creating  the
bound class depends on the complexity of the model
(Lauffenburger and Linderman, 1993). Here only two forms
are considered. In the single-step interaction (Table 2, CD1,
FD1 and GFD1), the neuron response is triggered by the
binding of the ligand to the receptor, forming a ligand–
receptor complex denoted by C. In the double-step inter-
action (Table 2, CD2, FD2 and GFD2), binding of the
ligand is not sufficient to trigger the response; the bound
complex must go through an additional step, which can
correspond to an allosteric or covalent modification, to
produce an activated complex C*. These interactions are
characterized by two parameters (rate constants k1 and k–1;
see Table 1) in the single-step case, where k1 characterizes
the velocity of the association between the receptor and
ligand and k–1 the velocity of the breakdown of the
receptor–ligand complex C, and four parameters (rate
constants k1, k–1, k2 and k–2) in the double-step case, where
k2 characterizes the activation of C in C* and k–2 the
deactivation of C* in C. The concentrations of C in single-
step models and C* in double-step ones are the main
variables studied in this paper. Both are referred to as the
signaling complexes. The time ∆t to reach any predefined
level S after a stimulation onset, e.g. the concentration S of
signaling complexes needed to trigger an action potential, is
also studied.

When obtainable, the concise analytical forms describing
the evolution in time and steady state of the signaling
complex C(t) or C*(t) are given for the CDs (see Concen-
tration detector CD), FDs (see Flux detector FD) and
GFDs (see General flux detector GFD). In all subsections,
the special case when Lex is small is studied separately
because it is biologically relevant and leads to simpler
results. In this case, to avoid any confusion with the exact
solutions C(t), the approximated solutions are denoted M(t).
Only solutions available in compact form are given here. The
details of the mathematical treatment will be published
elsewhere (P. Lánský et al., in preparation). For the static
CD2, see (Kaissling, 1987; Rospars et al., 1996a,b); for the
non-periodic FD1 see (Kaissling, 1998a; Lánský and
Rospars, 1998). These solutions are illustrated in Figures
3–6. The parameter values used to draw the curves and
the comparisons of the curves are presented in Numerical
results.

Concentration detector CD

In CDs the ligand concentrations in the perireceptor space
L(t) and in the external space Lex are the same (Figure 3,
CD). A natural consequence of this assumption is that L(t)
is not influenced by the interaction of L with R, i.e. neither
binding to R nor release from R changes the concentration
of L.

Model of binding (Table 2, CD1)

The transduction cascade is triggered by mere binding of L
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to R to form C (complex RL). The time rate of change of C
is described by equation (A1) in the Appendix.

Step stimulation. The number C(t) of bound receptor pro-
teins (Figure 4, CD1) rises exponentially from C(0) = 0 at
time 0 according to

C(t) = C∞(1 – exp(–t(k–1 + k1Lex))) (5)

and reaches a steady-state level C∞

(6)

The curve C∞ as a function of Lex is an hyperbola. In the
special case when Lex is small, which implies C∞ << N, the
approximated steady-state level M∞ of the signaling com-
plex C depends linearly on Lex (Figure 4, dashed line),

(7)C
k L N

k k L∞
−

=
+

1

1 1

ex

ex

M
k L N

k∞
−

= 1

1

ex

Figure 3 Concentration L(t) of ligand at the vicinity of receptors following
a step stimulation rising at time t = 0 from 0 to constant concentration
Lex, for different models in the absence (k1 = 0, incomplete model) (a) or
presence (k1 ≠ 0, complete model) (b) of receptor–ligand interaction. (a)
Horizontal line, concentration detector CD; inclined line, flux detector fd
(lowercase indicates incomplete model); exponential curve, generalized flux
detector gfd. In fd, L(t) increases indefinitely, in contrast with CD and gfd
(asymptote is at L = 102 µmol/l). In model fd, according to L(t) = kiLext, it
takes 1 s to reach the level 10 µmol/l, which is reached instantaneously in
model CD. This is the main reason for the slower response of FD with respect
to CD. In (b), the curves for fd and gfd with k1 = 0 are compared with the
complete models (k1 ≠ 0, noted FD and GFD). Parameters: in (a), for CD,
Lex = 10 µmol/l; for fd and gfd, Lex = 10–5 µmol/l, ki = 106 s–1; for gfd,
k–i = 0.1 s–1; in (b), for fd and gfd, the parameters are the same as above;
for FD and GFD, N = 10 µmol/l, k1 = 0.2 µmol/s, k–1 = 10 s–1, k0 = 10 s–1.

Figure 4 Steady-state concentrations of signaling complex C∞ for
one-step and C*∞ for two-step ligand–receptor interactions, as a function of
the constant external concentration Lex in a logarithmic scale. Curves for CD
models (see Figure 1) are in the right part, curves for FD and GFD models in
the left. Dashed curves are low concentration approximations. Curves with
horizontal asymptotes C = N = 10 are for one-step models (CD1, GFD1)
and curves with lower asymptotes are for two-step models (CD2, GFD2).
Curves for one- and two-step FD (leftmost) are superimposed and defined
only for Lex < 10–4 (one-step) and 5.7 × 10–5 µmol/l; the terminal points are
indicated by a dash. Parameters: N = 10 µmol/l, ki = 106 s–1, k–i = 0.1 s–1,
k1 = 0.2 µmol/s, k–1 = 10 s–1, k2 = 20 s–1, k–2 = 5 s–1 (k2 = 2s–1, k–2 =
0.5s–1 are presented as GFD2a), ko = 10 s–1.

Figure 5 Concentration of signaling complex C∞ for one-step and C*∞ for
two-step receptor–ligand interactions, as a function of time for a square
wave stimulation. Stimulation is applied from t = 1 to t = 6 s. The same
notations and parameters are used as in Figure 4, except Lex = 10 (CD) and
10–5 µmol/l (FD and GFD).
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Square stimulation. At the onset of stimulation at time 0,
C(t) rises exponentially according to equation (5). After the
stimulation that ends at time t0, the number of signaling
complexes decays according to

C(t) = C(t0)exp(–k–1(t – t0) for t > t0 (8)

where C(t) is given by equation (5) (Figure 5, CD1).
Equations (5) and (8) show that at time t0 all molecules of
ligand are instantly removed (Lex = 0) from the vicinity
of the membrane. Even the molecules released from the
reaction are removed and cannot re-enter it. The time
constant 1/(k–1 + k1Lex) of the rising phase is always larger
than that 1/k–1 of the decaying phase. So, if k–1 << k1Lex,
then the decay is much longer than the rising (Figure 5,
CD1) and, after removing the stimulus, it can take a long
time to achieve C(t) = 0. This feature may be significant if
the stimulus is repeated (see below).

If S bound receptors are needed to fire an action
potential, then the ligand has to be present at concentration
Lex for at least ∆t time units. For S << C∞, with C∞ given by
equation (6), the latency is

(9)

The reaction time is inversely proportional to concentration

Lex (Figure 6, CD1). In the low concentration case, the
latency

(10)

where M∞ is given by equation (7), is shorter than that given
by equation (9).

Periodic stimulation. In  the low  concentration case  the
solution after a sufficiently long time is

(11)

The asymptotic period is 2π/ω and the asymptotic
amplitude gets  to zero  proportionally  to 1/ω, i.e. when
the stimulus frequency increases, the response tends to be
constant. This means that the system cannot follow very fast
time variations of the stimulus, which is a rather intuitive
result. For large values of ω the asymptotic levels of con-
stant (equation 7) and periodic (equation 11) stimulations
coincide, since in this case M∞ is the level around which the
concentration oscillates very fast with a very small ampl-
itude. In other words, for ω → ∞, the constant component of
stimulation, λ0, causes the same behavior as Lex = λ0 in the
step stimulation.

Model of binding and activation (Table 2, CD2)

The receptors may appear in three states: unoccupied R;
occupied and not activated C; and occupied and activated
C*. The time rate of change of C and C* are described by
equations (A3) and (A4) in the Appendix.

Step stimulation. This model has often been used for
describing odorant–receptor interaction (Kaissling, 1969,
1971; Getz and Akers, 1995; Malaka et al., 1995; Rospars
et al., 1996a,b). The kinetics C*(t) of the activated
complex for a step stimulation is given by the sum of two
exponentials

(12)

where α1 and α2 can be calculated from the parameters and
C*∞ is the steady-state level for the signaling complex

(13)

So, the hyperbolic dependency of the number of activated
receptors on odorant concentration Lex is obtained again as
in equation (6) (Figure 4, CD2). However, by manipulating
the parameters in equation (13), a larger variability of the

∆t
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Figure 6 Time ∆t (in s) to reach a predefined concentration S of the
signaling complex (C or C*) as a function of external concentration Lex. The
arithmetic scales for CDs (units in µmol/l) and FDs (units in 10–5 µmol/l) are
different but both extend over ~1 log unit. In the one-step CD model (CD1)
∆t tends to zero, whereas in the two-step model (CD2) it tends to a positive
horizontal asymptote at 5 ms. FD curves are terminated at saturation of the
perireceptor space (Lex = 10, ∆t = 0.16 ms for FD1 and 5.7 × 10–5 mol/l,
∆t = 0.32 s for FD2). Vertical asymptotes correspond to concentrations Lex

below which the threshold is never reached. Curves for generalized flux
detectors GFD (not shown) are practically superimposed on FD1 and FD2
but continue after the saturation points. Parameters: S = 1 µmol/l;
otherwise they are the same as in Figure 4.
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curves can be achieved (Kaissling, 1987; Rospars et al.,
1996b). In the low concentration approximation, the steady-
state density of activated receptors is again linear (Figure 4,
dashed line) as in equation (7)

(14)

Square stimulation. An equation similar to equation (8)
can be obtained for the time course of the number of
activated receptors after odorant removal in a square
wave stimulation (equation 2) (Figure 5, CD2). For the
reaction time ∆t, after which the threshold S is  reached
(Figure 6, CD2), the exact analytical solution is not
available, but the approximate solution, comparable to
equation (9), is

(15)

Contrary to CD1, in which the time to reach threshold S
tends to zero with increasing Lex, for CD2 there is a mini-
mum time, which can be calculated exactly,

(16)

Periodic stimulation. When the system is stimulated by a
periodic signal (equation 1), an analytical solution can be
obtained for M(t) and M∞(t), but it is notationally compli-
cated and will not be given here.

Flux detector FD

The transfer Lex L is unidirectional from outside to inside
and compensated by a degradation C → R + L. Con-
sequently, the concentration L(t) of   the ligand in the
perireceptor space is not the same as the concentration
Lex(t) in the external space, but L(t) depends on Lex(t). The
differential equations describing this model are given in
Appendix A (equations A7–A16).

Model of binding (Table 2, FD1)

Step stimulation. The kinetics C(t) of the activated complex
for a step stimulation cannot be given analytically because
the corresponding differential equations (A7, A8) are
nonlinear. Using these equations with Lex(t) = Lex, the
steady-state solutions for C and L are

(17)

and

(18)

under the condition that

kiLex < koN (19)

which means that the influx to the perireceptor space given
by equation (2) must be smaller than the maximum possible
flow out of it. According to equation (17), the FD1 model
does not result in the hyperbolic-like dependency of the
receptor response on the external concentration found with
the complete CD models, but in a linear dependency similar
to that found with the approximate CD models (Figure 4,
FD1; compare this curve with the dotted lines for CDs). Of
course, for the limiting influx given by equation (19), Lex →
koN/ki, the steady-state concentration of ligand in the
perireceptor space L∞ tends to infinity while C∞ tends to N.
So, the linearity of FD1 is valid only for a limited range
of Lex, and this was also the case for the steady-state
approximate CDs (see equation 7 or 14). However, the limits
of validity are not the same for CDs and FD1, being based
on different reasonings; the validity of approximation (7)
is restricted to the values of M∞ far below N where few
receptors are occupied, Lex << k–1/k1, whereas that of equa-
tion (17) is restricted by the fact that C∞ cannot exceed N,
Lex < k0N/ki. Note that the ratio of inward to outward rate
constants appears in both relations.

In the low concentration approximation, the asymptotic
levels are

(20)

and M∞ = kiLex/ko as in equation (17). It follows from this
result that the simplification is less restrictive for the flux
detector than for the concentration detector. In a way
similar to that of the previous section, we obtain for the
simplified model a monotonic growth to an asymptotic level
described by two exponentials with negative exponents,

(21)

where K, α1 and α1 can be calculated from the parameters.

Square stimulation. The results for the complete model are
available only via numerical techniques. On the other hand,
for the simplified model they directly follow from equation
(21). Due to the similarity between equations (21) and (12),
the approximation (15) for the time to response holds here
also. The reaction time ∆t, i.e. the time to reach threshold S,
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does not tend to zero with increasing strength of stimulation
just because the stimulation is limited by equation (19).

Periodic stimulation. For the complete model the asymp-
totic periodicity and dependency of the amplitude on λ1 and
ω is available only by using the numerical methods. For the
simplified low-concentration model the solution is available
but notationally complicated.

Model of binding and activation (Table 2, FD2)

Step stimulation. For the step stimulation Lex(t) = Lex, the
steady-state levels of the stimulus and the signaling complex
can be easily obtained from equations (A11)–(A13) in the
Appendix:

(22)

(23)

The formula for L∞ shows that the condition of saturation
of the system is

(24)

It is more restrictive than the condition following from
equation (18). On the other hand, if condition (24) is met,
the concentration C*∞ depends on Lex exactly like C∞ in
equation (17) (Figure 4, FD2); in both cases the con-
centration of the signaling complex depends only on the
parameters related to the influx and degradation. From
equation (24), the maximum of C*∞ obeys the condition

(25)

For the low-concentration approximation the steady-state
levels are unchanged for M∞ = C∞ and M*∞ = C*∞, as given
by equation (23) and

(26)

The time courses of LM, M and M* can be calculated but
the solutions are notationally complicated.

Square and periodic stimulations. No analytical results are
available.

Generalized flux detector GFD

In this model the flux φ(t) depends not only on Lex(t)
but also on the concentration inside the perireceptor space
L(t), according to relation (4). The differential equations

describing this model are (A17)–(A20) in the Appendix.
Interestingly,  this  model  behaves like either  CD  or FD
for special values of its parameters, and can also present
intermediate features. First, if k–i → 0, φ(t) reduces to
kiLex(t), which defines the pure flux detector FD. In this
case, the flux is independent of concentration L(t) in the
perireceptor space, which can rise indefinitely according
to equation (18). Second, if ki is large, ki = k–i (and ko = 0),
and the concentration in the perireceptor space becomes
immediately the same as outside when Lex is increased, so
that GFD behaves in this case like the pure concentration
detector CD (although this is not true when Lex is decreased
because of the max condition; see below). Third, for other
values of the parameters ki and k–i, the influx depends on
L(t). If only the translocation is taken into account and no
ligand–receptor interaction takes place, the GFD system is
described  simply by dL(t)/dt = φ(t), with φ(t) given by
equation (4). Then, for a constant stimulation, the influx
ceases when L(t) increases asymptotically to

(27)

(Figure 3, gfd). This example illustrates how the unrealistic
behavior of the pure flux model when Lex approaches koN/ki
(see equation 24) is removed.

Model of binding (Table 2, GFD1)

Step stimulation. The steady-state values L∞ and C∞ are
known explicitly; these expressions are relatively long and
will not be given here. The dependency of C∞ on Lex is, for
increasing k–i, hyperbolic as the dependencies obtained for
CDs (Figure 4, GFD1). Their low-concentration approx-
imations LM

∞ and M∞ are simpler expressions

(28)

and

(29)

As noticed, for step stimulation, model CD1 can be con-
sidered as a special case of the GFD model (equations 20
and 28) assuming ko → 0 and ki → ∞. It can be verified that
under these two conditions L∞ tends to Lex and C∞ is the
same as equation (6). Such a comparison cannot be done
for the pure flux detection models. For the same intensity
of stimulation Lex, the steady-state level of the signaling
complex is always lower for GFD (equations 28 and 29)
than for FD (equations 17 and 20). Therefore, the model of
proportional flux decreases the steady-state concentrations
of the reactants obtained for the step stimulation.
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Square and periodic stimulations. No analytical results are
available.

Model of binding and activation (Table 2, GFD2)

For the step stimulation the equilibria can be calculated
but are notationally complex. For the square and periodic
stimulations no analytical results are available.

Numerical results

Parameter values

In the following the detectors are compared numerically and
graphically, based on the solutions presented above or, when
not available, on the numerical solutions of the differential
equations given in the Appendix. To make the comparisons
easier, the same set of parameter values as given in Table 3
were used throughout. Most of these values were taken from
the Kaissling’s inspiring study where they are derived from
an extensive set of experimental data (Kaissling, 1998b).
The parameters were fit to the flux detection model
(Kaissling, 1998a) (see above) under the assumptions that
the ligand–receptor interaction is a single-step reaction and
that the receptor itself catalyzes the oxidation of pheromone
molecules into an inactivated form (Ziegelberger, 1995). The
measurements, which represent more than two decades
of effort [reviewed in (Kaissling, 1986, 1987, 1996)], were
performed in the male moth Antheraea polyphemus on
specialized olfactory receptor neurons that are sensitive to
the major component (a 16-carbon acetate) of the sexual
pheromone emitted by females. The principles on which
the parameter estimation are based are summarized below
(a detailed presentation is given in Kaissling, 1998b).

The range of effective pheromone concentration Lex to
which the response of the models can be compared is 10–12 ≤
Lex ≤ 10–4 µmol/l. At the behavioral (Kaissling and Priesner,
1970) and electrophysiological (Zack, 1979) thresholds
(10–12 µmol/l) there are 300 molecules of pheromone per cm3

of air and the total uptake is only 15 molecules per antenna
in the standard experimental conditions (airflow ~60 cm/s
and stimulus duration ~1 s). At the upper end of the range
(10–4 µmol/l), which corresponds to saturation of the re-
ceptor potential, there are 3 × 1010 molecules/cm3 and the
uptake is 1.2 × 105 molecules per hair.

The fictive concentration N of the receptor proteins was
expressed with respect to the volume of the hair lumen
(~10–12 l) (Keil, 1984), under the assumption that they are as
tightly packed in the membrane as the rhodopsin molecules
in visual cells.

The estimate of the rate constant ko was based on the
assumption that the pheromone degradation reaction
saturates for a concentration Lex almost equal to that
yielding the maximum electrophysiological response (recep-
tor potential).

The rate constants k1 and k–1 were deduced from the
kinetics of the receptor potential (Zack, 1979; Meng et al.,

1989), under the assumption that it is governed primarily
by the reversible pheromone–receptor binding reaction.
The rate constant k–1 of  the deactivation reaction was de-
duced from the decaying phase of the elementary receptor
potential, obtained with weak stimulation, which is thought
to be triggered by a single pheromone molecule acting on a
receptor; k1 was obtained from the decaying phase of the
receptor potential, knowing the other rate constants.

The rate constants for activation k2 and deactivation k–2

of the ligand–receptor complex were not used in Kaissling’s
studies (Kaissling, 1998a,b) and, to our knowledge, are not
known for the pheromone–receptor interaction. We chose a
value (0.25) of the deactivation equilibrium constant k–2/k2

slightly below that (0.5) for which the concentration L0.5

at half-maximum steady-state response of the two-step
concentration detector is equal to that of the single-step
concentration detector, i.e. for which both systems have the
same sensitivity. Then, the absolute values of k2 and k–2 were
chosen to be in agreement with that of ko.

The input rate constant ki was estimated from measure-
ments of the adsorption of radiolabeled pheromone
molecules by the antenna (Kanaujia and Kaissling, 1985;
Kasang et al., 1988; Kaissling, 1995), knowing the number
and volume of the sensory hairs (Gnatzy et al., 1984; Keil,
1984). In (Kaissling, 1998b) the flux kiLex is used instead of
Lex, so that the value of ki is not explicitly given. It can be
derived from the flux (102 µmol/l/s) at saturation of the
receptor potential, which leads to ki = 106 s–1.

The rate constant k–i limiting  the influx  in the  GFD
models was chosen so that the counteracting effect it
introduces remains relatively small. Then, the GFD is closer
to a FD than to a CD, its response being no different from
that of the corresponding FD on most of the Lex scale. With
the k–i value chosen (0.1 s–1), according to equation (27), L
cannot be greater than 107Lex. In particular, at  the Lex

intensity for which L becomes infinite in the pure FD model,
L reaches 103 µmol/l.

The numerical comparison of the models is divided into

Table 3 Values of parameters used in numerical simulationsa

Parameterb Main value Other valuec

N 10 µmol/l
ki 106 s–1

k–i 0.1 s–1

k1 0.2 µmol/l/s
k–1 10 s–1

k2 20 s–1 2 s–1

k–2 5 s–1 0.5 s–1

ko 10 s–1

aValues describing the moth sex-pheromone receptor system.
bAs defined in Table 1.
cUsed in Figures 2 and 3.
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three parts with respect to the type of stimulation (step,
square wave and periodic). The effect of changing the
parameter values, especially the rate constants, is not con-
sidered. So, Lex is considered here as the only variable in
the system, in accordance with our approach in terms of
intensity discrimination. Because only the level of the
signaling complex (bound or activated receptors) plays a
role in further information transfer, the results for the other
compounds are not presented. Comparisons of the sim-
plified (approximation at low concentration) and complete
models were performed only in the steady-state case.

Steady-state level of the response

The curves of the concentration of the signaling compound
at steady state C∞ and C∞* versus the external concentration
Lex, or more appropriately logLex, depend dramatically on
the model considered (Figure 4). From an information
coding point of view each of these curves can be char-
acterized by three independent quantities giving the size,
dynamic range and sensitivity of the steady-state response
(Rospars et al., 1996a,b). The size (vertical dimension) is
measured by the maximum steady-state concentration
C∞,max of the signaling complex for large Lex. The dynamic
range (horizontal dimension) gives the range of Lex over
which the fraction of receptors in the signaling state grows
from a small value ε, e.g. 1% of C∞,max,  which defines
threshold Lex,0.01, to almost complete saturation 1 – ε, e.g.
99% of C∞,max, which defines saturation Lex,0.99. The sensi-
tivity indicates the position of the curve on the horizontal
axis Lex, using concentration threshold Lex,0.01 or the con-
centration at half-maximum response Lex,0.5. The values of
these characteristics are given in Table 4.

The CD models, whether with one- or two-step ligand–

receptor interactions, are characterized by branches of
hyperbola that are transformed to logistic curves in log scale.
The curves for the GFD models are also sigmoid, whereas
those for the one- and two-step FD models are not. As
expected from the choice of k–i, FD and GFD curves are
superimposed at low concentration and become increasingly
different at higher concentration. In this zone, the influence
of the influx saturation feature built into GFD becomes
dominant and prevents the infinite accumulation of the
ligand in the perireceptor space which characterizes FDs
when approaching the limiting value Lex,max = koN/ki = 10–4

µmol/l (one step; see equation 24) and 0.57 × 10–4 µmol/l
(double-step; see equation 23). Beyond this point the
system behavior is no longer described by the model [and
not merely saturated, as might be wrongly concluded from
figure 7 in (Kaissling, 1998b)], although such concentrations
can be used experimentally, saturation of air with phero-
mone being reached only above 1 µmol/l at 20°C.

The most striking feature of Figure 4 is the 6 log units
increase in sensitivity afforded by the FD design over the
simple CD one, which is seen as a shift of the FD and GFD
curves to the left of the CD curves. The shift depends on the
value of ki and consequently on the relative speed of the
flying insect with respect to wind. If the relative speed is so
low that ki = 1, FD becomes similar to the CD approxi-
mation for low concentrations. Then GFD is even closer to
CD. So, under this low airspeed condition all models work
similarly at steady state.

The maximum size of the response depends on the
presence or absence of the second (activation) step. In all
single-step models the fraction of receptors in the signaling
state  at large Lex is 100%. This stands in contrast with
double-step models, whose asymptotic levels are lower (80%

Table 4 Characteristics of the steady-state concentration of the signaling complex

Characteristics Modela

CD1 CD2 FD1 FD2 GFD1 GFD2

Magnitudeb (%) 100 80 100 57.1 100 57.1
Dynamic rangec

1–99% 3.99 3.99 1.99 1.99 2.99 2.95
5–95% 2.56 2.56 1.28 1.28 1.71 1.68

Sensitivityd

1% 5.05 × 105 1.01 × 105 1 0.571 1.10 0.622
5% 2.63 × 106 5.26 × 105 5 2.86 5.53 3.12
50% 5 × 107 1 × 107 50 25.6 60 33.6
95% 9.5 × 108 1.9 × 108 95 54.3 285 149
99% 4.95 × 109 9.9 × 108 99 56.6 1089 549

aSee Tables 1 and 2.
bMaximum response for large Lex, expressed as the fraction C∞/N or C*∞/N (in %).
cRatio in log units of concentrations Lex giving magnitudes 99 and 1% (or 95 and 5%).
dConcentrations Lex (in pmol/l) giving weak (1, 5%), half (50%) and close to maximum (95, 99%) responses.

Perireceptor and Receptor Events 303



for CD, 57% for FD and GFD with the parameter values
chosen), so that there is no stimulus intensity for which all
receptors are activated. Choosing smaller values of k2 and
k–2 while keeping their ratio constant would lead to a still
smaller maximum (if k2 = 2 and k–2 = 0.5 s–1 it is 16% for FD
and GFD). In CD models, the effect of the activation step is
to reduce the maximum size of the response and to offer a
gain in sensitivity, as the whole curve moves to the left with
respect to the single-step reaction curve for k2 > k–2. In
contrast, in FDs and GFDs the activation step, when
present, entails only a loss in response size without a gain
in sensitivity. This can be intuitively justified by the fact
that the FD offers the maximum possible sensitivity, which
prevents any shift of the GFD response curve to the left.

The dynamic range of the CD curves, whether of one or
two steps, is 3.99 log units for ε = 1% or 2.56 for ε = 5%,
which is a general property of logistic curves. This means
that the concentration of signaling receptor complexes
increases almost 10 000-fold from threshold, at which 1% of
receptors are in the signaling state, to saturation, at which
only 1% of receptors remains non-signaling. For FD curves
the range is almost 100 times smaller, being 2.00 and 1.28 log
units for ε = 1 and 5%, respectively. Finally, the dynamic
range for GFD curves is intermediate, of 2.99 and 1.71 log
units respectively in the single-step case. Choosing larger
values of k–i, that is, increasing the resistance to influx of
ligand into the perireceptor space, would widen the dynamic
range  and be  accompanied by a very slight decrease in
sensitivity. However, the range of the GFD model can never
become greater than that of the CD model.

It follows from their relatively narrow dynamic ranges and
their widely distinct sensitivities that the studied examples of
CD and FD–GFD work in non-overlapping domains
of concentrations. So, the efficiency of one or the other
design depends on the natural concentrations of the ligand
to be measured.

The low-concentration approximations, for which the
solutions are often analytical, are non-sigmoid curves that
give reasonable approximations for responses up to 10 or
20% of the maximum response.

Time-course of the response to square wave stimulation

The time-course of the response during stimulus presenta-
tion and its decay after stimulus removal can be studied in
the case of a square pulse stimulation (Figure 5). Although
this is not visible in all cases in Figure 5, the duration of the
rising phase is always different from that of the decaying
one.

The time ∆t needed to achieve any preassigned level S
of the response as a function of Lex reflects the response
latency in a biologically meaningful way since this time may
represent a significant part of the total reaction time of a
neuron to stimulation. The ∆t versus Lex curves are L-shaped
whatever the value of S (Figure 6). In single-step CD and
GFD models, ∆t goes to zero when Lex is sufficiently large.

In double-step models, ∆t tends to a minimum time, which is
given for double-step CD by equation (16). For S = 1 µmol/l,
which is likely to be a relatively large value (10% of N) with
respect to the number of activated receptors at maximum
response of the neuron, ∆tmin is 5 ms for CD2 and GFD2,
160 ms for FD1, and 320 ms for FD2.

From an information coding point of view, it is useful to
adopt the reverse formulation, i.e. to have fixed Lex and
variable S. For each curve, we chose Lex giving a  half-
maximum response (50% of C∞,max or C*∞,max). Then, each
curve can be characterized by the time needed to reach a
small value ε, e.g. 1% of C∞,max and almost complete
saturation 1 – ε, e.g. 99% of C∞,max. These reaction times ∆t
are given in Table 5. They lead to the following conclusions:

1. CDs and FDs substantially differ in their reaction times.
Apart from the steady-state levels already presented
above, this is the most obvious difference between them.
For example, 95% of the steady-state response is reached
in 0.15 s for CD1, 6 s for GFD1 and 8 s for FD1. So, the
CD’s detector follows the square wave with minimum
distortion, whereas the responses of FDs and GFDs rise
and decay more slowly, introducing a noticeable distor-
tion. This means that there is a trade-off between the
large increase in sensitivity provided by the FD design
and the significant decrease in its capacity to reflect
reliably the rapid fluctuations of the signal.

2. For low response levels (ε < 50%) double-step models are
slower than their single-step counterparts. The difference
is striking for CDs, the reaction time being 1 ms for CD1
and 16 ms for CD2 at ε = 1%; it is lesser for FDs and
GFDs, ~30 ms for one step and 60 ms for two steps.
However, for relative levels above 50%, FD2 and GFD2
become slightly faster than their counterparts FD1 and
GFD1.

3. For very low response levels, which are significant for
stimulus detection (see Discussion), the response times
can become very  short also  for  FDs and GFDs. For
example, with Lex eliciting a half-maximum response and
ε = 10–5 (~10–4 µmol/l for the signaling complex), the
reaction times predicted by the models are in the 1–5 ms
range. This is a very short time compared with transduc-
tion time, suggesting that the perireceptor and receptor
events are not the limiting steps in the odorant detection
process.

Time-course of the response to periodic stimulation

The temporal features of the response observable with
square-wave stimulations are emphasized  in  the case of
stimulations with periodic intensity. For all types of
detectors the frequency and amplitude of the stimulus must
be considered simultaneously.

All systems achieve, after a certain delay, a periodic
response which follows the stimulus with the same period.
The level around which the response is modulated is the
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steady-state level observed under constant stimulation.
Since the CD models are fast responding, the periodic
regime is achieved more quickly than in the FD and GFD
models.

For sufficiently low frequency, the amplitude of the
response approaches a maximum which is equal to the level
that would be achieved by a constant stimulation Lex = λo +
λ1. With increasing frequency, the response, although still
periodic, does not reproduce the upper and lower parts of
the signal, so that the amplitude of the oscillating part of the
response decreases. Finally, the system averages almost
completely the quickly alternating signal which evokes a
practically constant response. Figures 7 and 8 show that the
amplitude of the response decreases at a slower rate for CDs
than for FDs. When the frequency increases from 1 to 10 Hz,
the amplitude decreases by 20% from 0.64 to 0.5 µmol/l for
single-step CD, less than four times from 0.76 to 0.24
for double-step CD, and more than five times from 0.22 to
0.03 for single- and double-step FDs and GFDs. Although
the same qualitative behaviors with roughly three domains
(periodic with large amplitude, periodic with small ampli-
tude, non-periodic) can be observed for both detector types,
the dependency of these domains on stimulus frequency are
quite different. Similarly, as seen in Figure 7, the phase shift
with respect to the stimulation is larger for slowly respond-
ing systems.

Figure  9 illustrates the  response of the model to the
periodic stimulation with square pulses as used in actual
experiments (see Discussion for details). It shows clearly the
effect of periodicity, although in this kind of stimulation the
amount of ligand delivered per unit of time is changed when

the frequency changes. The ratio of the amplitude of the
periodic part of  the signal to its mean constant level falls
from 69% at 1 Hz to 15% at 3 Hz and 2% at 10 Hz.

Discussion

Concentration and flux detectors

The distinction between concentration and flux chemo-
sensory detectors has been recently proposed by Kaissling
(Kaissling, 1998a). It puts the conditions in which
chemosensory systems operate in a new light and is of major
importance in understanding their design principles. The
significance of these concepts is illustrated here by
comparing three models, the concentration detector (CD),
the pure flux detector (FD) and the generalized flux
detector (GFD). Each of these models was studied at two
levels of complexity, the subsequent transduction cascade
being triggered either by mere binding of the ligand to the
receptor, in a single step, or by binding plus activation, in
two steps.

The CD models are described by only three (single step:
k1, k–1 and N; see Table 1) or five (double step: as for single
step, but adding k2 and k–2) parameters in their versions
studied here, which involve only ligand–receptor inter-
actions and no ligand-degrading reaction. In such systems,
the signaling receptor complex  responds directly  to  the
external ligand concentration. The models apply to chemo-
sensory membranes that are almost directly exposed to their
environment, as might be the case for taste receptors, insect
carbon dioxide receptors (Stange, 1996), hormone receptor
systems and unicellular organisms.

The flux detectors, in either their original (FD) or

Table 5 Times (in ms) to reach preassigned levelsa for fixed stimulus intensityb

Levels
ε

Modelc

CD1 CD2 FD1 FD2 GFD1 GFD2

Very low
10–5 <1 <1 1 5 1 5
10–4 <1 1 3 12 3 11
10–3 <1 5 10 27 9 26

Low
1% 1 16 36 67 32 63
5% 3 39 97 143 86 132

Middle
50% 35 267 1033 986 843 836

High
95% 150 1051 7826 6977 5897 5439
99% 230 1599 1.4 × 105 1.2 × 105 1.0 × 105 9560

aPreassigned levels defined as S = εC∞ or S = εC*∞.
bStimulus concentration Lex giving half-maximum response (magnitude × 0.5; see Table 3).
cSee Tables 1 and 2.
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modified (GFD) form, involve two or three more para-
meters that describe, on one hand, the adsorption process
(ki in FD, ki and k–i in GFD) responsible for accumulating

ligand molecules in the perireceptor space and, on the other
hand, the symmetric degradation reaction (ko) responsible
for their deactivation. They apply to chemosensory systems
that collect the ligand of interest in a periplasmic space
using, for example, either binding proteins attached to the
membrane, a mucus layer or a physical barrier. Therefore,
any chemosensory cell might belong to this category, and
most odorant receptor systems probably belong to it.

Some models can be transformed to another by selecting
appropriate reaction rate constants. For k2 = 0, the models
with a two-step reaction simplify into the models with a one-
step reaction. For large ki, ki = k–i and ko = 0, GFDs, but not
FDs, are transformed into CDs. However, this is true only at
stimulation onset because ligand outflow is not permitted in
GFDs, so that at offset their behavior is different from that
of CDs. The condition ko = 0 is needed in the present form
of the CD models; however, this is only a formal change
because the degradation reaction governed by ko might have
been included also in the CD models. Note that this
degradation mechanism has been kept as simple as possible,
the receptor acting as an enzyme. A separate enzyme may be
also considered; its effect in FD is to change both steady-
state curves shown in Figure 4 in sigmoid curves [see figure 7
in (Kaissling 1998a)] and the time-course of the signaling
complex.

The equations can be linearized for Lex(t) small enough,
i.e. for a number of signaling complex C or C* much smaller
than the total number of receptors. This low-concentration
situation is often met in reality (see the last section of this
paper) and is probably the only physiologically meaningful
one (Rospars et al., 2000). Otherwise full non-linear versions
must be considered.

Figure 7 Concentration of signaling complex C for one-step and C* for
two-step ligand–receptor interactions, as a function of time for periodic
stimulations of different frequencies ω. Stimulations are Lex(t) = 10(1 +
0.5sinωt) (CD1 and CD2) and 10–5(1 + 0.5sinωt) µmol/l (FD and GFD), with
ω = 1 s–1 (a), ω = 2 s–1 (b) and ω = 8 s–1 (c). Curves FD1 and FD2 are
superimposed, as are curves GFD1 and GFD2. Lex(t) is shown schematically
at the top of each frame (Stimulation). The same notations and parameters
as in Figure 4 are used, except for Lex(t).

Figure 8 Relative amplitude of response as a function of frequency ω of
stimulation. The amplitude is half the distance between two successive
extremes (one-half period apart) of concentrations of signaling complex C
for one-step and C* for two-step ligand–receptor interactions. The same
notations and parameters are used as in Figure 7.
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Comparison of concentration and flux detectors in the
case of moth olfaction

The behavior of the various detector models has been
illustrated in the special case of the reception of sexual
pheromone by moths, as originally studied by Kaissling.
The most basic conclusion resulting from this illustration is
that, using the parameter values that describe the actual
system (as given in Table 3), the high sensitivity of the

system cannot be accounted for by a concentration detector,
which falls short by six orders of magnitude. Only a flux
detector can  account  for this  high sensitivity.  Now, the
relative merits for describing the system of the different
versions of flux detectors, the original FD or its generalized
version GFD, whether one step or two, must be assessed on
other grounds. The two-step  versions, having  two more
parameters than single-step versions, are more flexible. The
same is true for the GFD version, which has one more
parameter than FD (k–i) and thus can fit experimental data
more precisely and, moreover, can describe any intermediate
detector between the two extremes that are CDs and FDs.

Now it can be instructive to adopt an engineering point
of view on this system and to wonder why sex-pheromone
reception is not based on a CD device. This question arises
because it is a priori possible to design a CD which is sensi-
tive enough to monitor the sex-pheromone concentration
range actually observed. Consider, for example, the steady-
state response of the single-step CD. The problem to solve
consists in shifting the CD1 curve as shown in Figure 4 to
the left by 6 log units so that it coincides approximately with
the FD1–GFD1 curves. This can be done if the dissociation
equilibrium constant k–1/k1, which gives the ligand concen-
tration at half-maximum response, is multiplied by 10–6, i.e.
from its actual value of 5 × 10–5 mol/l (see Table 3) to 5 ×
10–11 mol/l. This corresponds to a shift from the low-affinity
end to the high-affinity end of the various known receptors
(Lauffenburger and Linderman, 1993). So, the idea of a sex-
pheromone CD does not appear unrealistic as far as the
receptor-ligand is concerned.

So, the reason why the actual sex-pheromone system is a
flux detector must be found elsewhere. A possible inter-
pretation is that the flux-detector design is the only one
compatible with the lipophilic nature of the bombykol mol-
ecules, which sticks them to the cuticle, and the multiporous
cuticular structure, which entails irreversible entrance into
the perireceptor space. Both features preclude free return
of the ligand to air as in the (ideal) case of the CD. Then
the low affinity of the receptor to its ligand would be a
secondary adaptation. It is such that it permits monitoring
the actual concentration range of bombykol, given  the
unavoidable accumulation of these molecules in the vicinity
of the receptors. So, contrary to what might be thought a
priori, the affinity of the receptors to bombykol would not
be a limiting factor for the global sensitivity of the system.

Properties of flux detectors in the case of moth olfaction

The parameter values used in Table 3, which describe the
sex-pheromone receptor system, can be changed in relatively
large ranges without altering the qualitative conclusions
presented. For example, the input rate constant ki influences
the magnitude of the gain in sensivity to concentration and
the corresponding gain in temporal acuity, afforded by FDs
(including GFDs) with respect to CDs. Only the magnitude,
not the existence of these two effects of relative gain in

Figure 9 Concentration of signaling complex C for one-step ligand–
receptor interactions as a function of time for periodic square-pulsed
stimulations at different frequencies ω = 1 (a), 3 (b) and 10 (c) Hz.
Parameters are as in Figure 4, except Lex = 2.5 × 10–9 µmol/l and pulse
duration t0 = 20 ms.
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sensitivity and time resolution, which are the major
properties of the systems from the signal processing point
of view we adopt here, can be influenced by manipulat-
ing the value of ki. These are structural features of the
models that are insensitive to the values of the parameters.
Unfortunately, the exact value of ki cannot be easily deter-
mined experimentally because the perireceptor space, which
is the volume in which the pheromone molecules have
easy access to the receptors, is not well defined. If the
whole internal hair volume were considered as the actual
perireceptor space, which corresponds to a perireceptor
layer ~1 µm thick, a lower bound of ki = 1.5 × 10–4 s–1 would
hold. Then, according to equation (17), i.e. assuming the
one-step FD model gives a correct description, and using
ko = 10 s–1, one finds that at the stimulus intensity giving
the maximum value of the steady-state receptor potential
(Lex = 10–4 µmol/l), only 1.5% of the receptors are bound to
pheromone molecules. Another possible assumption (but
unlikely to be correct) (Rospars et al., 2000) is that all
receptors are occupied (C∞ = N = 10 µmol/l) for Lex = 10–4

µmol/l. Then, one finds from equation (17) that ki = 106 s–1,
corresponding to a perireceptor layer only 0.2 µm thick.

The long time constant of flux detectors suggests that the
steady-state level is not of primary importance in intensity
coding. One possibility is that these systems are not prim-
arily working as sensors of  stimulus intensity with graded
response, but as sensors of stimulus presence with binary
(yes or no) response. Indeed, if the spiking threshold is low
enough, which is actually the case in the moth sexual
pheromone receptor neuron, it is crossed with very small
latency (see Table 5), so that spike firing can reliably follow
the fast temporal variations of the signal even if the
steady-state level of the signaling receptor complex (and
consequently the receptor potential) cannot. For example,
a moth flying through a pheromone plume subdivided into
small clumps of molecules would never stay long enough in
a clump to measure its concentration, which might even be
meaningless in this case. However, without considering such
an extreme case, another possibility of fast measurement of
odor intensity is possible based on the slope of the dynamic
response (signaling complex or receptor potential) with
respect to time. This is a straightforward interpretation of
Figure 6, which represents an expression of the slope S/∆t
via time ∆t needed to reach a constant predefined level S.
The regular decrease of ∆t as a function of Lex shows that
it can provide a reliable measure of Lex. This hypothetic
mechanism would call for a spike generating mechanism in
which the first spike would signal the onset of the stimula-
tion and the subsequent interspike intervals would allow the
system to estimate Lex via ∆t.

In the models studied the dynamic range 1–99% never
exceeds 4 log units (CD1) and it can be as narrow as 2 (FD1)
(see Table 4). This stands in contrast with the >8 log-unit
range of the receptor potential (Zack, 1979) under the same
conditions. Consequently, the difference must be accounted

for by the transduction cascade and the conductance-to-
voltage conversion. The latter conversion can account for
part of the widening effect, provided there is a long enough
single sensory dendrite and a small input resistance of the
non-sensory part of the neuron, especially a large soma
(Vermeulen and Rospars, 1998), a situation that is reminis-
cent of the sex-pheromone receptor neuron. In this case
the dynamic range of the receptor potential is always >4
(Rospars et al., 1996a,b).

The lower region of the range is the most important
in practice. The conventional threshold defined by ε = 1%
corresponds to a concentration of 0.1 µmol/l of the sig-
naling complex, i.e. 1.6 × 105 molecules per dendrite. This is
a large number since a single complex, which corresponds to
a concentration of 6.3 × 10–7 µmol/l (with the values selected
in Table 3), is sufficient to elicit a spike (Kaissling and
Priesner, 1970; Kaissling, 1971). What is the stimulus
intensity which elicits this picomolar concentration of C or
C*? Since all FD and GFD models have the same behavior
at low Lex concentration,  equation (17) can be  used to
calculate this extreme threshold. One finds Lex ≈ 10–11

µmol/l, which is in good agreement with the observed
electrophysiological threshold (10–12 µmol/l). This confirms
that the models and parameter values offer a satisfactory
description of the experimental data, as pointed out by
Kaissling (Kaissling, 1998b). Two remarks must be added
at this point. First, the definition of the dynamic range
used here must not be interpreted as measuring the true
dynamic range of the system studied. It is merely a con-
venient measure of the shape of the curve which removes the
subjectivity of appreciating at which points the asymptotes
are reached and permits one to compare responses of dif-
ferent systems. Second, the calculation presented above for S
equal to the picomolar concentration of C or C* is only a
first approximation because with such a small number of
molecules in interaction the deterministic description on
which the present paper is based is no longer valid and must
be replaced by a stochastic description. We have started to
develop such a description for the CD models (Lánský and
Rospars, 1993, 1995) and will extend these results in the
future.

Odorant molecules released from a point source are
carried away by the wind. The odorant plume formed is
distorted by atmospheric turbulence and the concentra-
tion at a stationary point has been found to fluctuate at a
frequency of some tens of cycles per second (Murlis et al.,
1992). Flying insects use this fluctuation to orient towards
an odor source (Kramer, 1986). Successful orientation and
source location is elicited in moths at frequencies of 2–10 s–1

(Vickers and Baker, 1992). Olfactory receptor neurons in
A. polyphemus were shown to follow trains of short pulses
(20 ms) at relatively high concentration (2.5 × 10–9 µmol/l)
up to 0.5 and 10 s–1 depending on the neuron type
(Christensen and Hildebrand, 1988; Rumbo and Kaissling,
1989; Marion-Poll and Tobin, 1992). The model studied is in
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remarkable agreement with these data. Our numerical
simulations (Figure 9) show that in the critical region
(1–10 Hz) the amplitude of the periodic part of the sig-
naling-complex response falls from 75 to 2% of the mean
amplitude. For higher frequencies, which are accompanied
by a larger amount of odorant delivered, the periodic part is
practically smoothed out.
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Appendix: differential equations
Using principles of mass action kinetics, the reactions for the six
models studied, summarized in Table 1, can be readily translated
into differential equations giving the time rate of change of the
various chemical species of interest. In all models a relation of
conservation for the total number N of receptors holds; in single-
step models (CD1, FD1 and GFD1) the relation is

R(t) + C(t) = N

and in double-step models (CD2, FD2, GFD2) it is

R(t) + C(t) + C*(t) = N

with N constant at any time. Due to these relations, the number of
independent differential equations is decreased by one with respect
to the number of chemical species (or states) involved.

Model CD1 (single step)

Only one independent equation  can be written. We select the
equation for C as it is the quantity of interest,

(A1)

If Lex(t) is small, i.e. k–1 >> k1Lex(t), equation (A1) can be simpli-
fied into the form

(A2)

Model CD2 (double step)

Only two independent equations can be written,

(A3)

and

(A4)

If Lex(t) is small, i.e. k–1 and now additionally k–2 prevail over
k1Lex(t), formally when k–1 >> k1Lex(t) and k–2 >> k1Lex(t),
equation (A3) becomes

(A5)

whereas equation (A4) remains unchanged (only with different
notation),

(A6)

The conditions leading to equation (A5) imply that the number of
interacting receptors is far below their total number, C(t) + C*(t)
<< N. Again, the external stimulation appears in equation (A5) as
an additive term only.

Model FD1 (single step)

The system can be described by two independent equations, e.g.

(A7)

(A8)
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If kiLex(t) << ko, which implies C(t) << N, then equations (A7)
and (A8) can be reduced to a simpler system

(A9)

(A10)

where the upper index in LM(t) makes the distinction from L(t) in
the complete model. The system of  equations (A9) and (A10) is
formally the same as that of equations (A5) and (A6), but with
different interpretation of the parameters.

Model FD2 (double step)

Three independent equations can be written

(A11)

(A12)

(A13)

If the number  of interacting receptors C(t) + C*(t) is suffic-
iently small compared with N, then equations (A11)–(A13)
simplifies to

(A14)

(A15)

(A16)

Model GFD1 (single step)

Only two independent equations can be considered, (A7) and

(A17)

If C(t) << N,  which  is  again equivalent to kiLex << ko, the
simplified system is formed by equation (A9) and

(A18)

Model GFD2 (double step)

This model is described by equations (A12), (A13) and

(A19)

and for the simplified situation it is defined by equations (A15),
(A16) and

(A20)
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