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Abstract
We use the optimal foraging theory to study coexistence between two plant species and a
generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs.
adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators
have fixed preferences, we show that plant coexistence typically requires both weak com-
petition between plants for resources (e.g., space or nutrients) and pollinator preferences
that are not too biased in favour of either plant. We also show how plant coexistence is pro-
moted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, polli-
nator’s diet maximizes pollinator’s fitness measured as the per capita population growth
rate. Simulations show that this has two conflicting consequences for plant coexistence. On
the one hand, when competition between pollinators is weak, adaptation favours pollinator
specialization on the more profitable plant which increases asymmetries in plant competi-
tion and makes their coexistence less likely. On the other hand, when competition between
pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In
addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant
host, thus preventing further collapse of the entire community.

Introduction

Et il se sentit très malheureux. Sa fleur lui avait raconté qu’elle était seule de son espèce dans
l’univers. Et voici qu’il en était cinq mille, toutes semblables, dans un seul jardin!

Le Petit Prince, Chapitre XX – Antoine de Saint-Exupéry

The diversity and complexity of mutualistic networks motivate ecologists to investigate how
they can remain stable and persistent over time. Mathematical models and simulations show
that some properties of mutualistic networks (e.g., low connectance and high nestedness) make
them more resistant against cascading extinctions [1], more likely to sustain large numbers of
species [2], and more stable demographically [3]. However, simulations [4, 5] also indicate that
mutualism increases competitive asymmetries, causing complex communities to be less
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persistent. These studies consider large numbers of species, parameters and initial conditions,
making it difficult to understand the interplay between mutualisms (e.g., between plant and
animal guilds) and antagonisms (e.g., resource competition between plants). These questions
are easier to study in the case of community modules consisting of a few species only [6].

In this article we consider a mutualistic module with two plant species and one pollinator
species (Fig 1a). This module combines several direct and indirect interactions that are either
density- or trait-mediated (sensu [7]). These include plant intra- and inter-specific competition
(for e.g., space), plant competition for pollinator services, and pollinator intra-specific competi-
tion for plant resources (e.g., nectar). Some of these interactions depend on changes in popula-
tion densities only (e.g., intra- and inter-specific plant competition), while the others depend
also on individual morphological and behavioural traits. As some of them have positive and
some of them negative effect on plant coexistence, it is difficult to predict their combined
effects on species persistence and stability.

First, we will assume that pollinator preferences for plants are fixed. In this case, there is a
negative effect of one plant on the other by direct competition and a positive indirect effect that
is mediated by the shared pollinators, called facilitation [8–10]. As one plant population den-
sity increases, pollinator density increases too, which, in turn, increases pollination rate of the
other plant (Fig 1b). This is an indirect interaction between plants that is mediated by changes
in abundance of the pollinator (i.e., density mediated indirect interaction). Because facilitation
has the opposite effect to direct plant competition (see Fig 1b) it is important to clarify under
which situations the positive effect of facilitation prevails, and we study this question by using a
mathematical model.

Second, we will assume that pollinator preferences are adaptive. We will assume that polli-
nator fitness is defined as the per capita pollinator population growth rate that depends on
plant (that produce resources for pollinators) as well as on pollinator densities. First, pollina-
tors benefit from nectar quality and nectar abundance (which correlates with plant population
density). Second, pollinators compete for resources. This competition will play an important
effect when pollinator population densities are high. A game theoretical approach to determine
the optimal pollinator strategy is the Ideal Free Distribution (IFD) [11, 12]. This theory pre-
dicts that when pollinators are at low numbers, they will specialize on one plant only. As their
population density will increase, they become generalists feeding on and pollinating both
plants. This mechanism causes a negative effect of the preferred plant on the other plant,
because when at low densities, pollinators will specialize on one plant only (Fig 1c). This is an
example of a positive feedback where “the rich becomes richer and the poor get poorer”. Com-
petition for pollinators is an example of a trait-mediated effect caused by pollinator behaviour.
Pollinator specialization on one plant only is detrimental for the other plant. However, as polli-
nator population density will increase, competition for resources among pollinators will
increase too [13], and the IFD predicts that they become generalists, which promotes plant
coexistence (Fig 1d). Once again, combination of positive and negative effects between plants
creates complicated feedbacks between population densities and pollinator behaviour that are
impossible to disentangle without an appropriate mathematical model.

Our main goal is to study how pollinator preferences and plant competition affect plant
coexistence. First, we study the dynamics of the plant–pollinator module when pollinator pref-
erences are fixed. Second, we calculate the pollinator’s evolutionarily stable foraging strategy
(ESS) at fixed plant and pollinator population densities, and we study plant coexistence assum-
ing pollinators instantaneously track their ESS. This case corresponds to time scale separation
where population dynamics operate on a slow time scale, while pollinator foraging preferences
operate on a fast time scale. Finally, we consider the situation without time scale separation
and we model preference dynamics with the replicator equation. Overall, we show that
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Fig 1. Community module consisting of plant 1 and 2, and pollinator A. (a) Plants affect each other directly (solid arrows) by competition for space
or resources (c1, c2), and indirectly (dashed arrows) via shared pollinator with plant preferences u1 and u2. (b) When pollinator preferences are fixed
and not too biased, a large density of plant 1 maintains a large pollinator density, which has an indirect positive effect on low density plant 2. In (c,d)
pollinator preferences for plants are adaptive (dashed arrows change thickness). When pollinators are rare (c), preferences favour abundant plant 1,
which results in a negative indirect effect on rare plant 2. When pollinators become abundant (d), competition between pollinators lead to balanced
preferences, and the indirect effect on plant 2 becomes positive. The viability of plant 2 depends on the balance between indirect and direct effects.
Image sources for panel (a) were taken from: https://openclipart.org.

doi:10.1371/journal.pone.0160076.g001
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pollinator foraging adaptation has complex effects, sometimes equivocal, on plant coexistence.
On the one hand pollinator adaptation increases competitive asymmetries among plants, pro-
moting competitive exclusion. On the other hand competition for plant resources among polli-
nators promotes generalism over specialization, which can prevent the loss of pollination
services for some plants and promote coexistence.

Methods
Mutualistic community model
Let us consider two plant species Pi (i = 1, 2) and one pollinator species A (Fig 1a). Plants pro-
duce resources Fi (i = 1, 2) such as nectar at a rate ai per plant. Resources not consumed by the
pollinator decrease with rate wi (e.g., nectar can be re-absorbed, decay or evaporate). Resources
are consumed by pollinators at rate bi per resource per pollinator. Pollinator’s relative prefer-
ences for either plant are denoted by ui with u1 + u2 = 1. Plant birth rates are proportional to
the rate of pollen transfer that is concomitant with resource consumption. Thus, we assume
that plant birth rates are proportional to pollinator resource consumption rates (ui bi Fi A)
multiplied by conversion efficiency ri. Pollinator birth rates are proportional to resource con-
sumption with corresponding conversion efficiency ei. Plants and pollinators die with the per
capita mortality ratemi (i = 1, 2) and d, respectively.

Assuming that plant resources equilibrate quickly with current plant and pollinator densi-
ties [14], i.e., dFi/dt = 0, plants and pollinator population dynamics are described by the follow-
ing model (S1 Appendix)

dP1

dt
¼ r1a1u1b1A

w1 þ u1b1A
1# P1 þ c2P2

K1

! "
#m1

! "
P1 ð1aÞ

dP2

dt
¼ r2a2u2b2A

w2 þ u2b2A
1# P2 þ c1P1

K2

! "
#m2

! "
P2 ð1bÞ

dA
dt

¼ e1a1u1b1P1

w1 þ u1b1A
þ e2a2u2b2P2

w2 þ u2b2A
# d

! "
A; ð1cÞ

in which plant growth rates are regulated by competition for non-living resources (e.g., light,
nutrients, space) according to the Lotka–Volterra competition model, where cj is the negative
effect of plant j on plant i relative to the effect of plant i on itself (i.e., competition coefficient),
and Ki stands for the habitat carrying capacity [4]. Notice that plant growth rates saturate with
pollinator density (e.g., r1a1u1b1Aw1þu1b1A

) and pollinator growth rates decrease due to intra-specific com-

petition for plant resources (e.g., e1a1u1b1P1w1þu1b1A
) [15]. In this model plants and pollinators are obligate

mutualists, i.e., without pollinators plants go extinct and without plants the pollinator goes
extinct. We do not model facultative mutualism because this introduces additional factors (e.g.
alternative pollinators, vegetative growth), which complicate the analysis of direct and indirect
effects of the three species module.

Fixed pollinator preferences
We start our analyses assuming that pollinator preferences for plants (u1 and u2 = 1 − u2) are
fixed at particular values ranging from 0 to 1. This means that for u1 = 1 or 0 pollinators are
plant 1 or plant 2 specialists, respectively, while for 0< u1 < 1 they are generalists. Since model
Eq (1a) is non-linear, analytical formulas for interior equilibria and corresponding stability
conditions are out of reach. However, it is possible to obtain coexistence conditions by means
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of invasibility analysis. First, we obtain conditions for stable coexistence of a single plant-polli-
nator subsystem at an equilibrium. Second, we ask under what conditions the missing plant
species can invade when the resident plant–pollinator subsystem is at the equilibrium. In par-
ticular, we are interested in the situation where each plant species can invade the other one,
because this suggests coexistence of both plants and pollinators. Derivation of invasion condi-
tions are provided in S1 Appendix.

In general, invasibility does not guarantee coexistence [16, 17]. Also, a failure to invade
when rare does not rule out possibility of invasion success when the invading species is at large
densities. For these reasons we complement our invasibility analysis by numerical bifurcation
analysis using XPPAUT [18], and parameter values given in Table 1. While not empirical, the
values fall within ranges typically employed by consumer–resource models (e.g., [19]). Plant-
specific parameters are equal except for ei and ui (i = 1, 2). We assume that e1 > e2, i.e., plant 1
provides pollinators with higher energy when compared to plant 2.

Adaptive pollinator preferences
When pollinators behave as adaptive foragers their plant preferences should maximize their fit-
ness. The pay-off a pollinator gets when pollinating only plant i is defined as the per capita pol-
linator growth rate on that plant, i.e.,

V1ðu1Þ ¼
e1a1b1P1

w1 þ u1b1A
; V2ðu1Þ ¼

e2a2b2P2

w2 þ ð1# u1Þb2A
: ð2Þ

We observe that these pay-offs depend both on plant and pollinator densities and on the
pollinator distribution u1, i.e., they are both density and frequency dependent. Now let us con-
sider fitness of a generalist mutant pollinator with strategy ~u1. Its fitness is then defined as the
average pay-off, i.e.,

Wð~u1; u1Þ ¼ ~u1V1ðu1Þ þ ð1# ~u1ÞV2ðu1Þ ¼ V2ðu1Þ þ ðV1ðu1Þ # V2ðu1ÞÞ~u1: ð3Þ

Using this fitness function we will calculate the evolutionarily stable strategy [20, 21] of pol-
linator preferences at current plant and pollinator densities. When pollinators adjust their pref-
erences very fast as compared to changes in population densities, we will use the ESS together

Table 1. Parameters of Model (1a) and Eq (4).

Symbol Description Values/ranges

ri conversion efficiency of pollination service to plant i seeds 0.1

ei conversion efficiency of plant i resources to pollinator eggs e1 = 0.2,e2 = 0.1

mi plant i per capita mortality rate 0.01

d pollinator per capita mortality rate 0.1

ci competitive effect of plant i on plant j ci & 0

Ki plant i habitat carrying capacity Ki > 0

ai plant i per capita resource production rate 0.4

bi pollinator consumption rate of plant i resources 0.1

wi plant i resource decay rate 0.25

ui relative preference for plant i, where u1 + u2 = 1 0 to 1

ν preference adaptation rate ν& 0

Plant 1 resources are more beneficial for the pollinator than those from plant 2 (e1 > e2), but all the other
plant-specific parameters have the same values in order to facilitate comparisons.

doi:10.1371/journal.pone.0160076.t001
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with population dynamics Eq (1a) to model effects of pollinator plasticity on population
dynamics. This approach corresponds to time scale separation where population densities
(plants and animals) change very slowly compared to pollinator adaptation. We are also inter-
ested in the situation when the two time scales are not separated, but pollinators foraging pref-
erences still tend to the ESS. In these cases we use the replicator equation [21] to model
dynamics of pollinator preferences u1 for plant 1 (u2 = 1 − u1)

du1

dt
¼ nu1ð1# u1Þ

e1a1b1P1

w1 þ u1b1A
# e2a2b2P2

w2 þ ð1# u1Þb2A

! "
; ð4Þ

where ν& 0 is the adaptation rate. Eq (4) assumes that pollinator’s preferences evolve towards
a higher energy intake and its equilibrium coincides with the ESS. Thus, if pollinators obtain
more energy when feeding on plant 1, preferences for plant 1 increases. When ν& 1, adapta-
tion is as fast as population dynamics or faster. This describes plastic pollinators that track
changing flower densities very quickly (i.e., within an individual life-span). This is the case
when adaptation is a behavioural trait. In fact, for ν tending to infinity pollinators adopt the
ESS instantaneously. Adaptation can also involve morphological changes requiring several gen-
erations (i.e., evolution). In that case ν< 1, and adaptation lags behind population dynamics
(i.e., changes in preferences require more generations). And the ν = 0 case applies to non-adap-
tive pollinators. We remark that perfect specialization on plant 1 or plant 2 correspond to the
equilibrium u1 = 1 or u1 = 0, respectively.

Using Model (1a) and replicator Eq (4), we simulate the effects of pollinator adaptation and
plant direct inter-specific competition on coexistence. We consider four common inter-specific
competition coefficients: c1 = c2 = c = 0, 0.4, 0.8, and 1.2, and four adaptation rates: ν = 0, 0.1, 1
and ν =1. Level ν = 0 extends our analysis for non-adaptive pollinators (fixed preferences)
beyond invasion conditions. Level ν = 0.1 implies slow evolutionary adaptation, like in adaptive
dynamics [22]. At ν = 1 adaptation is as fast as demography, i.e., pollinators adapt during their
lifetime. For ν =1 adaptation is infinitely fast when compared to population densities and
preferences are given by the ESS.

Community dynamics and the dynamics of pollinator preferences can be sensitive to initial
conditions. There are four degrees of freedom for the initial conditions (P1, P2, A and u1 at
t = 0). We reduce this number to two degrees of freedom. First, we vary P1(0) from 0 to K in
100 steps while P2(0) = K − P1(0), where K = K1 = K2 = 50 is the common carrying capacity.
The choice K = 50 is high enough to avoid pollinator extinction due to the Allee effect in the
majority of the simulations. Second, we consider two scenarios:

Scenario I: Initial pollinator density A(0) varies from 0 to 50 in 100 steps and initial pollinator
preference is equal to the ESS.

Scenario II: Initial pollinator preference u1(0) varies from 0.001 to 0.999 in 100 steps [0.001,
0.01, 0.02, . . ., 0.98, 0.99, 0.999] and initial pollinator density is kept at A(0) = 2.

Scenario I assumes that pollinators preferences are at the ESS for given initial plant and pol-
linator densities, with an exception when the ESS is 0 or 1 in which case we perturb it to u1 =
0.001 or u1 = 0.999. This is necessary because the replicator Eq (4) does not consider mutations
that may allow specialists to evolve towards generalism.

Scenarios I and II complement each other. In both of them initial plant composition (P1:
P2) influences the outcome. For scenario II we also used A(0) = 50, but we did not find impor-
tant qualitative differences. Thus, for both scenarios we simulate Models (1a) and (4) with
100 × 100 = 104 different initial conditions. This systematic approach allows us to delineate
boundaries between plant coexistence and extinction regions. Models (1a) and (4) is integrated
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(Runge–Kutta 4th, with Matlab [23]) with the rest of the parameters taken from Table 1. A
plant is considered extinct if it attains a density less than 10−6 after time t = 20000.

Results
Fixed preferences
System (1a) models obligatory mutualism between plants and pollinators. Plants cannot grow
in absence of pollinators and pollinators cannot reproduce without plants. Thus, the trivial
equilibrium at which all three species are absent (P1 = P2 = A = 0) is always locally asymptoti-
cally stable [24, 25], because when at low population densities, pollinators cannot provide
enough pollination services to plants that will die and, similarly, when at low densities, plants
do not provide enough nectar to support pollinators.

By setting dP1/dt = dA/dt = 0 with P1 > 0, P2 = 0, A> 0 in Eq (1a) and (1c), non-trivial
plant 1–pollinator equilibria are

P1' ¼ b1e1K1ða1r1 #m1Þu1 þ dr1w1 '
ffiffiffiffiffiffi
D1

p

2a1b1e1r1u1

A1' ¼ b1e1K1ða1r1 #m1Þu1 # dr1w1 '
ffiffiffiffiffiffi
D1

p

2b1dr1u1

;

ð5Þ

where D1 = −4b1 de1 K1 m1 r1 u1 w1 + (b1 e1 K1(m1 − a1 r1)u1 + dr1 w1)
2. These two equilibria

are feasible (positive) if a1 r1 >m1 and D1 > 0. The first is a growth requirement: if not met,
even an infinite number of specialized pollinators (with u1 = 1) cannot prevent plant 1 extinc-
tion. The second condition is met when pollinator preference for plant 1 (u1) is above a critical
value

u1a ¼
dr1w1

b1e1ð
ffiffiffiffiffiffiffiffi
a1r1

p # ffiffiffiffiffiffi
m1

p Þ2K1

: ð6Þ

By symmetry, there are two non-trivial plant 2–pollinator equilibria (P2±, A2±). They are
feasible if a2 r2>m2 and D2> 0 (D2 is like D1 with interchanged sub-indices). The second con-
dition is met when pollinator preferences for plant 2 are strong enough (i.e., preferences for
plant 1 are weak enough) so that u1 is below a critical value u1b

u1b ¼ 1# dr2w2

b2e2ð
ffiffiffiffiffiffiffiffi
a2r2

p # ffiffiffiffiffiffi
m2

p Þ2K2

: ð7Þ

In both cases the equilibrium that is closer to the origin ((P1−, A1−) when plant 2 is missing and
(P2−, A2−) when plant 1 is missing) is unstable. This instability indicates critical threshold den-
sities. When plant i and pollinator densities are above these thresholds, coexistence is possible.
Otherwise, the system converges on the extinction equilibrium mentioned before. This is a
mutualistic Allee effect [26, 27].

The equilibrium that is farther from the origin ((P1+, A1+) when plant 2 is missing and (P2+,
A2+) when plant 1 is missing) will be called the resident equilibrium. Resident equilibria are sta-
ble with respect to small changes in resident plant and pollinator densities, but may be unstable
against invasion of small densities of the missing plant species. In the case of the plant
1–pollinator equilibrium (P1+, A1+), plant 2 invades (i.e., achieves a positive growth rate when
rare) if the competitive effect of plant 1 on plant 2 (c1), is smaller than

aðu1Þ ¼
a1b1r1u1K2ð2b2u2e1K1m1w1ða2r2 #m2Þ #m2w2ðb1e1K1u1ða1r1 #m1Þ # dr1w1 #

ffiffiffiffiffiffi
D1

p
ÞÞ

a2b2r2u2K1m1w1ðb1e1K1u1ða1r1 #m1Þ þ dr1w1 þ
ffiffiffiffiffiffi
D1

p
Þ

; ð8Þ
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whereas plant 1 invades the plant 2–pollinator equilibrium (P2+,A2+) if the competitive effect
of plant 2 on plant 1 (c2), is smaller than

bðu1Þ ¼
a2b2r2u2K1ð2b1u1e2K2m2w2ða1r1 #m1Þ #m1w1ðb2e2K2u2ða2r2 #m2Þ # dr2w2 #

ffiffiffiffiffiffi
D2

p
ÞÞ

a1b1r1u1K2m2w2ðb2e2K2u2ða2r2 #m2Þ þ dr2w2 þ
ffiffiffiffiffiffi
D2

p
Þ

: ð9Þ

Functions α(u1) and β(u1) are real when D1 > 0 and D2 > 0, respectively. In other words,
invasibility only makes sense when the plant 1–pollinator resident equilibrium exists (u1 >
u1a) or, when the plant 2–pollinator resident equilibrium exists (u1 < u1b), respectively. The
graphs of Eqs (6), (7), (8) and (9) divide the pollinator preference–competition parameter
space into several regions (Fig 2 where c = c1 = c2). Notice that because α and β are only feasible
to the right of u1a and to the left of u1b, respectively, their graphs may or may not intersect
depending on the position of u1a and u1b (cf. panel a vs. b). We show this by setting a common
plant carrying capacity K = K1 = K2 and making it larger or smaller than a critical value (S1
Appendix)

K( ¼
ðb1e1r2w2ð

ffiffiffiffiffiffiffiffi
a1r1

p # ffiffiffiffiffiffi
m1

p Þ2 þ b2e2r1w1ð
ffiffiffiffiffiffiffiffi
a2r2

p # ffiffiffiffiffiffi
m2

p Þ2Þd
b1b2e1e2ð

ffiffiffiffiffiffiffiffi
a1r1

p # ffiffiffiffiffiffi
m1

p Þ2ð ffiffiffiffiffiffiffiffi
a2r2

p # ffiffiffiffiffiffi
m2

p Þ2
: ð10Þ

Productive environments (K> K() support coexistence of both plant–pollinator resident
equilibria for intermediate pollinator preferences. This is not so in unproductive environments
(K< K(), where resident equilibria occur within separated ranges of pollinator preferences (see
below).

First, we assume a high plant carrying capacity satisfying K> K(. Then u1a< u1b, and α(u1)
and β(u1) intersect like in Fig 2a. This leads to several plant invasion scenarios. We start with
preferences satisfying u1a < u1 < u1b. Such intermediate pollinator preferences allow each spe-
cies to coexist with the pollinator at a stable equilibrium. If competition is weak enough (see
the region denoted as “P1 + P2” in Fig 2a), the missing plant can invade the resident plant–pol-
linator equilibrium which leads to both plant coexistence. In contrast, if competition is strong
enough (see the region denoted as “P1 or P2” in Fig 2a), the missing plant cannot invade. Thus,
either plant 1 or plant 2 wins depending on the initial conditions (i.e., the resident plant that
establishes first wins). In between these two outcomes of mutual invasion and mutual exclu-
sion, there are two wedge-shaped regions (see regions denoted as “P1”, and “P2” in Fig 2a). In
the right (left) region plant 1 (plant 2) invades and replaces plant 2 (plant 1) but not the other
way around. The outcomes in the regions of Fig 2a that are either to the left of u1a, or to the
right of u1b are very different, because whether the missing plant can invade or not when rare
depends entirely on facilitation by the resident plant. Indeed, let us consider the region of the
parameter space in Fig 2a to the right of the vertical line u1b and below the curve α. In this
region (denoted by “P1 + P2”) pollinator preference for plant 2 is so low that plant 2 alone can-
not support pollinators at a positive density. It is only due to presence of plant 1 that allows
plant 2 survival through facilitation (Fig 3a). Indeed, when plant 1 is resident, it increases polli-
nator densities to such levels that allow plant 2 to invade. In other words, plant facilitation due
to shared pollinators widens plant niche measured as the range of pollinator preferences at
which the plant can survive at positive densities. When inter-specific plant competition is too
high (see the region above the curve α and to the right of u1b) plant 2 cannot invade. Similarly,
when pollinator preferences for plant 1 are too low (i.e., to the left of the line u1a), coexistence
relies on facilitation provided by plant 2 (resident) to plant 1 (invader) and on plant competi-
tion being not too strong (below curve β); if competition is too strong (above β) plant 1 cannot
invade.
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Fig 2. Interaction outcomes as a function of competition strength and fixed pollinator preferences. Solid lines
(coloured, found analytically) determine regions where single plant equilibria exist and whether they can be invaded or
not. Dashed lines (in black, found numerically, like γ) determine outcomes that cannot be predicted by invasibility
analysis. Plant 2 can invade Plant 1 in the region between the red vertical line u1a and the red curve α. Plant 1 can
invade plant 2 in the region between the green curve β and the green vertical line u1b. The final composition of the
community is indicated by P1 = plant 1 wins, P2 = plant 2 wins, P1 + P2 = coexistence, EXT = extinction of all species;
the “or” separator indicates that the outcome depends on the initial conditions. Parameters from Table 1, with (a) Ki =
60 and (b) Ki = 35 (i.e., above and below critical K* = 37.5, see Eq (10)). Representative dynamics for parameter
combinations at)a ,)b ,)c and)d are illustrated in corresponding panels of Fig 3.

doi:10.1371/journal.pone.0160076.g002

Fig 3. Model (1a) dynamics with fixed pollinator preferences. Population densities are represented by: green squares = plant 1, red diamonds = plant 2
and pink circles = pollinator. Panels (a) Ki = 60, u1 = 0.8, ci = 0.4, (b) Ki = 60, ci = 1.2, u1 = 0.605, (c) Ki = 60, ci = 1.2, u1 = 0.607 and (d) Ki = 35, u1 = 0.4, ci =
0.8 correspond to positions of points)a ,)b ,)c and)d in Fig 2. Other parameters as in Table 1.

doi:10.1371/journal.pone.0160076.g003
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Second, we assume low plant carrying capacity satisfying K< K(. Then u1a > u1b, and α(u1)
and β(u1) never intersect (Fig 2b) in the positive quadrant of the parameter space. For interme-
diate pollinator preferences satisfying u1b < u1 < u1a coexistence by invasion of the rare plant
is not possible. The reason is that in this region neither plant 1, nor plant 2, can coexist with
pollinators. So, there is no resident system consisting of one plant and pollinators that could be
invaded by the missing rare plant. In regions to the left of u1b plant 2 coexists with pollinators
and to the right of u1a plant 1 coexists with pollinators at a stable equilibrium and invasion
conditions for the missing plant when rare are similar to the case where K> K(. Once again, in
these regions coexistence of both plants can be achieved because of the resident plant facilitates
the other plant invasion. The important prediction of this invasion analysis is that the density
mediated indirect interaction between plants through the shared pollinator, i.e., plant facilita-
tion, increases the set of parameter values for which coexistence of both plants is possible.

Although invasion analysis proves to be very useful when analysing Model (1a), it does not
answer the question whether there are some other attractors that cannot be reached by invasion
of the missing species when rare. Using numerical bifurcation software (XPPAUT [18]), we
found additional outcomes not predicted by invasibility analysis. When K> K( (Fig 2a) invasi-
bility analysis predicts that plant 2 cannot grow when rare for strong inter-specific plant com-
petition when c> α. However, our numerical analysis shows that it is still possible for plant 2
to invade provided its initial population density is large enough. The community dynamics
then either oscillate along a limit cycle (Fig 3b), or converge to a stable equilibrium (Fig 3c).
Such behaviour was observed in the region denoted by “P1 or P1 + P2” of Fig 2a. This shows
that Model (1a) has multiple attractors (including a limit cycle). The right dashed boundary of
that region corresponds to a fold bifurcation where a locally stable interior equilibrium merges
with an unstable equilibrium and disappears for higher values of u1. Between the two dashed
curves there is another Hopf bifurcation curve (not shown in Fig 2a) where the interior equilib-
rium looses its stability and a limit cycle emerges. As preference for plant 1 decreases towards
the left dashed boundary, the amplitude of the limit cycle tends to infinity.

When K< K( we found a curve γ(u1) that further divides the parameter space (Fig 2b). For
the intermediate pollinator preferences (u1b < u1 < u1a) where neither plant can be a resident,
and below γ curve (“P1 + P2 or EXT”), coexistence is achievable if both plants and the pollina-
tor are initially at high enough densities. This is an extreme example of plant facilitation. If
combined plant abundances are not large enough, then both plants and the pollinator go
extinct as already predicted by the invasion analysis. Also, if one plant species is suddenly
removed, extinction of pollinator and the other plant follows. Above the γ curve, plant compe-
tition is too strong to allow any coexistence and the outcome is always global extinction
(“EXT”). When preference for plant 1 is low (u1 < u1b), the γ curve is slightly above the β curve
so that the possible coexistence region is slightly larger than the coexistence region obtained by
invasion of the rare plant (“P2 or P1 + P2”). However, plant coexistence in the region between
the two curves depends on the initial density of plant 1: if P1(0) is very low, plant 2 wins as pre-
dicted by the invasion analysis, but if P1(0) is large enough, plant 1 will invade and coexist at an
interior equilibrium with plant 2. In the opposite situation, where preference for plant 1 is very
high (u1 > u1a), γ divides the region where plant 2 can invade (assuming c< α) as follows.
Below γ, competition is weak and plant 2 invasion is followed by stable coexistence thanks to
resident facilitation. Above γ, competition is strong and plant 2 invasion causes plant 1 extinc-
tion followed by plant 2 extinction. This is because pollinator preference for plant 1 is too
strong (u1 > u1b) which does not allow pollinators to survive on plant 2. Thus, invasion by
plant 2 leads to global extinction (“EXT”). Fig 3d shows an example of such global extinction
caused by invasion. Once again, invasion of plant 2 is possible due to facilitation by plant 1. As
plant 2 invades, it has also an indirect positive effect on plant 1 through facilitation. But this
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positive effect does not outweigh the direct negative effect plant 2 has on plant 1 due to direct
competition for resources. Apart from this case of global extinction caused by invasion, numer-
ical analysis with parameters from Table 1 confirms predictions of our invasion analysis that in
the case where one or both equilibria with one plant missing exist(s), the invasibility conditions
c< α and c< β predict the existence of a locally stable interior equilibrium at which both
plants coexist with the pollinator.

Adaptive preferences
Evolutionarily stable strategy and time scale. We calculate the evolutionarily stable strat-

egy for fitness defined by Eq (3). At the interior (i.e., generalist) behavioural equilibrium the
two pay-offs Eq (2) must be the same, i.e., V1 = V2, which yields

u(
1ðP1; P2;AÞ ¼

e1a1P1

e1a1P1 þ e2a2P2

þ w2e1a1b1P1 # w1e2a2b2P2

b1b2ðe1a1P1 þ e2a2P2ÞA
; ð11Þ

provided u(
1 is between 0 and 1. If V1(u1)>V2(u1) for all u1, the ESS is u(

1 ¼ 1 and if V1(u1)<
V2(u1) for all u1, the ESS is u(

1 ¼ 0. Because

Wðu(
1; u1Þ #Wðu1; u1Þ ¼

ðAb1b2ða2e2P2u1 # a1e1P1ð1# u1ÞÞ þ a2b2e2P2w1 # a1b1e1P1w2Þ
2

Ab1b2ða1e1P1 þ a2e2P2ÞðAb1u1 þ w1ÞðAb2ð1# u1Þ þ w2Þ
> 0

the interior strategy u(
1 is also resistant to mutant invasions [20], i.e.,Wðu(

1; u1Þ > Wðu1; u1Þ
for all strategies u1 6¼ u(

1. Thus u
(
1 is the ESS [21]. We remark that in the ecological literature

such an ESS strategy has also been called the Ideal Free Distribution [11, 12].
It follows from Eq (11) that as pollinator densities increase, u(

1 tends to e1 a1 P1/(e1 a1
P1 + e2 a2 P2), i.e., pollinators tend towards generalism, with relative preferences reflecting dif-
ferences in resource supply rates and quality. This is because at higher pollinator densities fit-
ness decreases due to intra-specific competition among pollinators for plant resources, which
is compensated for by interacting with the less profitable plant. In contrast, when pollinator
densities become very low, u(

1 as a function of plant 2 density approximates a step function (Fig
4). In this latter case pollinators specialize either on plant 1 or on plant 2 and the switch
between these two possibilities is very sharp. In this case competition between pollinators is so
weak, that pollinators can afford to ignore the less profitable plant.

Eq (11) when combined with population dynamics Eq (1a) describes the situation where
pollinator preferences instantaneously track population numbers. This situation corresponds
to complete time scale separation between behavioural and population processes. When the
assumption of time scale separation is relaxed, we show that the rate ν with which pollinator
preferences change in Eq (4) has important effects on plant coexistence.

This is especially easy to observe when there is no direct competition between plants (c1 = c2
= 0). Thus, a plant can cause the decrease of the other plant only by influencing pollinator pref-
erences. Let us assume that at time t = 0 both plants have equal densities and pollinators are
rare (but above the critical Allee threshold density), as shown in Fig 5. Because the plant to pol-
linator ratio is large, pollinators should specialize on plant 1 (u1 = 1) which is the most profit-
able (e1 > e2), causing plant 2 to decline and to go extinct, eventually. However, as pollinator
densities start to increase relative to plant densities, pollinators can become generalists which
favours plant coexistence. We start with the assumption that pollinator preferences track
instantaneously population numbers (panel a: ν =1), i.e., u1 ¼ u(

1 is given by the the ESS Eq
(11) (see the star-line -(-(- in Fig 5a). We observe that as pollinator abundance increases, polli-
nators become generalists approximately at t* 3, which is fast enough to prevent plant 2
extinction, and population densities will tend to an interior equilibrium. When pollinators
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preference is described by the replicator equation (panel b: ν = 1), we observe that pollinators
will become generalists at a latter time (t* 11) due to the time lag with which pollinators pref-
erences follow population abundances. Even with this delay, the decline of plant 2 stops and we
obtain convergence to the same population and evolution equilibrium. However, when adapta-
tion is yet slower, the pollinator preferences will follow changing population densities with a
longer time delay (panel c: ν = 0.25), and we get a qualitatively different outcome with plant 2
extinction. This is because when pollinators start to behave as generalists (t* 100), plant 2
abundance is already so low that it is more profitable for pollinators to switch back to pollinate
plant 1 only. We obtain similar results as in Fig 5 when e.g., c1 = c2 = 0.4, but coexistence
becomes impossible when direct competition becomes too strong.

In the next section we study combined effects of initial conditions, plant competition for
resources (ci > 0), and time scales on plant coexistence.

Scenario I (variation of initial plant and pollinator densities). Here we study the com-
bined effects of population dynamics Eq (1a) and adaptive pollinator preferences Eq (4) on spe-
cies coexistence. Fig 6 shows regions of coexistence (pink), exclusion of one plant species (red
or green), and global extinction (both plants and the pollinator, white) for different initial plant
and pollinator densities. For this scenario combined initial plant densities are fixed

Fig 4. Evolutionarily stable preference for plant 1 as plant 2 density increases. Plant 1 density is fixed at P1 =
10 in Eq (11). At very low pollinator density preference switches abruptly (dashed line) from 1 to 0. At very high
pollinator density the decline is continuous (thin line). Intermediate pollinator densities (thick line) cause a combined
pattern with switching between specialisation (horizontal segments) and generalism (decreasing segment). Values
of parameters are those given in Table 1.

doi:10.1371/journal.pone.0160076.g004
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(P1(0) + P2(0) = 50). We contrast these predictions with the situation where population densi-
ties are fixed, i.e., when population dynamics are not considered and pollinator preferences are
at the ESS. In this latter case the necessary condition for both plants to survive is that pollina-
tors behave as generalists which corresponds to the region between the two curves δ0 and δ1 in
Fig 6. These are the curves along which the ESS predicts switching between specialist and gen-
eralist pollinator behaviour at initial population densities. These curves are found by solving
Eq (11) for A, when u(

1 ¼ 1 which yields

d1 + A ¼ a1e1P1w2

a2b2e2P2

# w1

b1
; ð12Þ

Fig 5. Model (1a) dynamics with pollinator adaptive preferences. Population densities (units in left axes) are represented by: green squares = plant 1,
red diamonds = plant 2, pink circles = pollinator. Pollinator preference for plant 1 (u1, units in right axes) is represented by the black line. Initial population
densities in all panels P1(0) = P2(0) = 25, A(0) = 1. Preferences in (a) are given by the ESS Eq (11). Preferences in (b) and (c) are given by the replicator Eq
(4) with ν = 1, 0.25 respectively and u1(0) = 0.999. Parameters as in Table 1, with Ki = 50, ci = 0.

doi:10.1371/journal.pone.0160076.g005
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and when u(
1 ¼ 0 which yields

d0 + A ¼ a2e2P2w1

a1b1e1P1

# w2

b2
: ð13Þ

If population densities do not change, initial conditions to the left (right) of δ0 (δ1) lead to
exclusion of plant 1 (plant 2) because pollinators specialize on plant 2 (plant 1). Population
and pollinator preference dynamics do change these predictions. The main pattern observed in
the simulations is that plant coexistence becomes less likely as the plant competition coefficient

Fig 6. Effects of foraging adaptation (ν rows) and inter-specific competition (c columns) on plant coexistence under scenario I (variation of initial
plant and pollinator densities). P2(0) = 50 − P1(0) and u1(0) given by Eq (11)). Pollinators begin as specialists on plant 1 to right of line δ1, on plant 2 to the
left of line δ0, and generalists in between. Initial conditions in red and green result in extinction of plant 1 or 2, respectively. Initial conditions in pink and white
result in coexistence or community extinction, respectively.

doi:10.1371/journal.pone.0160076.g006
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(c) increases. This is not surprising because a higher inter-specific competition between plants
decreases plant population abundance which makes coexistence of both plants less likely or
impossible (panels c, d, g, h, k, l, o, p). In fact, when inter-specific plant competition is too
strong and the pollinators do not adapt, plant densities can become so low that the system col-
lapses due to mutualistic Allee effects (panel d, white region).

The effect of pollinator adaptation rate (ν) on coexistence is more complex, in particular
when plant competition is moderate or weak (i.e., c, 0.4, panels a, b, e, f, i, j, m, n). At low
adaptation rates (ν, 0.1, panels a, b, e, f) increasing the adaptation rate makes the region of
coexistence smaller. With faster adaptation rates (i.e., ν& 1, panels i, j, m, n), increasing the
adaptation rate further narrows the region of coexistence for large initial pollinator densities,
but widens this region for smaller initial pollinator densities (see the pink areas below the δ0
and δ1 curves). Although initially pollinators specialize on the more profitable plant, the inter-
specific competition among pollinators leads to generalism, and provided the adaptation rate is
fast enough, to plant coexistence. This is the same effect as in Fig 5, in which the same set initial
conditions with low pollinator densities leads to plant exclusion when adaptation is slow, or
coexistence when adaptation is faster.

When competition is strong (c = 0.8), the main effect of pollinator adaptation is that coexis-
tence entirely disappears (cf. panel c vs. g, k, o). This is because plant densities are reduced and
pollinator densities do not reach high enough densities that would lead to pollinator general-
ism. Finally, when competition is very strong (c = 1.2) global extinctions do not happen (cf.
panel d vs. h, l p). This is because adaptation allows pollinators to switch fast enough towards
the most profitable plant before competition drives total plant abundance below the Allee
threshold that would lead to global extinction.

Scenario II (variation on initial plant densities and preferences). This scenario focuses
on the effect of initial plant population densities and initial pollinator preferences on plant
coexistence. Similarly to scenario I (Fig 6), increasing the inter-specific plant competition coef-
ficient cmakes plant coexistence less likely (Fig 7). When pollinators switch from fixed to adap-
tive foragers the region of plant coexistence becomes smaller (e.g., see the pink region in the
first two columns in Fig 7). The general tendency is that increased pollinator adaptation rate
reduces the set of initial conditions that lead to coexistence (cf. third vs. second row in Fig 7).

For non-adaptive pollinators, community collapse is more widespread than in the scenario
I (cf. white regions in Figs 6 vs. 7). This is because in scenario II pollinator preferences can ini-
tially be extremely biased towards the rarest plant (around the upper-left and bottom-right cor-
ners of the panels in Fig 7). These biased initial preferences are obviously maladaptive for the
pollinator, but in reality, they can be caused by external disturbances, like the removal of the
most preferred plant. For the highest competition level, communities can collapse when both
plants are initially abundant and pollinators are generalists (around the centre of panel d). This
is caused by the same mechanism outlined for scenario I: plants severely harm each other for a
long time, causing a critical fall in their combined abundance that leads to extinctions due to
the Allee effect. We also observe a very small region where non-adaptive pollinators can coexist
with strongly competing plants (the pink region in panel d). We examined the corresponding
time series to confirm that they display damped oscillations or limit cycles like in Fig 3b and 3c
(results not shown).

Fast enough pollinator adaptation prevents community collapse, by enabling pollinators to
abandon initially maladaptive diets before it is too late (cf. the first row vs. e.g., the second row
in Fig 7). In the long term either both plants do coexist if plant competition is low (panels e, f, i,
j, m, n), or one plant is excluded by the other plant if plant competition is high (panels g, h, k, l,
o, p). As the adaptation rate increases, Fig 7 shows an important effect on the general orienta-
tion of the regions of coexistence and exclusion. With no adaptation (top row in Fig 7) the
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outcome (coexistence or exclusion) depends more on the initial preferences (vertical axis) than
on the initial plant composition (horizontal axis). However, when adaptation is fast (e.g., third
row ν = 1), initial preferences have little influence on the outcome (unless grossly biased
towards 0 or 1) and initial plant composition is more important. The effect is more sharp when
adaptation rate is infinitely fast (ν =1), because plant coexistence is entirely independent of
the initial pollinator preferences.

Discussion
We studied a two-plant–one-pollinator interaction module assuming that pollinator prefer-
ences for plants are either fixed or adaptive. When pollinator preferences are fixed, we observe

Fig 7. Effects of foraging adaptation (ν rows) and inter-specific competition (c columns) on plant coexistence under scenario II (variation on
initial plant densities and preferences). P2(0) = 50 − P1(0) and A(0) = 2). Initial conditions in red and green result in extinction of plant 1 or 2, respectively.
Initial conditions in pink and white result in coexistence or community extinction respectively.

doi:10.1371/journal.pone.0160076.g007
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that for intermediate pollinator preferences, plants can facilitate each other indirectly by raising
pollinator densities, thus making coexistence more likely. This effect disappears when prefer-
ences are too biased in favour of one plant, or when competition for factors such as resources
or space is too strong. While coexistence is predominantly at a population equilibrium, coexis-
tence along a limit cycle is also possible, but under very restrictive conditions in parameter val-
ues. Adaptive pollinator foraging introduces additional competition between plants for
pollinators, because pollinators switch to the major plants, which is bad for rare plants. This
makes coexistence less likely. However, competition for plant resources between pollinators
can promote generalism, thus plant coexistence. The net outcome depends on the relative
speeds between population dynamics and diet adaptation, the strength of competition between
plants for factors other than pollination services, and on the past history of the community
(initial conditions).

Interaction dynamics with fixed preferences
Under fixed pollinator preferences (i.e., no adaptation) Model (1a) reveals a rich set of out-
comes. The dynamics are complex because plants and pollinators are obligate mutualists, i.e.,
their coexistence depends on their population densities being above the Allee (extinction)
threshold. Such thresholds become less important when one considers alternative pollination
mechanisms (e.g., selfing, wind) or mutualistic partners (other plants, other pollinators), vege-
tative growth or immigration [25, 27], that our model does not include.

When pollinator preference is extremely biased towards a particular plant, plant coexistence
is not possible even when competition for factors such as space or nutrients is not considered.
This is because the less preferred plant, being rarely pollinated, cannot increase in abundance.
For an intermediate range of pollinator preferences, coexistence is possible through a number
of ways. The most simple and familiar is coexistence by mutual invasion, like in the Lotka–Vol-
terra competition model. In this case each plant can attain a positive abundance at an equilib-
rium with the pollinator in the absence of the other plant, and the missing plant can invade
and establish in the community (this happens in the middle “P1 + P2” region of Fig 2a).
Another way is when plant j can invade the plant i and the pollinator community, but plant j
alone cannot coexist with the pollinator (left or right “P1 + P2” regions in Fig 2a and 2b). In all
these cases one plant (i) facilitates the other plant (j) via pollinator sharing, by increasing the
pollinator density (see Fig 1b). This indirect, density mediated interaction between plants [7] is
called pollinator mediated facilitation [8]. A striking example of pollinator mediated facilita-
tion occurs when neither plant can coexist with the pollinator without the other plant, but pol-
linators do coexist with both plants (this happens in the “P1 + P2 or EXT” region in Fig 2b).
However, for trajectories to converge to the interior equilibrium the initial plant densities must
be high enough so that the pollinator mediated facilitation is strong enough. Pollinator medi-
ated facilitation [8] has been empirically documented [9, 10], and its role in plant invasions rec-
ognized [28].

Invading plants can have positive or negative effects on the resident species. If plant compe-
tition is very weak or absent (ci * 0), the invader can indirectly increase the resident’s plant
density. This is another manifestation of pollinator mediated facilitation [8], this time by the
invader. If competition is stronger, invasion and establishment can cause decline in the resident
plant (e.g., Fig 3a) or its replacement by the invader, as expected according to competition the-
ory [19]. In this case plant competition just outweighs facilitation. Our analysis also shows that
in low productive environments (i.e., when Eq (10) does not hold), a resident plant can facili-
tate the invasion of poor quality plants (with low ei) that cause the subsequent collapse of the
whole community (e.g., Fig 3d).
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Numerical analysis of Model (1a) shows that when coexistence cannot occur by invasion
when rare, it is sometimes achievable if the invader’s density is initially large enough. Coexis-
tence generally takes place at stable densities (e.g., region “P2 or P1 + P2” in Fig 2b and most of
region “P1 or P1 + P2” in Fig 2a). But we also found coexistence along a limit cycle. Limit cycles
occur for very narrow ranges of preferences and under strong competition (e.g., a small part of
region “P1 or P1 + P2” in Fig 2a). We only found limit cycles when low quality plant 2 (e2 < e1,
Table 1) cannot support the pollinator and cannot invade plant 1–pollinator equilibrium. Only
when plant 2 enters at large densities, it will start driving out plant 1, followed by the pollinator.
This leads to plant 2 decline and the later recovery of the plant 1–pollinator system, completing
the cycle. We could say that such dynamics between plant 1–pollinator subsystem and plant 2
resembles prey–predator or host–parasite interactions. Limit cycles in competitor–competi-
tor–mutualist modules have been predicted before, in models of the Lotka–Volterra type [29].
We never observed limit cycles when pollinator preferences are adaptive (ν> 0 in Eq (4)).

We assumed that plant competition affects growth rather than death rates [4, 30]. This
assumption is sound when plants are mainly limited by space, or by resources whose access are
linked to space, such as light. In such circumstances a plant could produce many seeds thanks
to pollination, but space puts a limit on how many will recruit as adults. It remains to see how
our results would change if competition is considered differently, when adult plant mortality is
affected by competition (e.g., [2]). This can be very important under scenarios of interference
like allelopathy or apparent competition caused by herbivores [31].

Adaptive preferences and population feedbacks
The ESS Eq (11) predicts that when at low densities, pollinators will pollinate only the plant
that is most profitable, while at higher densities they will tend to pollinate both plants. This
positive relationship between pollinator/consumer abundance and generalism was experimen-
tally demonstrated for bumblebees [13].

Plant and pollinator densities are not static, they change within the limits imposed by sev-
eral factors: e.g., space and nutrients in the case of plants, or plant resources such as nectar in
the case of pollinators. On the other hand, plants and pollinators require minimal critical den-
sities of each other in order to compensate for mortality. Thus, a given ESS at which one plant
is excluded from the pollinator’s diet will cause that plant to decrease in density, and, possibly,
to go extinct. However, as population densities change the ESS can also change in ways that
may favour coexistence. These outcomes will depend on the time scale of pollinator foraging
adaptation. For this reason, we introduced the replicator Eq (4) as a dynamic description of
pollinator preferences and we coupled it with population dynamics. One of the main conse-
quences of introducing replicator dynamics is the disappearance of complex dynamics such as
limit cycles or global extinctions triggered by invasion (Fig 3b and 3d). In contrast, the dynam-
ics with pollinator adaptation are characterized by fewer stable outcomes (plant 1 only, plant 2
only, coexistence) with strong dependence on the initial conditions.

Whether or not adaptive pollinator preferences promote plant coexistence depends critically
on the strength of competition (i.e., competition coefficient) and the rate of pollinator adapta-
tion (ν). In our simulations, we determined the region of initial population densities and polli-
nator preferences leading towards plant coexistence, as a function of these two factors. The
larger this region, the more likely plant coexistence. As competition strength increases, coexis-
tence becomes less likely as expected from competition theory [19]. As pollinator adaptation
rates increase the pattern is more complex and sometimes equivocal, as adaptation can increase
or decrease the likelihood of coexistence (Figs 6 and 7). For example, when competition is
weak or moderate in simulation scenario I, we see that the region of coexistence is generally
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wider when pollinator densities are initially large and more narrow when pollinators are ini-
tially rare (Fig 6 for c, 0.4). This agrees with the pattern outlined in Fig 1b and 1c. In other
words, when pollinators are abundant competition between pollinators promotes generalism,
which is good for plant coexistence, whereas if pollinators are rare they can easily turn into spe-
cialists, which is bad for coexistence. However, when the adaptation rate increases, we also
observe that if pollinators are initially rare, the region of coexistence widens. Fig 5 can help
explain this: a rare pollinator specializes on a single plant, even when neither plant is too rare
(e.g., initial ESS panel a). As pollinators start growing, competition for plant resources will
cause pollinators to drive towards generalism. If this change is fast enough (large ν, panel b)
the extinction of the less preferred plant can be prevented. However, if the change is too slow
(small ν, panel c) the less preferred plant declines too fast to be rescued from extinction. Thus,
the results from scenario I tells us that time lags in pollinator adaptation with respect to popu-
lation dynamics have important consequences for plant coexistence.

Simulation scenario II also tells us that adaptation lags can affect the entire community,
plants and pollinators. In this scenario initial pollinator preferences are arbitrary (i.e., not at
the ESS). This is likely to happen if external perturbations (e.g., disease, grazing) makes the
most preferred plant too rare and the less preferred too common, in a very short time. If polli-
nators cannot turn into generalists fast enough they will go extinct because of the mutualistic
Allee effect. This leads to the collapse of the community (white regions in Fig 7 at ν = 0). When
pollinators are able to adapt, such global extinctions can be prevented, sometimes at the price
of one plant going extinct. We also observe global extinction in scenario II when initial plant
ratios and fixed pollinator preferences are both not too biased (i.e., around the centre of panel
d in Fig 7). In these particular cases, generalism is not optimal because of splitting foraging
effort on both plants, neither plant gets enough pollination services to survive. By adapting its
preference towards a single plant (panels h, l, p in Fig 7), the pollinator population would avoid
extinction.

Adaptive pollination in a mutualistic interaction module predicts opposite trends for biodi-
versity when compared with the apparent competition food web module with adaptive con-
sumers. Instead of promoting species coexistence by decreasing competitive asymmetries as in
the apparent competition food web module [32–34], adaptive pollinator preferences can
increase or decrease plant competitive asymmetries, making their coexistence less or more
likely, respectively. At low density, pollinators tend to specialize on the most common plant
(Fig 1c), leading to the exclusion of the rare plant. At high density, competition between polli-
nators promotes generalism (Fig 1d), which helps in promoting plant coexistence. Similar out-
comes are predicted in the model studied by Song and Feldman [35], where plant coexistence
is favoured under low plant:pollinator ratios (although these ratios were kept fixed by these
authors). Because plant:pollinator ratios are dynamic, transitions from specialization to gener-
alism depend not only on adaptation rates, but also on how fast pollinator densities react to
simultaneous changes in plant densities. We see this in Fig 5, where pollinators attain large
density very quickly, before one plant becomes too common and the other too rare. This indi-
cates that the form of population regulation (e.g., linearly decreasing for plants [4, 30] vs.
hyperbolically decreasing for pollinators [15]) as well as the numerical response towards mutu-
alistic partners (e.g., saturating for plants vs. linear for pollinators [14]), can play important
roles in consumer adaptation in mutualistic communities.

Our simulations assume that plant 1 is richer in energy rewards when compared to plant 2
(e1 > e2) while we keep all the other plant-specific parameters equal. We also ran simulations
with plant 1 being better with respect to other plant-specific parameters (e.g., r1 > r2 or w2 >
w1, keeping ei = 0.1 and the rest of parameters as in Table 1). In these simulations (not shown
here) coexistence is generally more difficult to attain (e.g., coexistence regions as those in Fig 6
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get smaller). The reason is that in our model, plant rewards (ei) affect plants only indirectly, by
influencing pollinator preferences. In contrast, other plant-specific parameters affect plant
dynamics directly. Finally, the larger ci and Ki the more likely plant i always win in competition,
but this is a natural result expected in models derived from the Lotka–Volterra competitive
equations.

Some predictions from our model are in qualitative agreement with experiments. For exam-
ple [10] shows transitions from plant facilitation to competition for pollinators [8] when one
plant species (Raphanus raphanistrum) is exposed to increasing numbers of an alternative
plant (Cirsium arvense). In the same study, the relative visitation frequency of a plant (Rapha-
nus) declines faster than predicted by the decline in the relative proportion of its flowers [10].
The ESS can explain this outcome as the superposition of a relative resource availability effect
and a resource switching effect (i.e., first and second terms respectively, in the right-hand-side
of Eq (11)), as shown by Fig 4 (compare it with Fig 6 in [10]). The effect of resource competi-
tion on the relationship between pollinator density and generalism, was demonstrated by
another experiment [13]. Other studies show that invasive plant species can take advantage of
changing pollinator preferences, increasing their chances to get included into native communi-
ties [36]. Finally, one meta-analysis indicates that pollinators can be taken away by invasive
plants, affecting native plants adversely [28].

Inter-specific pollen transfer effects
Model (1a) considers only one single pollinator species. This makes pollinator generalism (i.e.,
u1 strictly between 0 or 1) a requisite for coexistence. However, when pollinators are general-
ists, rare plants would experience decreasing pollination quality, due to the lack of constancy of
individual pollinators delivering non-specific pollen or losing con-specific pollen [37–39]. We
do not consider inter-specific pollen transfer effects (IPT) in this article. Modelling IPT effects
requires additional assumptions about visitation probabilities [30], pollen carry-over [4] or
pollinator structure [35, 40]. Nevertheless, we simulated scenarios I and II again, but replacing
our Eq (1a) by a system of equations that considers IPT [30]. We found that most of our results
hold qualitatively, i.e., the coexistence regions display the same patterns like in Figs 6 and 7
(results not shown).

There is no question that IPT affects pollination efficiency. However, the relative impor-
tance of IPT may also depend on the structure of the environment where interactions occur. A
survey of field and laboratory results [39] reports that in spite of strong IPT effects on plant
reproduction for certain systems, many studies found little or no significant effects in other sys-
tems. One reason could be the scale of the system under study, which can influence the way
mobile pollinators experience the resource landscape: fine grained or coarse grained, e.g., well
mixed or patchy. Thus, if plant species are not totally intermingled, but also not isolated in
clumps, the negative effects of IPT on seed set (a proxy for plant fitness) could be reduced [41].
In addition, unless we consider a single flower per plant at any time, the resource is almost
always patchy. This means that IPT effects in self-compatible plants would be stronger just
after pollinator arrival, decreasing for the remaining flowers before the pollinator leaves the
plant.

Frommodules to networks and from adaptation to co-evolution
The scope of our work is limited to adaptation in a single pollinator species only. In real life set-
tings adaptation can be affected by (i) competition among several pollinator species, and by (ii)
plant–pollinator co-evolution.
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With respect to point (i), large community simulations [30] indicate that inter-specific com-
petition can force pollinators to change their preferences in order to minimise niche overlap.
This can promote coexistence and specialization on rare plants at risk of competitive exclusion.
Song and Feldman [35] discovered a similar mechanism, with a polymorphic pollinator, i.e.,
consisting of specialist and generalist sub-populations. Thus, adding a second pollinator would
be a next step to consider, in order to address inter-specific competition.

Addressing point (ii) will require trade-offs in plant traits. We showed how differences in
pollinator efficiencies (ei) indirectly affect plant dynamics Eq (1a). However, pollinator effi-
ciencies can depend on plant allocation patterns, which can affect their growth, mortality or
competitive performance (ri,mi, ci). Plant adaptation likely happens over generations, so a
replicator equation approach or adaptive dynamics [22] will be useful to study plant–pollinator
co-evolution.

In spite of the complexity of real plant pollinator networks, small community modules will
remain useful to tease apart the mechanisms that regulate their diversity. Models of intermedi-
ate complexity like Eq (1a) can help us discover important results concerning interaction
dynamics, pollinator foraging patterns (e.g., pollinator ESS) and the consequences of differ-
ences between ecological vs. adaptation time scales.
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S1 Analysis with fixed preferences

The community model used in the main text can be derived from a mass action mechanism that
considers plant resource dynamics explicitly1

dFi

dt
= aiPi � wiFi � uibiFiA (S.1a)

dPi

dt
=

(
riuibiFiA

⇣
1� Pi+cjPj

Ki

⌘
�miPi if Pi > 0

0 if Pi = 0
(S.1b)

dA

dt
= (e1u1b1F1 + e2u2b2F2 � d)A, (S.1c)

where i, j = 1, 2 with i 6= j. In this model Fi denotes density of plant i resources such as nectar. Note
that pollinator birth rates are directly proportional to plant resources, like in most consumer–resource
models. Plant birth rates are proportional to the product between plant resource and pollinator dens-
ities, on the assumption that the rate of plant pollination relates linearly with the rate of pollinator
resource consumption. In (S.1b) we prevent plant i to reach negative densities by setting their pop-
ulation growth to zero when there is no plant i. Next, we assume that resources equilibrate quickly
with current plant and pollinator densities (i.e., dFi/dt = 0, while dPi/dt 6= 0 and dA/dt 6= 0). Thus
Fi = aiPi/(wi + uibiA), which we substitute in (S.1b) and (S.1c), to get the system of ordinary differ-
ential equations (ODE) shown in the main text as “(1)”. Note that the ODE system in the main text
keeps the positive octant invariant (i.e., non-negative) so we do not need any additional assumption
on plant growth when at zero density. Our analysis is much easier to follow if we re-arrange the ODE
in a form that resembles classical competition (Lotka–Volterra) and consumer–resource models

dP1

dt
= g1(A)

✓
1� P1 + c2P2

k1(A)

◆
P1

dP2

dt
= g2(A)

✓
1� P2 + c1P1

k2(A)

◆
P2 (S.2)

dA

dt
= (e1h1(A)P1 + e2h2(A)P2 � d)A

with

gi(A) =
riaiuibiA

wi + uibiA
�mi (S.3)

ki(A) = Ki

✓
1� mi(wi + uibiA)

riaiuibiA

◆
(S.4)

hi(A) =
aiuibi

wi + uibiA
. (S.5)

1Revilla, T. A. (2015) Numerical responses in resource-based mutualisms: a time scale approach, Journal of Theoretical
Biology, 378:39–46.
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The plant intrinsic growth rates gi(A) and the carrying capacities ki(A) are saturating functions of
pollinator density, i.e., limA!1 gi(A) = riai �mi and limA!1 ki(A) = Ki(1�mi/(riai)). Pollinator
per capita consumption rates hi(A) decrease to 0 with increasing pollinator density due to intra-specific
pollinator competition for plant resources. We observe that at low pollinator densities both gi and ki
are negative.

System (S.2) has the extinction equilibrium (P1, P2, A) = (0, 0, 0). The Jacobian matrix evaluated
at this equilibrium is

J(0, 0, 0) =

2

4
�m1 0 0
0 �m2 0
0 0 �d

3

5 . (S.6)

Thus, all eigenvalues are negative and the trivial equilibrium is locally asymptotically stable. There
are also other, non-trivial equilibria that we consider next.

S1.1 Single plant–pollinator equilibria

Let us assume that plant 2 is absent and we study the plant 1–pollinator subsystem. By setting P2 = 0
the nullcline of plant 1 is

P1 = k1(A) = K1

✓
1� m1(w1 + u1b1A)

r1a1u1b1A

◆
, (S.7)

see Figure S.1. The plant nullcline crosses the A axis at

A⇤
1 =

m1w1

u1b1(r1a1 �m1)
(S.8)

and it has a vertical asymptote at

P1 = K1

✓
1� m1

r1a1

◆
. (S.9)

The plant 1 nullcline is in the positive quadrant of the plant 1–pollinator phase space provided

r1a1 > m1. (S.10)

Setting P2 = 0 in (S.2) we get the pollinator nullcline

P1 =
d

e1h1(A)
=

d(w1 + u1b1A)

e1a1u1b1
(S.11)

which crosses P1 axis at
P ⇤
1 =

dw1

e1a1u1b1
. (S.12)

Figure S.1 shows two possible nullcline configurations. Provided preference for plant 1 is strong
enough and satisfies

u1 > u1a =
dr1w1

b1e1(
p
a1r1 �

p
m1)2K1

, (S.13)

the nullclines intersect at two positive equilibria (Panel b) (P1�, A1�) and (P1+, A1+) where

P1± =
b1e1K1(a1r1 �m1)u1 + dr1w1 ±

p
D1

2a1b1e1r1u1

2
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(P1+ , A1+)

(P1- , A1-)

Figure S.1. Plant 1 and pollinator phase plane. The plant and pollinator (non trivial) nullclines are coloured green
and pink respectively. (a) When (S.13) does not hold the nullclines don’t intersect and thus both species go extinct.
(b) When (S.13) holds the nullclines intersect at two equilibrium points: a saddle point which is unstable (circle) and a
locally stable node (dot). Plant and pollinator coexist for combinations of densities above the separatrix passing through
the saddle point (dash line).

A1± =
b1e1K1(a1r1 �m1)u1 � dr1w1 ±

p
D1

2b1dr1u1
,

and

D1 = �4b1de1K1m1r1u1w1 + (b1e1K1(m1 � a1r1)u1 + dr1w1)
2. (S.14)

When u1 does not meet the threshold in (S.13), no positive interior equilibrium exists (Panel a).
The Jacobian matrix evaluated at one of these two interior equilibria (i.e., (P1, A) = (P1+, A1+) or

(P1, A) = (P1�, A1�)) is

J(P1, A) =

"
� Aa1b1P1r1u1

K1(Ab1u1+w1)
a1b1(K1�P1)P1r1u1w1

K1(Ab1u1+w1)2

Aa1b1e1u1
Ab1u1+w1

�Aa1b21e1P1u2
1

(Ab1u1+w1)2

#
. (S.15)

We observe that the trace of the Jacobian is negative and the determinant is

det(J) =
Aa21b

2
1e1P1r1u21(Ab1P1u1 + (P1 �K1)w1)

K1(Ab1u1 + w1)3
.

For an interior equilibrium to be locally asymptotically stable, the determinant must be positive, i.e.,

P1 >
K1w1

w1 +Ab1u1
.

Substituting the two interior equilibria into this inequality, it is easy to see that only the equilibrium
with the higher plant density (P1+, A1+) satisfies the above inequality and it is therefore locally stable,
while the other equilibrium is unstable. The position of the two nullclines in Figure S.1b confirms that
(P1+, A1+) is a stable node and (P1�, A1�) is a saddle point.

All the results from this section are valid if we ignore plant 1 instead of plant 2, by changing the
sub-index 1 to 2. We note that the equilibria (P2±, A2±)

P2± =
b2e2K2(a2r2 �m2)u2 + dr2w2 ±

p
D2

2a2b2e2r2u2

A2± =
b2e2K2(a2r2 �m2)u2 � dr2w2 ±

p
D2

2b2dr2u2
,

3
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Figure S.2. Bifurcation plots displaying stable (Ai+, solid line) and unstable (Ai�, dash line) pollinator equilibria
under coexistence with plant i = 1 or i = 2 alone. (a) For K1 = K2 = 60 inequality (S.18) holds. (b) For K1 = K2 = 35
inequality (S.18) does not hold. The rest of the parameters are as in Table 1 from the main text.

and

D2 = �4b2de2K2m2r2u2w2 + (b2e2K2(m2 � a2r2)u2 + dr2w2)
2. (S.16)

exist provided

u1 < 1� dr2w2

b2e2(
p
a2r2 �

p
m2)2K2

= u1b. (S.17)

Combining (S.13) and (S.17) we observe that when the environmental carrying capacity for plant 1 is
large so that

K1 > K⇤
1 =

b2de2K2r1(
p
m2 �

p
a2
p
r2)2w1

b1e1(
p
m1 �

p
a1
p
r1)2(b2e2K2(

p
m2 �

p
a2
p
r2)2 � dr2w2)

(S.18)

the two equilibria (P1+, A1+) and (P2+, A2+) can coexist when u1a < u1 < u1b. If inequality (S.18) is
reversed, then u1a > u1b and both single-plant–pollinator equilibria cannot coexist. Figure S.2 shows
the dependency of both equilibria, when carrying capacities are large and small. Numerical bifurcation
analysis indicates that equilibria always come as pairs, an unstable low density equilibrium and a
locally stable high density equilibrium (Fig. S.1b).

Because
@

@P1

✓
1

P1A
g1(A)

✓
1� P1

k1(A)

◆
P1

◆
+

@

@A

✓
1

P1A
(e1h1(A)P1 � d)A

◆
=

�(a1b1u1(b1(e1K1 +Ar1)u1 + r1w1)

K1(Ab1u1 + w1)2)
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is negative, the Dulac criterion2 implies that no limit cycles involving only plant 1 (or plant 2) and the
pollinator exist.

S1.2 Two plant–pollinator coexistence by invasion

Numerical analysis shows there is also a locally stable interior equilibrium at which both plants coexist
with pollinators. Unfortunately, this equilibrium cannot be expressed in a closed form and must
be analysed numerically. Invasion analysis provides some partial insight in conditions for species
coexistence.

We start with the case where one plant species coexists with pollinators at the interior locally stable
equilibrium and we ask under which conditions the missing plant can invade. Let us consider the
equilibrium (P1+, 0, A1+) at which plant 2 is missing. This equilibrium exists provided inequality
(S.13) holds. In Figure S.2 the region of parameters where this equilibrium exists is to the right of the
vertical line at u1a. Invasibility of the missing plant 2 requires

g2(A1+)

✓
1� c1P1+

k2(A1+)

◆
> 0, (S.19)

i.e., both g2(A1+) and (1 � c1P1+/k2(A1+)) must have the same sign. Because g2(A) and k2(A)
have the same sign for all positive A’s it follows that if g2 in (S.19) is negative, the second term in
parentheses must be positive and (S.19) cannot hold. Consequently, the invasion rate can be positive
only if g2(A1+) is positive, i.e., when the pollinator abundance at the plant 1–pollinator population
equilibrium is high enough and satisfies

A1+ >
m2w2

u2b2(r2a2 �m2)
(S.20)

to ensure plant 2 positive invasion growth rate. From (S.8) we can see that the right-hand-side of this
inequality is the threshold pollinator density A⇤

2. In other words, invasion requires that the pollinator
density at the equilibrium (P1+, 0, A1+) must be higher than the minimum mutualistic requirement of
the invader (A⇤

2).
Provided (S.20) holds, the second term in the right-hand-side of (S.19) is positive if

c1P1+ < k2(A1+), (S.21)

i.e., plant 1 equilibrium density cannot be too high to prevent invasion of plant 2, due to strong
competition. Substituting the values of P1+ and A1+ in this inequality, we obtain an inequality in the
form c1 < ↵(u1), where

↵(u1) =
a1b1r1u1K2

�
2b2u2e1K1m1w1(a2r2 �m2)�m2w2

�
b1e1K1u1(a1r1 �m1)� dr1w1 �

p
D1

��

a2b2r2u2K1m1w1
�
b1e1K1u1(a1r1 �m1) + dr1w1 +

p
D1

� ,

(S.22)
with D1 given by (S.14).
Similarly, we obtain invasibility conditions for plant 1 to invade plant 2–pollinator stable interior
equilibrium

A2+ >
m1w1

u1b1(r1a1 �m1)

and
c2P2+ < k1(A2+). (S.23)

Substituting P2+ and A2+ in the inequality above, we obtain an inequality in the form c2 < �(u1),
where

2J. Hofbauer and K. Sigmund (1998) Evolutionary Games and Population Dynamics, Cambridge University Press.
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�(u1) =
a2b2r2u2K1

�
2b1u1e2K2m2w2(a1r1 �m1)�m1w1

�
b2e2K2u2(a2r2 �m2)� dr2w2 �

p
D2

��

a1b1r1u1K2m2w2
�
b2e2K2u2(a2r2 �m2) + dr2w2 +

p
D2

� .

(S.24)
In the parameter space showed in the main text, the graph of ↵(u1) is to the right of the u1a vertical
line. Below ↵ and right of u1a plant 2 can invade plant 1. And the graph of �(u1) is to the left of
the u1b vertical line. Below � and left of u1b plant 1 can invade plant 2. Numerical results indicate
that when both plants can invade each other, i.e., when u1a < u1 < u1b, c1 < ↵ and c2 < �, both
plants and the pollinator attain a locally stable equilibrium. In other words we get confirmation that
mutual invasibility implies stable coexistence. However, when mutual invasibility does not hold, e.g.,
when only one plant can be a resident, numerical results indicate more complicated outcomes (see main
text).

Because P1+ = k1(A1+) and P2+ = k2(A2+), conditions (S.21) and (S.23) imply that

c1c2 < Q =
k2(A1+)

k1(A1+)

k1(A2+)

k2(A2+)
. (S.25)

This inequality is similar to the competitive exclusion principle3 which states that two competing
species can coexist only when c1c2 < 1, i.e., when the inter-specific competition is weaker when
compared to intra-specific competition. In the above inequality the right-hand-side (Q) is not equal
to 1, but it depends on the pollinator densities in both single-species–pollinator equilibria. Thus, this
inequality generalises the competitive exclusion principle to a mutualistic–competitive system with two
plants sharing a pollinator.

3Gause, G. F. (1934) The Struggle for Existence, Williams & Wilkins.
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