
Journal of Theoretical Biology 440 (2018) 42–57 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Competition, trait–me diate d facilitation, and the structure of 

plant–pollinator communities 

Tomás A. Revilla 

a , ∗, Vlastimil K ̌rivan 

a , b 

a Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Bud ̌ejovice 370 05, Czech Republic 
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a b s t r a c t 

In plant–pollinator communities many pollinators are potential generalists and their preferences for cer- 

tain plants can change quickly in response to changes in plant and pollinator densities. These changes 

in preferences affect coexistence within pollinator guilds as well as within plant guilds. Using a mathe- 

matical model, we study how adaptations of pollinator preferences influence population dynamics of a 

two-plant–two-pollinator community interaction module. Adaptation leads to coexistence between gen- 

eralist and specialist pollinators, and produces complex plant population dynamics, involving alternative 

stable states and discrete transitions in the plant community. Pollinator adaptation also leads to plant–

plant apparent facilitation that is mediated by changes in pollinator preferences. We show that adaptive 

pollinator behavior reduces niche overlap and leads to coexistence by specialization on different plants. 

Thus, this article documents how adaptive pollinator preferences for plants change the structure and co- 

existence of plant–pollinator communities. 

© 2017 Elsevier Ltd. All rights reserved. 
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The pedigree of honey 

Does not concern the bee; 

A clover, any time, to him 

Is aristocracy. 

Poems (1890) – Emily Dickinson 

1. Introduction 

Many mutualistic interactions feature direct resource-for-

resource (e.g., plant–mycorrhizae, lichens), or resource-for-service

(e.g., pollination, seed dispersal) exchanges between species, but

this fact was not explicitly considered by the first models of mu-

tualism based on the Lotka–Volterra equations ( Gause and Witt,

1935; Vandermeer and Boucher, 1978 ). As a result, positive feed-

backs between mutualists predicted infinite population growth.

Later models considered negative density dependence at high pop-

ulation densities ( Boucher, 1988; Gerla and Mooij, 2014; Hernan-

dez, 1998 ) that stabilizes population dynamics. Increased aware-

ness about the consumer–resource aspects of mutualisms ( Holland

and DeAngelis, 2010 ) provides some mechanistic underpinnings for

density dependence (e.g., mutualistic benefits saturate, just like
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lant growth saturates with nutrients or predator feeding saturates

ith prey). More recently, differentiation between non-living mu-

ualistic resources (e.g., mineral nutrients, nectar, fruits) and their

iving providers (e.g., fungi, plant) led to several mechanistic mod-

ls ( Benadi et al., 2012; Revilla, 2015; Valdovinos et al., 2013 ).

hese are very relevant for studies of plant–animal mutualisms,

ike pollination and seed dispersal, for two reasons. First, compe-

ition between animals for nectar or fruits can be treated using

oncepts from consumer–resource theory ( Grover, 1997 ). Second,

ompetition between plants for pollination or seed dispersal can

esult from plants influencing the preferences of animals, accord-

ng to optimal foraging theory ( Pyke, 2016 ). 

In an earlier work ( Revilla and K ̌rivan, 2016 ) we analyzed coex-

stence conditions for two plants competing for a single pollinator.

f the pollinator is a generalist, plants can facilitate each other by

aking the pollinator more abundant. Facilitation is an example of

n indirect density-mediated interaction (sensu Bolker et al., 2003 )

etween the two plants. However, if pollinators have adaptive pref-

rences, a positive feedback between plant abundance and polli-

ator preferences predicts exclusion of the rare plant, which gets

ess pollination as pollinators specialize on the common plant. In

ther words, when pollinator preferences respond to plant densi-

ies, plants will experience competition for pollination services (in

ddition to competition for other factors such as nutrients, light

r space) because an increase in pollination of one plant exerts

https://doi.org/10.1016/j.jtbi.2017.12.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
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 negative effect on the other plants that gets less pollination. In

evilla and K ̌rivan (2016) we found that plant coexistence depends

n the balance between plant facilitation via increasing abundance

f the common pollinator, and competition for pollinator prefer-

nces, which adapt in response to the relative abundance of plant

esources. Pollinator preferences were described by the ideal free

istribution (IFD; Fretwell and Lucas, 1969 ) that predicts pollinator

istribution between the two plants in such a way that neither of

he two plants provides pollinators with a higher payoff. For a sin-

le pollinator, the IFD is also an evolutionarily stable strategy (ESS,

 ̌rivan et al., 2008 ), i.e., once adopted by all individuals no mu-

ant with a different strategy can invade the resident population

 Maynard Smith and Price, 1973 ). 

In many real life settings however, plants compete for polli-

ation services provided by several pollinator species, which in

urn compete for plant resources. Pollinator preferences for plants

espond not only to plant abundances, but also to inter- and

ntra-specific competition between pollinators. Simulations of large

lant–pollinator communities indicate that plant coexistence is

romoted when generalist pollinators specialize to reduce com-

etition for resources, i.e., to decrease niche overlap ( Valdovinos

t al., 2016, 2013 ). This is the classic competitive exclusion princi-

le which states that n competing species (i.e., pollinators) cannot

oexist at a population equilibrium if they are limited by less than

 limiting factors (i.e., plants) ( Levin, 1970 ). 

In this article we study a mutualistic–competitive interaction

odule consisting of two plants and two pollinators where polli-

ators behave as adaptive foragers that maximize their fitness de-

ending on plant resource quality and abundance. This means that

epending on plant and pollinator densities, pollinators switch be-

ween generalism and specialism. These behavioral changes also

hange the topology of the interaction network. Thus, we focus

n two questions: Under what conditions the two plants and two

ollinators can coexist at an equilibrium, and what are the corre-

ponding community network configurations. 

To gain insight, we study separately plant population dynamics

t fixed pollinator densities, and pollinator population dynamics at

xed plant densities, respectively. In both cases we compare pop-

lation dynamics for inflexible pollinators with those for adaptive

ollinators. Under fixed pollinator preferences ( Section 2 ), stable

oexistence of plants, or pollinators, is possible at a unique equi-

ibrium. It is also possible that at this population equilibrium both

ollinators are generalists. Both these predictions change when

ollinator preferences for plants are adaptive ( Section 3 ). First,

hen pollinator densities are fixed, plants can coexist at alterna-

ive stable states characterized by different interaction topologies

iven by pollinator strategy. However, there is no plant stable coex-

stence when both pollinators are generalists. Second, when plant

ensities are fixed, pollinators can coexist at an equilibrium only

f they specialize on different plants ( Section 3.3 ). We show how

hese conclusions can explain some recent experimental and sim-

lated results, as well as predict the effects of pollinator adaptation

n real communities. 

. Population dynamics when pollinator preferences for plants 

re fixed 

Consider two plant populations P1 and P2 interacting with two

ollinator populations A1 and A2. Mutualism is mediated by re-

ources R1 and R2 produced by plants P1 and P2, respectively. We

ssume that pollination is concomitant with pollinator resource

onsumption. Since resources like nectar or pollen have much

aster turnover dynamics (hours, days) than plants and pollinators

weeks, months), we assume they attain a quasi-steady-state at

urrent plant and animal densities ( Revilla, 2015 ). As a result, pop-

lation dynamics follow the Revilla and K ̌rivan (2016) model for a
ingle pollinator, extended for two pollinators 

dP 1 
dt 

= 

(
a 1 (r 11 u 1 b 11 A 1 + r 12 v 1 b 12 A 2 ) 

w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 

(
1 − P 1 + c 2 P 2 

K 1 

)
− m 1 

)
P 1 

(1a) 

dP 2 
dt 

= 

(
a 2 (r 21 u 2 b 21 A 1 + r 22 v 2 b 22 A 2 ) 

w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 

(
1 − P 2 + c 1 P 1 

K 2 

)
− m 2 

)
P 2 

(1b) 

dA 1 

dt 
= 

(
a 1 e 11 u 1 b 11 P 1 

w 1 +u 1 b 11 A 1 +v 1 b 12 A 2 

+ 

a 2 e 21 u 2 b 21 P 2 
w 2 +u 2 b 21 A 1 +v 2 b 22 A 2 

−d 1 

)
A 1 

(1c) 

dA 2 

dt 
= 

(
a 1 e 12 v 1 b 12 P 1 

w 1 +u 1 b 11 A 1 +v 1 b 12 A 2 

+ 

a 2 e 22 v 2 b 22 P 2 
w 2 +u 2 b 21 A 1 +v 2 b 22 A 2 

−d 2 

)
A 2 , 

(1d) 

here P i ( i = 1 , 2 ) is plant Pi population density, and A j ( j = 1 , 2 )

s pollinator Aj population density. Here a i is a plant resource pro-

uction rate, w i is its spontaneous decay rate, and b ij is a pollina-

or specific consumption rate. In the plant equations ( 1a,1b ), polli-

ator consumption rates translate into seed production rates with

fficiency r ij . Plant growth is reduced by intra-specific competition,

ith carrying capacity K i , and by inter-specific competition, where

 i is the relative effect of plant i on the other plant. In the ab-

ence of pollinators, plants die with per-capita rates m i , so plants

re obligate mutualists. In the pollinator equations ( 1c,1d ), con-

umption translates into growth with efficiency ratios e ij . Without

lants, pollinators die with per-capita rates d j , so pollinators are

bligate mutualists too. 

Pollinator A1 (A2) preferences are u 1 ( v 1 ) for plant P1 and u 2 =
 − u 1 (v 2 = 1 − v 1 ) for plant P2. Preferences can be interpreted as

ractions of foraging time that individual pollinators spend on plant

1 or P2, or the proportion of a pollinator population which is vis-

ting P1 or P2 at a given time. Preferences allows us to categorize

ollinators as generalists or specialists. For example, if (u 1 , u 2 ) =
(3 / 4 , 1 / 4) and (v 1 , v 2 ) = (0 , 1) , then A1 is a generalist (biased to-

ards P1) and A2 is a P2 specialist. In this section we assume that

ollinator preferences for plants are fixed and we derive conditions

or plant stable coexistence that are compared in Section 3 with

he case where pollinator preferences are adaptive. Unfortunately,

he many variables and parameters of model (1) do not allow us to

nalyze it at this generality. In order to gain insights, we assume

hat either plants or pollinators are kept at fixed densities and em-

loying isocline analysis ( Case, 20 0 0 ) we characterize coexistence

etween plants ( 1a,1b ), or between pollinators ( 1c,1d ). 

.1. Plant coexistence 

First, we consider plant-only dynamics. Let us consider a com-

unity consisting of a single plant Pi ( i = 1 , 2 ) and two pollinators.

t fixed pollinator densities A 1 and A 2 , the necessary condition for

lant Pi to survive is that its pollinator-dependent per-capita birth

ate is higher than its mortality rate, i.e., 

 i = 

a i (r i 1 u i b i 1 A 1 + r i 2 v i b i 2 A 2 ) 

w i + u i b i 1 A 1 + v i b i 2 A 2 

> m i , (2) 

n which case the plant will attain its pollinator-dependent carry-

ng capacity 

 i = K i 

(
1 − m i 

r 

)
. (3) 
i 
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Fig. 1. Qualitative configurations of plant isoclines (P1 in black and P2 in gray) when pollinator preferences for plants and densities are fixed. Filled (open) circles represent 

stable (unstable) equilibria. Circles on the axes correspond to pollinator-dependent carrying capacities H i given by (3) . 
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Inequality (2) shows that if both pollinators have low prefer-

ences for plant Pi (i.e., both u i and v i are small), the plant cannot

achieve a positive growth rate and cannot invade when rare. To in-

vade, a plant must be attractive enough for at least one of the two

pollinators. 

Provided that (2) holds for both plants, the plant sub-system

( 1a,1b ) is the Lotka–Volterra competition model. Plant coexistence

depends on inter-specific competition coefficients ( c 1 , c 2 ), and the

carrying capacities given by (3) . Fig. 1 shows all generic qualita-

tive plant isocline configurations and their outcomes for plant co-

existence. Panel (a) shows the non-competitive case (c 1 = c 2 = 0)

where both plants attain their pollinator-dependent carrying ca-

pacities H i . Under direct competition ( c 1 , c 2 > 0) plant equilibrium

densities at coexistence are lower than H i (panels b, c). If 

c 1 < 

H 2 

H 1 

and c 2 < 

H 1 

H 2 

, (4)

isoclines intersect in the positive quadrant at the globally stable

equilibrium (panel b) 

(P 1 , P 2 ) = 

(
H 1 − c 2 H 2 

1 − c 1 c 2 
, 

H 2 − c 1 H 1 

1 − c 1 c 2 

)
. 

If opposite inequalities hold in (4) , the coexistence equilibrium

is unstable (panel c), with one plant outcompeting the other plant

depending on the initial conditions. If the isoclines do not inter-

sect in the first quadrant the species with the highest (i.e., the

one which is above the other) isocline always wins (i.e., plant P1

in panel d). The height of a plant’s isocline depends on its carry-

ing capacity H i . Given that H i increases with u i and v i (since r i in

(2) increases with u i and v i ), the more preferred a plant is, the

more numerous will it be under conditions of stable coexistence,

or more likely it will exclude the other plant. 

2.2. Pollinator coexistence 

Second, we consider pollinator-only dynamics. For fixed plant

densities P i ( i = 1 , 2 ), the pollinator sub-system ( 1c,1d ) is the re-

source competition model of Schoener (1978) . Appendix A shows

that there are three qualitatively different pollinator equilibria. The

equilibrium where both pollinators are extinct (A 1 , A 2 ) = (0 , 0) is

unstable if one or both pollinators is viable. Viability conditions for

pollinator A1 and A2 are, respectively, 

a 1 P 1 e 11 u 1 b 11 w 2 + a 2 P 2 e 21 u 2 b 21 w 1 > d 1 w 1 w 2 (5a)

a 1 P 1 e 12 v 1 b 12 w 2 + a 2 P 2 e 22 v 2 b 22 w 1 > d 2 w 1 w 2 . (5b)

If neither of the above inequalities holds, both pollinators go ex-

tinct. If only one inequality holds then the corresponding pollina-

tor is viable, and for each viable pollinator there is a corresponding

single species equilibrium ( A 1 , 0) or (0, A 2 ). As we see, pollinator

viability implies minimum resource requirements ( Grover, 1997 ). 
Appendix A shows that there can be at most one pollinator

oexistence equilibrium ( ̂  A 1 , ˆ A 2 ) . Such an equilibrium is locally
symptotically stable ( Appendix A ) if 

(u 1 b 11 v 2 b 22 − v 1 b 12 u 2 b 21 )(e 11 u 1 b 11 e 22 v 2 b 22 − e 12 v 1 b 12 e 21 u 2 b 21 ) > 0 . 

(6)

The interpretation of condition (6) is similar to that given by

eón and Tumpson (1975) for two consumers competing for two

ubstitutable resources: “... the competitors coexist if at equilibrium

ach of them removes at a higher rate that resource which con-

ributes more to its own rate of growth.” To see why this is so, let

s assume that plant P1 is better for the growth of A1 ( e 11 > e 21 )

nd P2 is better for the growth of A2 ( e 22 > e 12 ). Then, if pollina-

or A1 interacts comparatively more strongly with plant P1 than

ith P2 ( u 1 b 11 > u 2 b 21 ), and pollinator A2 interacts comparatively

ore strongly with plant P2 than with P1 ( v 2 b 22 > v 1 b 12 ), inequal-

ty (6) holds. 

Provided both pollinators are viable ( 5a and 5b hold), Fig. 2

hows all generic pollinator isocline configurations correspond-

ng to different interaction topologies (except symmetries). The

op row of this figure is analogous to Fig. 1 for plants. Panel (a)

hows the case where pollinators specialize on different plants

 u 1 = 1 , v 1 = 0 ). The A1 isocline is vertical, the A2 isocline is hor-

zontal, and their intersection corresponds to stable pollinator co-

xistence since pollinators do not compete. Panels (b,c,d) display

soclines for two generalist pollinators (i.e., 0 < u 1 < 1, 0 < v 1 < 1),

.e., both pollinators share both plants. Notice that the isoclines of

eneralist pollinators are curved and intersect both axes. In (b) an

socline intersection exists and the equilibrium between general-

sts is globally stable because (6) holds. In (c) an isocline intersec-

ion exists but the corresponding equilibrium between generalists

s unstable because (6) does not hold and either A1 or A2 wins

he competition depending on the initial conditions. In panel (d)

he isoclines do not intersect and the pollinator with the highest

socline always wins. In other words condition (6) is irrelevant for

oexistence in this case. This outcome happens if e.g., A1 has a

uch lower mortality and/or higher conversion efficiencies than

2. This case is like the case of competitive dominance between

lants ( Fig. 1 d), except that for the plants the isoclines are linear. 

Panels (e,f) display isoclines when pollinator A1 is a general-

st and A2 is a P2 specialist (i.e., 0 < u 1 < 1, v 1 = 0 ). Like in panels

b,c,d) the isocline of the generalist is curved, but the specialist

socline is linear. Under these condition, condition (6) is trivially

atisfied (because v 1 = 0 ). Thus, if both isoclines intersect, the cor-

esponding coexistence equilibrium is always globally stable like in

anel (e), and if they do not intersect the species with the highest

socline always wins (e.g., A1 in panel (f)). In other words, com-

etition between a generalist and a specialist pollinator does not

dmit the bi-stable case (i.e., panel c). 
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Fig. 2. Pollinator isocline configurations (A1 in black and A2 in gray) and qualitative dynamics (arrows), at fixed pollinator preferences. Filled (open) circles represent stable 

(unstable) equilibria. Isocline shapes depend on interaction topology (inset graphs). 
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Finally, in panel (g) both pollinators specialize on plant P1, (e.g.,

 1 = v 1 = 1 ). In this case both pollinators have parallel linearly de-

reasing isoclines, and the pollinator with the higher isocline (i.e.,

1 in this case) excludes the other pollinator. This case is like the

ase of competitive dominance between plants ( Fig. 1 d), except

hat for the plants the isoclines are not required to be parallel. 

. Population dynamics when pollinator preferences for plants 

re adaptive 

In this section we assume that pollinator preferences adaptively

hange as plant and pollinator densities change. First ( Section 3.1 ),

e use a game theoretic approach ( K ̌rivan et al., 2008 ) to derive

ptimal pollinator preferences at given plant and pollinator densi-

ies. Second ( Section 3.2 ), we analyze competition between plants

t fixed pollinator densities. Third ( Section 3.3 ), we analyze com-

etition between pollinators at fixed plant densities. 

.1. Optimal pollinator preferences 

Let us consider a mutant pollinator A1 with preference ˜ u 1 ∈
0 , 1] for the first plant and a mutant pollinator A2 with prefer-

nce ˜ v 1 ∈ [0 , 1] in a resident population of pollinators with average

references u 1 and v 1 , respectively. The payoff a pollinator obtains

hen pollinating plant i ( i = 1 , 2 ) is given by the per-capita polli-

ator birth rate. For example, from (1c) the payoff of a pollinator

1 when pollinating plant P2 is 
a 2 e 21 b 21 P 2 

w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 
. As the resident

ollinator distribution between the two plants is the same as are

heir preferences we see that payoffs depend on the distribution

f pollinators between the two plants. Fitnesses of A1 and A2 mu-

ants are defined as their mean payoffs 

 1 ( ̃  u 1 ; u 1 , v 1 ) = 

a 1 e 11 b 11 P 1 
w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 

˜ u 1 

+ 

a 2 e 21 b 21 P 2 
w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 

˜ u 2 , (7a) 
A  
 2 ( ̃ v 1 ; u 1 , v 1 ) = 

a 1 e 12 b 12 P 1 
w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 

˜ v 1 

+ 

a 2 e 22 b 22 P 2 
w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 

˜ v 2 . (7b) 

Throughout the rest of this article we assume that pollinator

1 grows comparatively faster on plant P1 than on P2, and that

ollinator A2 grows comparatively faster on plant P2 than on P1,

.e., 

(e 11 b 11 )(e 22 b 22 ) > (e 21 b 21 )(e 12 b 12 ) . (8)

We want to find pollinator preferences for plants that are

volutionarily stable ( Hofbauer and Sigmund, 1998 ). Interestingly,

ppendix B shows that there is no evolutionarily stable prefer-

nce/strategy where both pollinator species behave as generalists

i.e., preference ( u 1 , v 1 ) where 0 < u 1 < 1 and 0 < v 1 < 1). In other

ords, the interaction topology in Fig. 2 b,c,d does not exist when

ollinators preferences are adaptive. In fact either both species are

pecialists, or one species is a generalist and the other special-

zes on the plant that makes it grow faster. Table 1 lists all pos-

ible ESSs as a function of plant and pollinator population den-

ities. Transitions between ESSs in plant phase space occur along

our lines P 2 = Q i P 1 (i = a, b, c, d) , called isolegs ( K ̌rivan and Sirot,

002; Pimm and Rosenzweig, 1981; Rosenzweig, 1981 ), where 

 a (A 1 , A 2 ) = 

a 1 b 11 e 11 (w 2 + b 21 A 1 + b 22 A 2 ) 

a 2 b 21 e 21 w 1 

, (9a)

 b (A 1 , A 2 ) = 

a 1 b 11 e 11 (w 2 + b 22 A 2 ) 

a 2 b 21 e 21 (w 1 + b 11 A 1 ) 
, (9b)

 c (A 1 , A 2 ) = 

a 1 b 12 e 12 (w 2 + b 22 A 2 ) 

a 2 b 22 e 22 (w 1 + b 11 A 1 ) 
, (9c)

 d (A 1 , A 2 ) = 

a 1 b 12 e 12 w 2 

a 2 b 22 e 22 (w 1 + b 11 A 1 + b 12 A 2 ) 
. (9d)

At fixed pollinator densities isolegs delineate five regions (de-

oted as I-V in Table 1 ) in the first quadrant of the P 1 P 2 
lane where pollinators behave as specialists or generalists.

ppendix B shows that when pollinator A1 is a generalist and A2
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Table 1 

Dependence of evolutionarily stable pollinator preferences on plant ( P 1 , P 2 ) and pollinator densities ( A 1 , 

A 2 ). Thresholds Q i (i = a, b, c, d) are given by (9) and u ∗1 and v ∗1 by (10). 

Region Conditions ESS ( u 1 , v 1 ) Description 

I Q a ( A 1 , A 2 ) P 1 < P 2 (0, 0) A1 & A2 specialize on P2 

II Q b ( A 1 , A 2 ) P 1 < P 2 < Q a ( A 1 , A 2 ) P 1 (u ∗1 , 0) A1 generalist, A2 specializes on P2 

III Q c ( A 1 , A 2 ) P 1 < P 2 < Q b ( A 1 , A 2 ) P 1 (1, 0) A1 specializes on P1, A2 specializes on P2 

IV Q d ( A 1 , A 2 ) P 1 < P 2 < Q c ( A 1 , A 2 ) P 1 (1 , v ∗1 ) A1 specializes on P1, A2 generalist 

V P 2 < Q d ( A 1 , A 2 ) P 1 (1, 1) A1 & A2 specialize on P1 

Fig. 3. Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population dynamics (arrows), under adaptive pollinator preferences 

and increasing pollinator A1 density ( A 1 , scenario I). Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table 1 , 

and corresponding interaction topologies are indicated at the bottom. Parameters: r i j = 0 . 1 , m 1 = 0 . 01 , m 2 = 0 . 0075 , c i = 0 , a i = 0 . 4 , w i = 0 . 25 , b i j = 0 . 1 , e 11 = e 22 = 0 . 2 , 

e 21 = e 12 = 0 . 1 , K i = 50 , A 2 = 1 . Note: parts of the isoclines are not shown in (c,d), but these parts do not intersect at any equilibrium. 
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specializes on P2 (region II in Table 1 ), the ESS of A1 is 

u 

∗
1 = 

e 11 b 11 a 1 P 1 (w 2 + b 21 A 1 + b 22 A 2 ) − e 21 b 21 a 2 P 2 w 1 

b 11 b 21 (e 11 a 1 P 1 + e 21 a 2 P 2 ) A 1 

, (10a)

and when A2 is a generalist and A1 specializes on P1 (region IV in

Table 1 ), the ESS of A2 is 

v ∗1 = 

e 12 b 12 a 1 P 1 (w 2 + b 22 A 2 ) − e 22 b 22 a 2 P 2 (w 1 + b 11 A 1 ) 

b 12 b 22 (e 12 a 1 P 1 + e 22 a 2 P 2 ) A 2 

. (10b)

In the next section we use isolegs and isoclines to study plant–

plant competition. 

3.2. Plants compete for pollinator preferences 

Here we use isocline analysis to study the dynamics of the

plant sub-system at fixed pollinator densities A and A , when
1 2 
ollinators are adaptive. Unlike in the case with fixed preferences,

ollinator isolegs partition the P 1 P 2 plane into five regions listed

n Table 1 . Isolegs P 2 = Q i P 1 ( i = a, b, c, d; see (9)) are rays pass-

ng through the origin (dashed lines in Figs. 3 and 5 ). Inequality

8) implies that the slopes of isolegs satisfy Q d < Q c < Q b < Q a and,

onsequently, regions I, II, III, IV and V are ordered in a clockwise

equence ( Fig. 3 ). As a result of this partition of the positive quad-

ant, plant isoclines are defined piece-wise, and they are consider-

bly more complex when compared to the situation where pollina-

ors have fixed preferences (cf. Fig. 3 vs. Fig. 1 ). Plant isoclines in

egions I, III, and V are easy to describe analytically ( Appendix C ).

owever, in regions II and IV, plant isoclines are highly non-linear

nd although they can be calculated using some computer alge-

ra software (e.g., Mathematica), the resulting expressions are too

omplex and they are not useful for further mathematical analysis.
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Fig. 4. Bifurcation plot for plant P2 in scenario I. Thin solid lines represent stable 

equilibria with one plant extinct. Thick solid lines represent stable coexistence equi- 

libria, next to corresponding interaction topology. Dashed lines represent unstable 

equilibria. Roman numerals (I to V) indicate the location of equilibria within prefer- 

ence regions given by the ESS ( Table 1 ). Labels along the top of the plot correspond 

to panels in Fig. 3 . 
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In what follows we will assume that each plant monoculture is

iable, i.e., for P1 

a 1 (r 11 b 11 A 1 + r 12 b 12 A 2 ) 

w 1 + b 11 A 1 + b 12 A 2 

> m 1 , (11a) 

nd for P2 

a 2 (r 21 b 21 A 1 + r 22 b 22 A 2 ) 

w 2 + b 21 A 1 + b 22 A 2 

> m 2 . (11b) 

This means that each plant equilibrates with pollinator densi-

ies when alone ( Section 2.1 ). Then plant isoclines have the follow-

ng general properties: 

1. Isoclines consist of four connected segments, as shown by

e.g., Fig. 3 a. The isocline of plant P1 (P2) intersects the P 1 
( P 2 ) axis at the origin and at its pollinator-dependent carry-

ing capacity in region V (I). These boundary equilibria 

(P 1 , P 2 ) = 

(
K 1 

(
1 − m 1 (w 1 + b 11 A 1 + b 12 A 2 ) 

a 1 ( r 11 b 11 A 1 + r 12 b 12 A 2 ) 

)
, 0 

)
(12a)

and 

(P 1 , P 2 ) = 

(
0 , K 2 

(
1 − m 2 (w 2 + b 21 A 1 + b 22 A 2 ) 

a 2 (r 12 b 21 A 1 + r 22 b 22 A 2 ) 

))
, (12b)

are shown as filled circles on the axes of Figs. 3 and 5 .

Appendix C shows that provided these boundary equilibria

exist (i.e., they are positive), they are locally asymptotically

stable. 

2. The isoclines are linear in regions I, III and V, in which

both pollinators are specialists. Within these regions, u 1 and

v 1 remain fixed at 0 or 1. If c 2 = 0(c 1 = 0) the isocline of

plant P1 (P2) is vertical (horizontal), as shown in Fig. 3 (cf.,

Fig. 1 a). If c 2 > 0( c 1 > 0) the isocline of plant P1 (P2) is neg-

atively sloped within these regions, as shown in Fig. 5 (cf.,

Fig. 1 b,c,d). 

3. The isoclines are non-linear in regions II and IV, in which

one pollinator is generalist and the other specialist. The seg-

ment of the plant P1 (P2) isocline which is in region II (IV)

passes through the origin. 

4. The isocline of plant P1 (P2) does not cross region I (V). This

is because in region I (V), plant P2 (P1) has two pollinators,

but P1 (P2) has none and goes extinct in this region. 
5. The population density of plant P1 (P2) increases in the re-

gion below (to the left) its isocline, and decreases in the re-

gion above (to the right). 

While there can be at most one interior plant equilibrium when

ollinator preferences for plants are fixed ( Section 2.1 ), there can

e multiple interior equilibria when preferences are adaptive, be-

ause isoclines intersect in multiple points. 

In the rest of this section we consider two particular scenarios

hat illustrate the complexities of plant population dynamics under

daptive pollinator preferences: 

• Scenario I: Plant population dynamics along the gradient in polli-

nator A1 density . In this scenario the density of pollinator A2 is

kept fixed and both pollinators are equally good for each plant

(r 11 = r 12 , r 21 = r 22 ) . Plants do not compete for factors external

to pollination (c 1 = c 2 = 0) . 
• S cenario II: Plant population dynamics along the gradient in plant

inter-specific competition for external factors . In this scenario we

assume that plant inter-specific competition is symmetric and

we set c = c 1 = c 2 . We also assume that A1 (A2) is the best pol-

linator of plant P1 (P2) ( r 11 > r 12 , r 22 > r 21 ). 

Both scenarios are parameterized so that plant boundary equi-

ibria (12a) and (12b) exist, i.e., pollinator densities are high

nough so that each plant can achieve a positive growth rate when

lone. 

The main purpose of scenario I is to explore how rela-

ive changes in pollinator densities influence plant community

omposition. An important motivation is the growing interest

n the consequences of alien pollinator invasions ( Traveset and

ichardson, 2006 ), and the management of pollinator populations

 Geslin et al., 2017 ). To focus solely on plant competition for polli-

ation services, we remove the effect of competition for other fac-

ors (by setting competition coefficients equal to zero). 

In Scenario II we explore how competition for external factors

e.g., space, nutrients) influences competition between plants for

ollinator preferences. Because of condition (8) , this scenario also

ssumes that P1 (P2) and A1 (A2) are better for one another. Such

atching can be due to matching in plant and pollinator mor-

hologies ( Fontaine et al., 2005 ). 

.2.1. Scenario I. Effects of changes in pollinator composition: 

lternative plant stable states 

Fig. 3 illustrates plant population dynamics for scenario I. Panel

a) shows the situation where pollinator A1 density is the same

s pollinator A2 density. Plant isoclines intersect in region IV, and

he vector field indicates that the corresponding equilibrium is un-

table. Thus, there is bi-stability: depending on initial conditions

ither plant P1 or P2 is excluded, and the plant community be-

omes a monoculture. As density of pollinator A1 increases (panel

), the single plant equilibria (12a) and (12b) increase too. As a

esult, there are three isocline intersections in regions II, III and

V. The equilibrium in region III is stable (because (4) holds, see

ppendix C ) and the equilibria in regions II and IV are unstable.

gain, plant coexistence depends on initial conditions: if one plant

s initially too rare plant population dynamics will converge to a

onoculture of the other plant, but if the two plants are initially

bundant enough, stable coexistence follows. At the coexistence

quilibrium pollinators specialize on different plants (see Table 1 ).

n panel (c) pollinator A1 is more abundant than pollinator A2,

nd two additional equilibria occur in region II, one stable and the

ther unstable. Thus, there are two stable coexistence equilibria

ow (one in region II and the other in region III). At the stable

quilibrium that is in region II, pollinator A1 is a generalist and

2 is a plant P2 specialist. As in panel (b), at the equilibrium that

ies in region III, pollinators specialize on different plants. Finally,
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Fig. 5. Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population dynamics (arrows), under adaptive pollinator preferences 

and with increasing plant competition ( c i , scenario II). Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table 1 , 

and corresponding interaction topologies are indicated at the bottom. Parameters: r 11 = r 22 = 0 . 5 , r 12 = r 21 = 0 . 1 , m i = 0 . 02 , a i = 0 . 1 , w i = 0 . 1 , b i j = 0 . 1 , e 11 = e 22 = 0 . 2 , 

e 21 = e 12 = 0 . 1 , K i = 50 , A 1 = 11 , A 2 = 10 . Note: parts of the isoclines are not shown in (a), but these parts do not intersect at any equilibrium. 
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in panel (d), further increase in pollinator A1 leads to a single co-

existence equilibrium in region II where A1 is a generalist and A2

plant P2 specialist. 

Overall, the main effect of increasing pollinator A1 density with

respect to A2, is the reduction of region III where both pollinators

specialize on different plants, in favor of region II where A1 is a

generalist and A2 a specialist. Here we see ( Fig. 4 ) that along the

gradient in A 1 density, the topology of the interaction web changes.

When population density of A1 is low, both pollinators specialize

on different plants. As population density of A1 increases, A1 be-

comes a generalist. We also observe that plant P2 experiences hys-

teresis : the stable equilibrium in region III jumps to the stable equi-

librium in region II at A 1 ≈ 11.7 as pollinator density A 1 increases,

but the stable equilibrium moving along branch II jumps back to

the stable equilibrium moving along branch III at A 1 ≈ 8.7 when

pollinator density A 1 decreases. Another important consequence of

pollinator A1 increase is that region I (V), in which P1 (P2) always

decreases, become smaller. This makes easier for plants to invade

one another and achieve coexistence. 

In summary, scenario I shows that: (i) adaptive foraging pref-

erences can lead to alternative plant coexistence stable states and

(ii) continuous changes in pollinator composition (i.e., A 1 : A 2 ra-

tio) produce discontinuous changes in plant–pollinator interaction
structure. l  

t  
.2.2. Scenario II. Effects of plant competition for external factors: 

rait-mediated apparent facilitation 

Plant dynamics for scenario II are illustrated in Fig. 5 . The

solegs (dashed lines, (9)) and boundary equilibria (12a) and

12b) do not change across panels (a–d), because they are inde-

endent of the competition coefficient c = c 1 = c 2 . Within regions

, III and V the isoclines are linear while in regions II and IV they

re non-linear. 

When plant inter-specific competition is low ( Fig. 5 a), plant

opulation dynamics are qualitatively similar to panels (b,d) in

ig. 3 of scenario I, i.e., plants can coexist at a stable equilibrium.

owever, there is an important qualitative difference here: At the

oexistence equilibrium both plants attain higher density when

ompared with their monoculture densities (boundary equilibria).

n other words, when inter-specific plant competition is weak,

e observe mutual plant facilitation. Let us consider the plant P1

oundary equilibrium in region V. In this region P1 is pollinated by

oth pollinators. However, when A2 is a poor pollinator for P1 (i.e.,

 11 > r 12 as assumed in Fig. 5 ), P1 can achieve a higher birth rate

hen it is pollinated by A1 only. So, if there is an invasion of plant

2 from outside which moves the plant densities in region III,

ollinator A1 specializes on plant P1 and plant P2 is pollinated by

ts best pollinator A2 only. Consequently, the P1 population equi-

ibrium increases above its monoculture level. Appendix C shows

hat the necessary condition for this facilitation of plant P1 by
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Fig. 6. Bifurcation plot for plant P1 in scenario II. Lines and labels follow the same 

conventions of Fig. 4 . Labels along the top of the plot correspond to panels in Fig. 5 . 
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he presence of P2 to happen is that r 11 /r 12 > 1 + w 1 / (b 11 A 1 ) ,

hich means that pollinator A1 density must be high enough. In

ddition, such a facilitation can happen only when inter-specific

ompetition between plants is not too high. We remark that this

acilitation is not the usual one ( Revilla and K ̌rivan, 2016 ) where

n increase in one plant density increases the pollinator density

hich, in turn, increases the other plant density. This mechanism

annot operate in the current model that assumes pollinator pop-

lation densities are fixed. The facilitation that we observe here is

ue to changes in pollinator preferences, where by increasing plant

2 density, pollinator A2 switches from pollinating plant P1 to

ollinating P2, which leads to an increase of P1 population density.

o distinguish this mechanism from density mediated facilitation

aused by increase in pollinator density, we call this mechanism

ndirect trait-mediated facilitation (sensu Bolker et al., 2003 ). 

As inter-specific competition increases, plant equilibrium pop-

lation densities in region III will be decreasing below those

hey achieve in a monoculture (boundary equilibria). When plant

nter-specific competition is strong so that c > 1, the equilibrium

n region III becomes unstable (i.e., (4) does not hold, see also

ppendix C ), but plants can still coexist at alternative stable states.

n Fig. 5 b, the local dynamics around the unstable equilibrium in

egion III is like in Fig. 1 c, where perturbations cause either plant

1 to displace P2 or vice versa. Like in scenario I, we have two

lternative stable states at which both plants coexist. The most

bundant plant in each state is the one pollinated by both polli-

ators. Further increase of the competition coefficient eliminates

ll equilibria in region IV, but the stable equilibrium in region II

emains, with pollinator A1 a generalist and A2 specialized on P2

 Fig. 5 c). Finally, if competition is too strong there are no equilib-

ia in regions II and IV and we have mutual exclusion ( Fig. 5 d)

here, depending on the initial conditions, one plant outcompetes

he other plant (cf. Fig. 1 c). 

Fig. 6 shows the corresponding bifurcation plot for scenario II.

s competition for extrinsic factors (i.e., not for pollination) gets

tronger, both plant equilibrium densities tend to decrease, even in

he region of alternative stable states (1 � c � 1.3) where P1 can be

ither abundant (stable IV branch) or rare (stable II branch). There

s only a small region where plant P1 increases with competition

0.9 � c � 1), i.e., where the combined effects of exploitative com-

etition and competition for pollination (i.e., trait-mediated plant

acilitation) is more favorable for P1 than for P2 (which decreases,

ot shown). Notice that in comparison to Fig. 4 which shows
ransitions between two stable interaction topologies, Fig. 6 shows

ransitions between three stable interaction topologies. 

In summary, scenario II shows that: (i) adaptive foraging pref-

rences can result in indirect trait-mediated plant–plant facilita-

ion, by matching plants with their best pollinators; (ii) continu-

us changes in competition for factors external to pollination can

roduce discontinuous changes in interaction structure and co-

xistence for plants competing for pollination services; and (iii)

lants can coexist even when inter-specific competition is stronger

han intra-specific competition for factors other than pollination. In

he next section we use isolegs and isoclines to study pollinator–

ollinator competition. 

.3. Pollinators compete for plant resources 

In this section we analyze population dynamics of adaptive pol-

inators at fixed plant densities. Unlike in the case of fixed pref-

rences ( Fig. 2 ), now we must partition the first quadrant of the

ollinator plane A 1 A 2 into different regions using isolegs ( Fig. 7 ),

ccording to Table 2 (see Appendix D ). The isolegs are linear in

 1 and they are given by A 2 = S i (P 1 , P 2 ) A 1 + I i (P 1 , P 2 ) (where i =
, b, c, d) where slopes and intercepts are 

S a (P 1 , P 2 ) = − b 21 

b 22 

, I a (P 1 , P 2 ) = 

a 2 b 21 e 21 P 2 w 1 − a 1 b 11 e 11 P 1 w 2 

a 1 b 11 b 22 e 11 P 1 
, 

S b (P 1 , P 2 ) = 

a 2 e 21 b 21 P 2 
a 1 e 11 b 22 P 1 

, I b (P 1 , P 2 )= 

a 2 b 21 e 21 P 2 w 1 −a 1 b 11 e 11 P 1 w 2 

a 1 b 11 b 22 e 11 P 1 
,

S c (P 1 , P 2 ) = 

a 2 e 22 b 11 P 2 
a 1 e 12 b 12 P 1 

, I c (P 1 , P 2 )= 

a 2 b 22 e 22 P 2 w 1 −a 1 b 12 e 12 P 1 w 2 

a 1 b 12 b 22 e 12 P 1 
,

 d (P 1 , P 2 ) = − b 11 

b 12 

, I d (P 1 , P 2 ) = 

a 1 b 12 e 12 P 1 w 2 − a 2 b 22 e 22 P 2 w 1 

a 2 b 22 b 12 e 22 P 2 
. 

(13)

Compared to isolegs in the plant plane ( Figs. 3 and 5 ), in the

ollinator plane isolegs neither pass through the origin, nor all

ave positive slopes. Thus, for given parameter values and plant

opulation densities not all regions from Table 2 exist in the posi-

ive quadrant. In general: 

1. Regions II, III and IV always occur (see Fig. 7 ). They are

separated by the isoleg-b ( A 2 = S b A 1 + I b ) and the isoleg-c

( A 2 = S c A 1 + I c ) with positive slopes S b and S c , respectively.

These isolegs do not intersect in the first quadrant of the

A 1 A 2 plane ( Appendix D ). 

2. Because of (8) the isoleg-c separating IV and III is steeper

than the isoleg-b separating III and II ( S c > S b ). Thus, regions

II, III and IV are ordered in a counter-clockwise sequence in

the positive A 1 A 2 plane. 

3. Regions I and V are separated from regions II and IV, respec-

tively, by isoleg-a and isoleg-d with negative slopes S a and

S d . Appendix D shows that at most one of these two regions

can exist for given parameters and plant population densi-

ties. E.g., in Fig. 7 a neither of the two regions exist, while in

7 b region I exists. 

The partition of the pollinator plane results in pollinator iso-

lines that are more complex than in the case of fixed preferences,

ut considerably simpler than plant isoclines in Section 3.2 . The

soclines consist of three (e.g., Fig. 7 a) or two connected segments

e.g., the pollinator A2 isocline in Fig. 7 b). Regions I and V con-

ain no isocline segments. The segments within regions II and IV

re linearly decreasing, and both isoclines are parallel in these two

egions (see Appendix D ). Thus, generically, pollinators cannot co-

xist within regions II or IV. This is unlike the case with fixed pref-

rences, where the specialist has a linear isocline and the general-

st a curved isocline ( Fig. 2 e,f). Finally, the segments of isoclines in
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Fig. 7. Isoclines of pollinators A1 (black) and A2 (gray), isolegs (dashed lines), and dynamics (vector field), under adaptive pollinator preferences. Filled (open) circles repre- 

sent stable (unstable) equilibria. Regions of pollinator preference are defined in Table 2 , and corresponding interaction topologies are indicated at the bottom. Parameters: 

a i = 0 . 4 , b i j = 0 . 1 , d 1 = 0 . 1 , d 2 = 0 . 12 , P 1 = P 2 = 20 in all panels; (a) e 11 = e 22 = 0 . 2 , e 12 = e 21 = 0 . 1 , w i = 0 . 1 ; (b) e 11 = e 21 = e 12 = 0 . 2 , e 12 = 0 . 1 , w 1 = 0 . 7 , w 2 = 0 . 2 . 

Table 2 

ESS as a function of pollinator densities. Isoleg slopes S i ( P 1 , P 2 ) and intercepts with the A 2 axis I i ( P 1 , 

P 2 ) (i = a, b, c, d) are given by (13) , and u ∗1 and v ∗1 by (10). 

Region Conditions ESS ( u 1 , v 1 ) Description 

I A 2 < S a A 1 + I a (0, 0) A1 & A2 specialize on P2 

II S a A 1 + I a < A 2 < S b A 1 + I b (u ∗1 , 0) A1 generalist, A2 specializes on P2 

III S b A 1 + I b < A 2 < S c A 1 + I c (1, 0) A1 specializes on P1, A2 specializes on P2 

IV max { S c A 1 + I c , S d A 1 + I d } < A 2 (1 , v ∗1 ) A1 specializes on P1, A2 generalist 

V A 2 < S d A 1 + I d (1, 1) A1 & A2 specialize on P1 
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region III are vertical for A1 and horizontal for A2, because polli-

nators specialize on different plants (like in Fig. 2 a). Thus, pollina-

tor coexistence can only occur in region III when the vertical seg-

ment of A1 and the horizontal segment of A2 intersect, as shown

in Fig. 7 a. Given (8) , Appendix D demonstrates that pollinator co-

existence by mutual invasion requires 

b 21 e 21 

b 22 e 22 

< 

d 1 
d 2 

< 

b 11 e 11 

b 12 e 12 

, (14)

leading to a stable equilibrium in region III. If d 1 / d 2 is too low

to meet above inequalities, pollinator A2 goes extinct as shown

in Fig. 7 b, and if d 1 / d 2 is too large A1 goes extinct instead. The

coexistence scenario in Fig. 7 a is called the ghost of competi-

tion past ( Connell, 1980 ), because competition between pollina-

tors causes selection for different plants which ends competition in

the long term. What happens here is that the preference trade-off

( u 1 + u 2 = 1 and v 1 + v 2 = 1 ) causes disadvantage for the general-

ist when combining its best and worst resources. This is not the

case for the specialist that fully commits to its best resource. Thus,

in region II (IV), selection drives A1 (A2) individuals to increase

preference towards its preferred plant P1 (P2). As a consequence,

pollinators specialize on different plants. 

In summary, the results show that population dynamics of two

adaptable pollinators competing for two plants do not allow sta-

ble coexistence between two generalists, one generalist and one

specialist, and two specialists on the same plant. In other words,

coexistence demands absolute niche segregation where each polli-

nator has its own plant. 

4. Discussion 

In this article we study how pollinator adaptation affects co-

existence in a community module consisting of two plants and
wo pollinators. We assume that pollinators preferences for plants

re adaptive and they correspond to evolutionarily stable strate-

ies (ESS) at given plant and pollinator densities. Such strategies

annot be invaded by any other mutants with different strate-

ies. We prove that the strategy where both pollinators are gen-

ralists is never evolutionarily stable. Then we study plant–plant

nd pollinator–pollinator population dynamics. We observe that at

xed pollinator densities, adaptive pollinator preferences for plants

ead to complex plant dynamics characterized by alternative sta-

le states. Such alternative states do not exist when interaction

trengths between pollinators and plants are fixed. We also ob-

erve a trait-mediated facilitation (sensu Bolker et al., 2003 ) be-

ween plants due to changes in pollinator preferences where in-

roduction of an alternative plant can increase population density

f the original plant, without increasing pollinator density. When

lant densities are fixed, our analysis of pollinator–only dynam-

cs shows that a stable coexistence of a generalist and a specialist

ollinator is not possible when both pollinators are adaptive for-

gers. Thus, at the pollinator coexistence equilibrium, each plant

ust have its own pollinator. 

Our analyses combine an evolutionary approach with popu-

ation dynamics. The evolutionary approach is based on isolegs

 K ̌rivan and Sirot, 2002; Pimm and Rosenzweig, 1981; Rosenzweig,

981 ) analysis. Isolegs split the plant (or pollinator) phase space

nto several regions that are characterized by pollinator special-

zation or generalism. The population dynamic approach is based

n isocline analysis. When compared to standard models of pop-

lation dynamics, the case where pollinators are adaptive for-

gers leads to isoclines that are defined piece-wise depending

n the pollinator optimal strategy. For example, when interac-

ion strengths between pollinators and plants are fixed (i.e., pol-

inators are inflexible foragers), plant–plant dynamics follow the
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otka–Volterra competition model with isoclines being straight

ines ( Fig. 1 , top row). However, when pollinators are adaptive for-

gers, plant isoclines are highly non-linear (e.g., Fig. 3 ). It is this

merging non-linearity that shows striking consequences of adap-

ive pollinator behavior in the interaction web studied in this arti-

le. 

In order to get insights on plant and pollinator coexistence, we

ssume that one mutualistic guild, the plants or the pollinators,

tays at constant densities, while the other undergoes population

ynamics. This is a limitation, but such conditions are not uncom-

on in nature. E.g., plants can be long lived trees or shrubs, while

ollinators can be comparatively short lived, e.g., insects. The as-

umption of pollinator densities being constant while plants un-

ergo population dynamics can represent situations where plants

re short lived (e.g., grasses or forbs), while pollinator densities

re mainly controlled by factors other than mutualism (e.g., pol-

inators may be limited by availability of artificial beehives or tree

oles). Another possibility is that plant dynamics take place in

 small locality or a patch, and this patch has a certain polli-

ator carrying capacity which is rapidly filled by visiting polli-

ators ( Feldman et al., 2004 ) coming from a much larger region.

his can be the case of massively introduced managed pollinators,

pilling over from mass flowering crops into wild plant communi-

ies ( Geslin et al., 2017 ). 

.1. Adaptive pollinator preferences 

When two pollinators compete for resources provided by two

lants, we predict five qualitatively different pollinator preferences

hat are evolutionarily stable ( Table 1 ). These strategies are charac-

erized either as full specialization of a pollinator on a single plant

r generalism. We proved that the situation where both pollina-

ors are generalists is never evolutionarily stable and it should not

e observed in nature. The distribution of pollinator preferences is

imilar to the ideal free distribution (IFD) of two consumers using

wo resource patches ( K ̌rivan, 2003 ). 

Pollinator preferences were derived under conditions of low

pecies diversity (only four species), and constant population den-

ities. Interestingly, such conditions are approximated in the ex-

eriments of Fontaine et al. (2005) . These authors used two plant

roups: plants with open (P1), and tubular (P2) flowers; and two

ollinator groups: syrphid flies (A1), and bumblebees (A2). Each

roup consisted of three species. This diversity ensures that each

ollinator group can use each plant group. However, syrphid flies

re morphologically better adapted to open flowers, whereas bum-

lebees are better adapted to tubular flowers. Plants and polli-

ators interacted at fixed densities within cages. One experiment

ound that when alone, each pollinator group displayed general-

sm. However, when together, syrphids tended to visit open flowers

lmost exclusively, whereas bumblebees tended to maintain their

eneralism. This observation corresponds with our partially mixed

SS with one specialist and one generalist pollinator. Further ex-

erimentation, with controlled variation of P1:P2 and A1:A2 abun-

ance ratios, will be necessary to test our predictions ( Table 1 ). 

.2. How adaptive preferences change plant coexistence 

Analysis of plant dynamics when pollinator densities are fixed

ndicates that pollinator preferences can modify the plant com-

unity to a large extent. Under fixed pollinator preferences, plant

opulation dynamics are described by the Lotka–Volterra compe-

ition model. Thus, plants either coexist at an equilibrium, or one

lant is outcompeted by the other plant ( Fig. 1 ). In the bi-stable

ase when initial conditions determine the outcome of competi-

ion ( Fig. 1 c), the preferred plant that survives has a larger domain
f attraction so it is expected to win more frequently. When polli-

ator preferences are adaptive, initial conditions have major effects

n plant coexistence for three main reasons. First, since pollination

s obligatory for both plants, coexistence requires that no plant is

nitially too rare, because otherwise positive feedbacks make the

are plant less preferred and the common plant more preferred

 the rich get richer and the poor get poorer situation), causing the

are plant extinction. The same feedbacks prevent invasion of rare

lants, unless invaders start above minimum density thresholds.

econd, pollinator adaptation enables alternative stable states in

lant coexistence. Third, plants can coexist even when their inter-

pecific competition is so strong that one plant would be outcom-

eted when pollinators were inflexible foragers. 

Many mutualistic models predict critical transitions in com-

unity composition as a result of an environmental stress (e.g.,

arming, habitat fragmentation, changes in phenology). These crit-

cal transitions can lead to states of very low diversity, or com-

unity collapse when mutualism is obligatory. In large commu-

ities, critical transitions are preceded by a gradual accumulation

f species extinctions that cause interaction loss (e.g., simulated

y random species removal, Jelle Lever et al., 2014 ). On a much

maller scale (only four species) our scenario I, where the density

f pollinator A1 increases while the density of the second polli-

ator A2 is kept fixed, demonstrates critical transitions (i.e., dis-

ontinuous changes both in numbers and the interaction topology)

ue to interaction loss. In this scenario, transitions between sin-

le and alternative stable states in the plant community are due

o switches in one pollinator (A1) strategy. When the pollinator is

are it specializes on the best plant ( Fig. 3 b). As its population in-

reases the pollinator switches to a generalist ( Fig. 3 c), in response

o increased competition. We do not have empirical evidence for

ransitions like in scenario I, but we can hypothesize one of prac-

ical importance. Consider a managed pollinator (e.g., A1 = hon-

ybees) coexisting with wild pollinators (e.g., A2 = bumblebees).

e assume that managed pollinators start with high densities e.g.,

hanks to artificial beehives. Because of competition for plants this

arge population will generalize ( Fontaine et al., 2008 ), pollinating

any plants and maintaining high plant diversity (in Fig. 4 this

orresponds to pollinator A1 above A 1 ≈ 8.7 and plant P2 density

iven by the solid curve labeled by II). A parasite infestation will

ause the managed pollinator population to collapse to much lower

ensities ( Guzmán-Novoa et al., 2010 ) (below A 1 ≈ 8.7 in Fig. 4 ).

ompetition between pollinators for plants will be lower and they

ill specialize (pollinator A1 specializes on P1 in Fig. 4 ). This will

ead to a critical transition in the plant community where P2 den-

ity drops to P 2 ≈ 17 (solid line labeled by III). In order to revert

ack to the condition where P2 had a higher density ( P 2 ≈ 27 and

arger, solid line labeled by II), pollinator A1 must become gener-

list again, but due to hysteresis the density of this managed polli-

ator must be raised to levels higher than before the collapse (i.e.,

1 must reach population density above A 1 ≈ 11.7 in Fig. 4 ), e.g.,

y providing additional beehives. This hypothetical scenario could

e tested using semi-closed experimental plant communities, by

ontrolling the access of massively introduced managed pollinators

iving nearby ( Geslin et al., 2017 ). 

Competition for pollinator preferences can result in plant co-

xistence at densities that are smaller (scenario I, Fig. 3 , spe-

ially for P2) or larger (scenario II, Fig. 5 a) than the densities

hen each plant is alone. The first prediction was widely con-

rmed empirically ( Aizen et al., 2014; Chittka and Schürkens,

001 ). Regarding the second prediction, the experiments of

ontaine et al. (2005) discussed before indicate that plant facili-

ation is a potentially realistic outcome. In that experiment, plants

ith open flowers (P1) were better adapted to syrphid flies (A1)

nd vice-versa, whereas plants with tubular flowers (P2) were bet-

er adapted to bumblebees (A2). Bumblebees are generalists and
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they are slightly better at using tubular flowers. When the four

groups were placed together, competition forced syrphids to con-

centrate on open flowers and bumblebees to prefer tubular flow-

ers. At the end of experiment each plant group was taken care

of by its best pollinator group, and ended up producing more

seeds. This experiment and our predictions demonstrate that given

enough functional diversity, i.e., differences in plant and pollinator

functional traits, adaptive pollination can improve not only polli-

nator coexistence but also plant coexistence to the point where

plants can end up facilitating one another indirectly. We note that

this facilitation between plants can be due to changes in pollinator

densities (indirect density-mediated facilitation), or due to changes

in trait (indirect trait-mediated facilitation, Bolker et al., 2003 )

which is caused by changes in pollinator preferences for plants.

The interplay between such indirect effects with direct competition

between plants for other factors (e.g., space or nutrients, described

by competition coefficients), can give rise to alternative stable co-

existence states ( Fig. 5 b) ( Gerla and Mooij, 2014; Hernandez, 1998;

Holland and DeAngelis, 2009; Holland et al., 2002; Zhang et al.,

2015 ). 

4.3. How adaptive preferences change pollinator coexistence 

The analysis of pollinator population dynamics described by

equations ( 1c,1d ) predicts that adaptation of pollinator preferences

results in competitive outcomes that are similar to those with

fixed preferences: both pollinators can coexist, one always ex-

cludes the other, or initial conditions determine which pollinator

survives and which goes extinct. In particular, there are no alter-

native stable states such as we see in the plant sub-system. There

are, however, important qualitative differences in the community

interaction topology. We already know that the case where both

pollinators are generalists is not evolutionarily stable and it can-

not occur. However, pollinator population dynamics also exclude

pollinator stable coexistence in the case where one pollinator is a

specialist and the other a generalist. Thus, when pollinators adapt

their foraging preferences with changing population numbers,

only pollinators that specialize on different plants can coexist

( Fig. 7 a). As a result, both pollinators stop to compete (the ghost

of competition past, Connell, 1980 ). 

We get similar conclusions from numerical simulations of the

full four species system (1) with adaptive pollinator preferences

( Table 1 or 2 ): pollinators either specialize on different plants,

or specialist pollinators are excluded by generalists ( Appendix E

shows representative simulations). These results suggest that plant

coexistence at alternative states is unlikely when both plant and

pollinator dynamics operate on similar time scales. 

These conclusions have important implications for systems con-

taining many pollinator species. Most real plant–pollinator inter-

action networks are nested ( Bascompte and Jordano, 2007 ). This

means that a minority of generalist pollinators can interact with

many plants, but a majority of more specialized pollinators in-

teract with a few plants only, typically subsets of the plants

used by the generalists. This causes a disadvantage for special-

ized pollinators that have to compete for resources with general-

ist competitors. Numerical simulations show that adaptive foraging

tends to reduce the effect of nestedness on pollinator diet over-

lap ( Valdovinos et al., 2016 ). As a consequence, specialist pollina-

tors experience less competition, pollination for plants with less

pollinators becomes more efficient, and more plants and pollina-

tors can coexist in the long term. We observe the same mecha-

nism in our two-pollinator–two-plant interaction module. For ex-

ample, consider a generalist pollinator A1 and a specialist A2 (i.e.,

0 < u 1 < 1 , v 1 = 0 ) as a caricature of a nested network. Such in-

teraction topology can be dynamically stable when preferences of

generalist pollinators are fixed ( Fig. 2 e), but not when preferences
dapt in which case either (i) both pollinators specialize on differ-

nt plants ( Fig. 7 a) or (ii) the specialist goes extinct ( Fig. 7 b). In the

rst case nestedness is eliminated as the pollinator A1 becomes a

pecialist. 

.4. Conclusions 

As the take-home-message, our analysis of a two-plant–two-

ollinator interaction web demonstrates that adaptation of pol-

inator preferences for plants causes important changes in the

tructure and dynamics of plant and pollinator communities. First,

hen pollinator preferences are fixed, interactions between plants

ollow the Lotka–Volterra competitive dynamics when pollinator

ensities are held constant. When plant densities are fixed, coexis-

ence of generalist pollinators is possible. Second, when pollinator

references adapt in order to maximize fitness, plant competitive

ynamics become more complex and plant coexistence at alterna-

ive stable states and indirect plant–plant facilitation is possible, if

ollinator densities are held constant. At fixed plant densities com-

etition between adaptive pollinators requires pollinators special-

ze on different plants. 
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ppendix A. Coexistence conditions for pollinators with fixed 

references 

We set αi j = a i P i e i j and βi 1 = u i b i 1 , βi 2 = v i b i 2 and re-write the

ollinator sub-system ( 1c, 1d ) as 

dA 1 

dt 
= 

{
α11 β11 

w 1 + β11 A 1 + β12 A 2 

+ 

α21 β21 

w 2 + β21 A 1 + β22 A 2 

− d 1 

}
A 1 

dA 2 

dt 
= 

{
α12 β12 

w 1 + β11 A 1 + β12 A 2 

+ 

α22 β22 

w 2 + β21 A 1 + β22 A 2 

− d 2 

}
A 2 . 

(A.1)

Model (A.1) has the trivial equilibrium (A 1 , A 2 ) = (0 , 0) . When

 2 = 0 , the per-capita population growth rate dA 1 /( A 1 dt ) of polli-

ator A1 decreases monotonically with A 1 . Provided the per capita

irth rate of pollinator 1 when A 1 = A 2 = 0 is larger than is its per

apita population death rate, i.e., 

11 β11 w 2 + α21 β21 w 1 > d 1 w 1 w 2 (A.2)

here is exactly one A1-only equilibrium 

(A 1 , 0) = 

(−b + 

√ 

b 2 − 4 ac 

2 a 
, 0 

)
, 

here a = d 1 β11 β21 , b = d 1 (w 2 β11 + w 1 β21 ) − (α11 + α21 ) β11 β21 

nd c = d 1 w 1 w 2 − w 2 α11 β11 − w 1 α21 β21 . 

If the opposite inequality in (A.2) holds, the per-capita popula-

ion growth rate of pollinator 1 is always negative and the pollina-

or goes extinct. By symmetry, if 

12 β12 w 2 + α22 β22 w 1 > d 2 w 1 w 2 (A.3)

here is a unique A2-only equilibrium. 

Provided β11 β22 − β12 β21 � = 0 , d 2 α11 β11 − d 1 α12 β12 � = 0 , and

 α β − d α β � = 0 , model (A.1) has at most one coexistence
2 21 21 1 22 22 

https://doi.org/10.13039/501100007601
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quilibrium 

ˆ 
 1 = 

w 2 β12 − w 1 β22 + 

(α11 α22 β11 β22 −α12 α21 β12 β21 )[ d 1 (α12 + α22 ) β12 β22 −d 2 (α2

(d 2 α11 β11 −d 1 α12 β12 )(d 2 α21 β21 −d 1 α22 β

β11 β22 − β12 β21 

ˆ 
 2 = 

w 1 β21 − w 2 β11 + 

(α11 α22 β11 β22 −α12 α21 β12 β21 )[ d 2 (α11 + α21 ) β11 β21 −d 1 (α12

(d 2 α11 β11 −d 1 α12 β12 )(d 2 α21 β21 −d 1 α22 β

β11 β22 − β12 β21 

f ˆ A 1 > 0 and 

ˆ A 2 > 0 . 

Now we study the local asymptotic stability of the equilibria.

he jacobian of (A.1) is 

 = 

⎡ 

⎣ 

G 1 − A 1 

(
α11 β

2 
11 

W 

2 
1 

+ 

α21 β
2 
21 

W 

2 
2 

)
−A 1 

(
α11 β11 β12 

W 

2 
1 

+ 

α21 β21 β22 

W 

2 
2 

)

−A 2 

(
α12 β11 β12 

W 

2 
1 

+ 

α22 β21 β22 

W 

2 
2 

)
G 2 − A 2 

(
α12 β

2 
12 

W 

2 
1 

+ 

α22 β
2 
22 

W 

2 
2 

)
⎤ 

⎦ 

(A.5) 

here 

 1 (A 1 , A 2 ) = 

α11 β11 

w 1 + β11 A 1 + β12 A 2 

+ 

α21 β21 

w 2 + β21 A 1 + β22 A 2 

− d 1 

(A.6) 

 2 (A 1 , A 2 ) = 

α12 β12 

w 1 + β11 A 1 + β12 A 2 

+ 

α22 β22 

w 2 + β21 A 1 + β22 A 2 

− d 2 

(A.7) 

nd 

 1 (A 1 , A 2 ) = w 1 + β11 A 1 + β12 A 2 (A.8)

 2 (A 1 , A 2 ) = w 2 + β21 A 1 + β22 A 2 . (A.9)

t the trivial equilibrium the jacobian is diagonal and its eigenval-

es are λ1 = G 1 (0 , 0) and λ2 = G 2 (0 , 0) . Thus, the trivial equilib-

ium is unstable if any of (A.2) or (A.3) hold. At the A1-only equi-

ibrium G 1 (A 1 , 0) = 0 and the eigenvalues are 

1 = −A 1 

(
α11 β

2 
11 

W 

2 
1 

+ 

α21 β
2 
21 

W 

2 
2 

)
, λ2 = G 2 (A 1 , 0) . 

hus, stability depends on the sign of G 2 ( A 1 , 0). If G 2 ( A 1 , 0) < 0 pol-

inator 1 is stable against invasion by pollinator 2, if G 2 ( A 1 , 0) > 0

ollinator 1 can be invaded by pollinator 2. G 2 ( A 1 , 0) can be eval-

ated explicitly, but the resulting expression is quite complex and

e do not give it here. By symmetry, the A2-only equilibrium is

table against invasion by pollinator 1 if G 1 (0, A 2 ) < 0 and unstable

f G 1 (0, A 2 ) > 0. 

Provided that the coexistence equilibrium exists (i.e., ˆ A 1 >

 , ˆ A 2 > 0 in A.4 ), then G 1 ( ̂  A 1 , ˆ A 2 ) = G 2 ( ̂  A 1 , ˆ A 2 ) = 0 by definition.

hus the trace of the jacobian is negative, which means that sta-

ility depends on the sign of the jacobian determinant, which is

= 

ˆ A 1 ̂
 A 2 

(W 1 W 2 ) 2 
(β11 β22 − β12 β21 )(α11 α22 β11 β22 − α12 α21 β12 β21 ) . 

(A.10) 

f �> 0 the equilibrium is locally stable, if �< 0 it is unstable. If

e replace back the definitions of α’s and β ’s in (A.10) the stability

ondition reads 

(u 1 b 11 v 2 b 22 −v 1 b 12 u 2 b 21 )(e 11 e 22 u 1 b 11 v 2 b 22 −e 12 e 21 v 1 b 12 u 2 b 21 ) > 0 .

The above results can be used to study coexistence of special-

zed pollinators. First, we consider specialized pollinators pollinat-

ng a single plant. For example, let us assume that both pollina-

ors pollinate plant P1 only, i.e., u 1 = v 1 = 1 . Then β11 = β12 = 0

nd substituting these values in (A.1) shows that the two isoclines
1 + α11 β11 β22 )] 

 

+ α22 β11 β22 )] 

(A.4) 

re parallel lines, i.e., generically, there is no equilibrium. The same

onclusion holds in the case where both pollinators specialize on

lant P2. Thus, two specialist pollinators cannot survive on a single

lant. 

Second, we consider two pollinators that specialize on different

lants (either β12 = β21 = 0 or β11 = β22 = 0 ). For example, when

12 = β21 = 0 the interior equilibrium (A.4) is 

( ̂  A 1 , ˆ A 2 ) = 

(
α11 

d 1 
− w 1 

β11 

, 
α22 

d 2 
− w 2 

β22 

)

nd stability condition (A.10) holds. The case where β11 = β22 = 0

s similar. 

ppendix B. ESS and Nash equilibria 

Throughout this appendix we assume that inequality (8) holds.

rom (7a) and (7b) , for a given pollinator distribution ( u 1 , v 1 ) ∈ [0,

] × [0, 1], pollinator A1 payoffs when pollinating exclusively plant

1 or plant P2 are 

 1 (u 1 , v 1 ) = 

a 1 e 11 b 11 P 1 
w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 

, 

 2 (u 1 , v 1 ) = 

a 2 e 21 b 21 P 2 
w 2 + (1 − u 1 ) b 21 A 1 + (1 − v 1 ) b 22 A 2 

. 

imilarly, pollinator 2 payoffs are 

 1 (u 1 , v 1 ) = 

a 1 e 12 b 12 P 1 
w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 

, 

 2 (u 1 , v 1 ) = 

a 2 e 22 b 22 P 2 
w 2 + (1 − u 1 ) b 21 A 1 + (1 − v 1 ) b 22 A 2 

. 

First, we consider ESS at which both pollinators are special-

sts. We start with the case where both pollinators specialize on

lant 1. Strategy (u 1 , v 1 ) = (1 , 1) is an ESS provided V 1 (1, 1) > V 2 (1,

) and W 1 (1, 1) > W 2 (1, 1). These inequalities are equivalent to

 2 < 

a 1 b 11 e 11 w 2 
a 2 b 21 e 21 (w 1 + b 11 A 1 + b 12 A 2 ) 

P 1 and P 2 < Q d P 1 , where Q d is given in

9d) . Inequality (8) implies that Q d < 

a 1 b 11 e 11 w 2 
a 2 b 21 e 21 (w 1 + b 11 A 1 + b 12 A 2 ) 

. Con-

equently, for P 2 < Q d P 1 strategy (u 1 , v 1 ) = (1 , 1) is the ESS. Now

e consider the case where pollinator 1 specializes on plant 1 and

ollinator 2 on plant 2. Strategy (u 1 , v 1 ) = (1 , 0) is an ESS pro-

ided V 1 (1, 0) > V 2 (1, 0) and W 2 (1, 0) > W 1 (1, 0). These inequalities

re equivalent to Q b P 1 > P 2 > Q c P 1 where Q b is given in (9b) . Now

e consider the case where both pollinators specialize on plant 2.

trategy (u 1 , v 1 ) = (0 , 0) is an ESS provided V 2 (0, 0) > V 1 (0, 0) and

 2 (0, 0) > W 1 (0, 0). These inequalities are equivalent to P 2 > Q a P 1 
here Q a is given in (9d) and P 2 > 

a 1 b 12 e 12 (w 2 + b 21 A 1 + b 22 A 2 ) 
a 2 b 22 e 22 w 1 

P 1 . In-

quality (8) implies that Q a > 

a 1 b 12 e 12 (w 2 + b 21 A 1 + b 22 A 2 ) 
a 2 b 22 e 22 P 2 w 1 

. Conseq uently,

or P 2 > Q a P 1 strategy (u 1 , v 1 ) = (0 , 0) is the ESS. Now we consider

he case where pollinator 1 specializes on plant 2 and pollinator

 on plant 1. Strategy (u 1 , v 1 ) = (0 , 1) is an ESS provided V 2 (0,

) > V 1 (0, 1) and W 1 (0, 1) > W 2 (0, 1). These inequalities are equiva-

ent to P 2 > Q b P 1 and P 2 < Q c P 1 . Inequality (8) implies that Q b > Q c .

onsequently, (u 1 , v 1 ) = (0 , 1) is never an ESS. 

Second, we consider ESSs when the first pollinator is a gen-

ralist while the second pollinator is a specialist. Let us assume

hat the second pollinator specializes on plant 2, i.e., we seek

SS in the form ( u , 0) where 0 < u < 1. Such a strategy must
1 1 
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satisfy V 1 (u 1 , 0) = V 2 (u 1 , 0) and W 2 ( u 1 , 0) > W 1 ( u 1 , 0). Equality

 1 (u 1 , 0) = V 2 (u 1 , 0) leads to 

u 

∗
1 = 

a 1 b 11 e 11 P 1 (w 2 + b 21 A 1 + b 22 A 2 ) − a 2 b 21 e 21 P 2 w 1 

A 1 b 11 b 21 (a 1 e 11 P 1 + a 2 e 21 P 2 ) 
. 

This value is between 0 and 1 provided Q b P 1 < P 2 < Q q P 1 . Inequal-

ity (8) implies that W 2 (u ∗
1 
, 0) > W 1 (u ∗

1 
, 0) . Thus, (u ∗

1 
, 0) is a Nash

equilibrium. To prove it is also an ESS, we need to verify its stabil-

ity. Because functions V i ( i = 1 , 2 ) are non-linear in u 1 , we use the

local ESS condition ( Hofbauer and Sigmund, 1998 ) u ∗
1 
V 1 (u 1 , 0) +

u ∗2 V 2 (u 1 , 0) > u 1 V 1 (u 1 , 0) + u 2 V 2 (u 1 , 0) for every ( u 1 , u 2 ) ( u 1 + u 2 =
1 , u 1 > 0, u 2 > 1) close to (but different from) (u ∗

1 
, u ∗

2 
) . This condi-

tion is equivalent to 

(a 2 b 11 e 11 P 1 (A 2 b 22 +A 1 (b 21 −b 21 u 1 )+w 2 )) 
2 

A 1 b 11 b 21 (a 1 e 11 P 1 +a 2 e 21 P 2 )(A 1 b 11 u 1 +w 1 )(A 2 b 22 +A 1 (b 21 −b 21 u 1 )+w 2 ) 
>0 .

(B.1)

The numerator is positive and the denominator equals to 0 for

u 1 = − w 1 
A 1 b 11 

< 0 and u 1 = 

A 1 b 21 + A 2 b 22 + w 2 
A 1 b 21 

> 1 . Because the denom-

inator is a quadratic function and its graph is an upside down

parabola, inequality (B.1) holds for all 0 < u 1 < 1. This shows that

(u 1 , v 1 ) = (u ∗1 , 0) is an ESS. 

Now we assume that the second pollinator specializes on plant

1, i.e., we seek ESS in the form ( u 1 , 1) where 0 < u 1 < 1. Such a

strategy must satisfy V 1 (u 1 , 1) = V 2 (u 1 , 1) and W 1 ( u 1 , 1) > W 2 ( u 1 ,

1). The equality leads to 

u 

∗
1 = 

a 1 b 11 e 11 P 1 (w 2 + b 21 A 1 ) − a 2 b 21 e 21 P 2 (w 1 + b 12 A 2 ) 

A 1 b 11 b 21 (a 1 e 11 P 1 + a 2 e 21 P 2 ) 
. 

Then 

 1 (u 

∗
1 , 1) = 

b 12 b 21 e 12 (a 1 e 11 P 1 + a 2 e 21 P 2 ) 

b 21 e 11 (A 1 b 11 + A 2 b 12 + w 1 ) + b 11 e 11 w 2 

 2 (u 

∗
1 , 1) = 

b 11 b 22 e 22 (a 1 e 11 P + a 2 e 21 P 2 ) 

b 21 e 21 (A 1 b 11 + A 2 b 12 + w 1 ) + b 11 e 21 w 2 

and inequality (8) implies that W 2 (u ∗
1 
, 1) > W 1 (u ∗

1 
, 1) and thus

(u ∗
1 
, 1) is never an ESS. 

Third, we consider ESSs when the first pollinator is a special-

ist while the second pollinator is a generalist. Let us assume that

the first pollinator specializes on plant P1, i.e., we seek ESS in the

form (1, v 1 ) where 0 < v 1 < 1. Such a strategy must satisfy V 1 (1,

v 1 ) > V 2 (1, v 1 ) and W 1 (1 , v 1 ) = W 2 (1 , v 1 ) . The equality leads to 

v ∗1 = 

a 1 b 12 e 12 P 1 (w 2 + b 22 A 2 ) − a 2 b 22 e 22 P 2 (w 1 + b 11 A 1 ) 

A 2 b 12 b 22 (a 1 e 12 P 1 + a 2 e 22 P 2 ) 
. 

This value is between 0 and 1 provided Q d P 1 < P 2 < Q c P 1 . Inequal-

ity (8) implies that V 1 (1 , v ∗1 ) > V 2 (1 , v ∗1 ) . The local ESS condition

requires v ∗
1 
W 1 (1 , v 1 ) + v ∗

2 
W 2 (1 , v 1 ) > v 1 W 1 (1 , v 1 ) + v 2 W 2 (1 , v 1 ) for

every ( v 1 , v 2 ) ( v 1 + v 2 = 1 , v 1 > 0, v 2 > 1) close to (but different

from) (v ∗1 , v 
∗
2 ) . This condition is equivalent to 

selectfont 

(a 1 b 12 e 12 P 1 (A 2 b 22 (v 1 −1)−w 2 )+a 2 b 22 e 22 P 2 (A 1 b 11 + A 2 b 12 v 1 + w 1 )) 
2 

A 2 b 12 b 22 (w 2 −A 2 b 22 (v 1 −1))(a 1 e 12 P 1 +a 2 e 22 P 2 )(A 1 b 11 +A 2 b 12 v 1 +w 1 ) 
> 0 .

(B.2)

The numerator is positive and the denominator equals to 0 for

v 1 = − A 1 b 11 + w 1 
A 2 b 12 

< 0 and v 1 = 

w 2 
A 2 b 22 

+ 1 > 1 . Because the denomi-

nator is a quadratic function and its graph is an upside down

parabola, inequality (B.2) holds for all 0 < v 1 < 1. This shows that

(u 1 , v 1 ) = (1 , v ∗
1 
) is an ESS. 

Now we assume that the first pollinator specializes on plant P2,

i.e., we seek ESS in the form (0, v 1 ) where 0 < v 1 < 1. Such a strat-

egy must satisfy V 2 (0, v 1 ) > V 1 (0, v 1 ) and W 1 (0 , v 1 ) = W 2 (0 , v 1 ) .
The equality leads to 

v ∗1 = 

a 1 b 12 e 12 P 1 (w 2 + b 21 A 1 + b 22 A 2 ) − a 2 b 22 e 22 P 2 w 1 

A 2 b 12 b 22 (a 1 e 12 P 1 + a 2 e 22 P 2 ) 
. 
owever, inequality (8) implies that V 1 (0 , v ∗1 ) > V 2 (0 , v ∗1 ) so that no

SS in the form (0, v 1 ) exists. 

Fourth, we consider the case where both pollinators are gener-

lists. This situation corresponds to ESS of the form ( u 1 , v 1 ) with

 < u 1 < 1 and 0 < v 1 < 1. Such an ESS must satisfy V 1 (u 1 , v 1 ) =
 2 (u 1 , v 1 ) and W 1 (u 1 , v 1 ) = W 2 (u 1 , v 1 ) . These equalities are equiv-

lent to 

a 1 e 11 b 11 P 1 (w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 ) 

= a 2 e 21 b 21 P 2 (w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 ) 

a 1 e 12 b 12 P 1 (w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 ) 

= a 2 e 22 b 22 P 2 (w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 ) . 

ecause w 1 + u 1 b 11 A 1 + v 1 b 12 A 2 > 0 and w 2 + u 2 b 21 A 1 + v 2 b 22 A 2 >

 , inequality (8) implies that these two equations do not have any

olution ( u 1 , v 1 ) ∈ [0, 1] × [0, 1]. Thus, it is impossible for both pol-

inators to be generalists. 

ppendix C. Plant dynamics in regions I, III and V 

First we calculate plant P1 boundary equilibrium. From

able 1 it follows that this equilibrium is in region V where both

ollinators pollinate P1. Substituting (u 1 , v 1 ) = (1 , 1) in (1a) and

1b) , and solving for equilibria when P 1 � = 0 and P 2 = 0 leads to

quilibrium (12a) . 

The plant population dynamics in region V are 

dP 1 
dt 

= 

(
a 1 (r 11 b 11 A 1 + r 12 b 12 A 2 ) 

w 1 + b 11 A 1 + b 12 A 2 

(
1 − P 1 + c 2 P 2 

K 1 

)
− m 1 

)
P 1 

dP 2 
dt 

= −m 2 P 2 , 

nd provided plant 1 is viable (i.e., (11a) holds), equilibrium

12a) exists (is positive) and is locally asymptotically stable. Fol-

owing the same steps above mutatis mutandis , leads to equation

12b) for plant P2 boundary equilibrium in region I (where ESS

s (u 1 , v 1 ) = (0 , 0) , see Table 1 ). Analogously, if (11b) holds then

12b) exists and is locally asymptotically stable. 

Now we consider plant population dynamics in region III. Ac-

ording to Table 1 the ESS strategy in this region is (u 1 , v 1 ) =
(1 , 0) , i.e., pollinator A1 (A2) interacts only with plant P1 (P2).

ubstituting these preferences in (1a) and (1b) , plant population

ynamics in region III are described by the Lotka–Volterra compe-

ition model 

dP 1 
dt 

= (s 1 − m 1 ) P 1 

(
1 − P 1 + c 2 P 2 

H 1 

)
dP 2 
dt 

= (s 2 − m 2 ) P 2 

(
1 − P 2 + c 1 P 1 

H 2 

)
, 

here 

s 1 = 

a 1 r 11 b 11 A 1 

w 1 + b 11 A 1 

, s 2 = 

a 2 r 22 b 22 A 2 

w 2 + b 22 A 2 

, H 1 = K 1 

(
1 − m 1 

s 1 

)
, 

 2 = K 2 

(
1 − m 2 

s 2 

)
. 

lant population dynamics in region III depend on the position of

lant isoclines 

 1 + c 2 P 2 = H 1 

 2 + c 1 P 1 = H 2 . 

rovided the plant isoclines intersect in region III, the coexistence

quilibrium is 

( ̂  P 1 , ˆ P 2 ) = 

(
H 1 − c 2 H 2 

1 − c 1 c 2 
, 

H 2 − c 1 H 1 

1 − c 1 c 2 

)
. (C.1)

or (C.1) to be in region III, it must satisfy Q b ̂
 P 1 < 

ˆ P 2 < Q c ̂  P 1 , where

 and Q c are given in (9b) and (9c) , respectively. Substituting Q ,
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 c and (C.1) we get 

b 21 e 21 

b 11 e 11 

< 

a 1 (w 2 + b 22 A 2 )(H 1 − c 2 H 2 ) 

a 2 (w 1 + b 11 A 1 )(H 2 − c 1 H 1 ) 
< 

b 22 e 22 

b 12 e 12 

. (C.2) 

Provided (C.2) holds, the local stability of (C.1) depends on the

ompetition coefficients. From the Lotka–Volterra theory (C.1) is lo-

ally stable if c 1 c 2 < 1. If c 1 c 2 > 1, (C.1) is unstable, and trajectories

ill approach either isoleg-b and cross into region II, or approach

soleg-c and cross into region IV depending on the initial condi-

ions. If (C.2) does not hold there is no plant equilibrium in region

II. 

In the special case where c 1 = c 2 = 0 , the stable equilibrium in

egion III is 

( ̂  P 1 , ˆ P 2 ) = (H 1 , H 2 ) = 

(
K 1 (A 1 b 11 (a 1 r 11 − m 1 ) − m 1 w 1 ) 

a 1 A 1 b 11 r 11 

, 

K 2 (A 2 b 22 (a 2 r 22 − m 2 ) − m 2 w 2 ) 

a 2 A 2 b 22 r 22 

)
. 

t this equilibrium plant 1 density is higher than is the plant den-

ity at the boundary equilibrium (12a) in region V iff

r 11 

r 12 

> 1 + 

w 1 

b 11 A 1 

. 

his shows that provided r 11 > r 12 and pollinator A1 is abundant

nough, plant P1 density at the interior equilibrium in region III

ill be higher than is the plant P1 density at the boundary equi-

ibrium. Analogous conclusions apply to plant P2. 

ppendix D. Coexistence conditions for pollinators with 

daptive preferences 

Using Table 1 in the main text, we rewrite isolegs character-

zing regions I-V in terms of pollinator densities. For example,

soleg-a that separates regions I and II in the plant plane P 1 P 2 is

iven by equation 

P 2 
P 1 

= Q a (A 1 , A 2 ) = 

a 1 b 11 e 11 (w 2 + b 21 A 1 + b 22 A 2 ) 
a 2 b 21 e 21 w 1 

. Solving

or A 2 leads to isoleg-a in the pollinator plane 

 2 = S a A 1 + I a = − b 21 

b 22 

A 1 + 

a 2 b 21 e 21 P 2 w 1 − a 1 b 11 e 11 P 1 w 2 

a 1 b 11 b 22 e 11 P 1 
, 

nd the other isolegs in the pollinator plane A 1 A 2 are obtained

nalogously and they are listed in Table 2 in the main text. 

Isoleg-b and isoleg-c (which enclose region III) do not in-

ersect in the positive part of the A 1 A 2 plane. Indeed, the in-

ersection point is A 1 = (I c − I b ) / (S b − S c ) . From (13) , I c − I b =
a 2 P 2 w 1 
a 1 P 1 b 2 

(
e 22 b 22 
e 12 b 12 

− e 21 b 21 
e 11 b 11 

)
and S b − S a = 

a 2 P 2 
a 1 P 1 

(
e 21 b 21 
e 11 b 11 

− e 22 b 22 
e 12 b 12 

)
have 

ifferent signs, thus isoleg-b and isoleg-c intersection is non-

ositive. 

Now we show that for given parameters and plant population

ensities it is not possible that both regions I and V co-exist. We

bserve that region I exists in the positive quadrant iff I a > 0, be-

ause in this case isoleg-a intersects both A1 and A2 axes at pos-

tive values. Similarly, region V exists in the positive quadrant iff

 d > 0, because in this case isoleg-d intersects both A1 and A2 axes

t positive values. However, condition (8) rules out the possibility

hat both I a and I d are positive. 

We determine conditions for pollinator coexistence in regions

 to V. Appendix A shows that two pollinators specialized on the

ame plant (both u 1 and v 1 equal to 0 or 1) cannot coexist. This

ules out coexistence in regions I and V. Now, let us consider re-

ion II where pollinator A1 is a generalist and A2 specializes on

lant P2. Thus 0 < u 1 = u ∗1 < 1 , v 1 = 0 , and the A2 isocline is 

a 2 e 22 b 22 P 2 
w 2 + (1 − u 

∗ ) b 21 A 1 + b 22 A 2 

= d 2 . (D.1) 

1 
ecause the payoff of pollinator A1 when pollinating plant P1 is

he same as when pollinating plant P2, the A1 isocline is 

a 2 e 21 b 21 P 2 
w 2 + (1 − u 

∗
1 
) b 21 A 1 + b 22 A 2 

= d 1 . (D.2) 

ubstituting u ∗1 (10a) in (D.1) and (D.2) shows that both these

qualities define parallel lines in pollinator phase space. Thus,

enerically, there cannot be a coexistence equilibrium in region II.

ollinator A2 will displace A1 if 

e 22 b 22 

e 21 b 21 

> 

d 2 
d 1 

, 

r A1 will displace A2 if the opposite inequality holds. 

In region IV, pollinator A2 is a generalist and A1 specializes on

lant P1. Because of symmetry, the last result applies mutatis mu-

andis . This means that either A1 will displace A2 if 

e 11 b 11 

e 12 b 12 

> 

d 1 
d 2 

, 

r A2 will displace A1 if the opposite inequality holds. If 

e 11 b 11 

e 12 b 12 

> 

d 1 
d 2 

> 

e 21 b 21 

e 22 b 22 

, (D.3) 

hen A1 can be invaded by A2 and vice versa and coexistence by

utual invasion occurs. 

Finally, let us consider region III, in which pollinator A1 special-

zes in plant P1 (u 1 = 1) , and A2 specializes in P2 (v 1 = 0) . The

ollinator isoclines intersect at 

( ̂  A 1 , ˆ A 2 ) = 

(
a 1 e 11 P 1 

d 1 
− w 1 

b 11 

, 
a 2 e 22 P 2 

d 2 
− w 2 

b 22 

)
. (D.4)

o be a coexistence equilibrium however, ( ̂  A 1 , ˆ A 2 ) must lie be-

ween isolegs S b A 1 + I b and S c A 1 + I c , i.e., S b ̂  A 1 + I b < 

ˆ A 2 < S c ̂  A 1 + I c .

ubstituting (D.4) in these inequalities leads to 

b 21 e 21 

b 22 e 22 

< 

d 1 
d 2 

< 

b 11 e 11 

b 12 e 12 

, 

hich are the conditions for mutual invasion (D.3) . Thus, a coex-

stence equilibrium within region III is locally stable. Since there

re no coexistence equilibria within regions II and IV, we conclude

hat if (D.3) holds there is a single stable coexistence equilibrium

ithin region III. 

ppendix E. Combined plant–pollinator dynamics 

Fig. E.1 illustrates the population dynamics of the four species

ystem (1) when pollinator preferences for plants are fixed (left

anels) or adaptive (right panels). Panels in each row assume the

ame parameters and initial conditions. Initial preferences u 1 (0),

 1 (0) are calculated as the ESS ( Table 1 or 2 ) for the initial den-

ities P 1 (0), P 2 (0), A 1 (0), A 2 (0). In the left column of Fig. E.1 these

references are kept fixed at their initial values (their time series

emain horizontal), while in the right column preferences track

hanges in population densities (ESS) instantaneously. 

In the top row (panels a,b) pollinator A1 starts as a generalist

iased towards plant P1 ( u 1 ≈ 0.6), and A2 as a P2 specialist (v 1 =
) . In panel (a) these preferences remain fixed and all four species

ttain stable coexistence. In panel (b) preferences adapt and the

our species attain coexistence again, but pollinator A1 turns into a

lant P1 specialist. Here adaptation leads to the end of competition

etween A1 and A2, which do not share any plant. 

The bottom row (panels c, d) uses a different parameter set,

nd the initial conditions make pollinator A1 a plant P1 specialist

(u 1 = 1) and A2 a P2 specialist (v 1 = 0) . Thus, A1 and A2 do not

ompete initially, and four species coexistence happens if prefer-

nces remain fixed (c). If preferences adapt, panel (d) shows that

ollinator A2 becomes a generalist. As the preference for P1 grows

arger for A2, strong competition drives specialist pollinator A1 to-

ards extinction. 
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Fig. E.1. Dynamics of system (1). Preferences given according to: (a,c) ESS at t = 0 and kept fixed for t > 0; (b,d) ESS at all times ( t ≥ 0). Densities (left axes) represented by P 1 : 

green squares; P 2 : red diamonds; A 1 : pink circles; A 2 : blue triangles. Plant 1 preferences (right axes) represented by u 1 : 5-pointed, v 1 : 6-pointed stars. Inset graphs display 

final plant–pollinator interactions (dash stroke for extinct species). Parameters (a,b,c,d): r i = 0 . 1 , m i = 0 . 01 , b i j = 0 . 1 , a i = 0 . 4 , w i = 0 . 25 , e 11 = e 22 = 0 . 2 , d 1 = 0 . 12 , d 2 = 0 . 1 ; 

(a,b): K i = 50 , e 21 = 0 . 17 , e 12 = 0 . 1 ; (c,d): K 1 = 60 , K 2 = 30 , e 12 = 0 . 17 , e 21 = 0 . 1 . Competition coefficients (a,b): c i = 0 . 2 ; (c,d): c 1 = 0 . 4 , c 2 = 0 . 1 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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