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a b s t r a c t 

Prey can ease the burden of exploitation by attracting a third party that interferes with 

their predators. Such is the case for plant-ant or aphid-ant mutualisms , where the vic- 

tim supplies food to the ants, while the ants attack or drive away the offenders. Since 

ants are adaptive foragers, defense services can be altered by alternative food sources (e.g., 

other plants, or human-supplied resource). This article explores the prey-predator-ant sys- 

tem, using a model that combines predator-prey population dynamics with ant optimal 

foraging, where ants consume prey-supplied resources or alternative resources. Feedbacks 

between prey-predator dynamics and adaptive ant foraging leads to complex dynamics. 

For a given ant colony size and supply rate of alternative resources, prey can coexist with 

predators at alternative stable states, or along alternative limit cycles. Limit cycles extend 

the scope of defensive mutualism beyond the point where ants would abandon prey in 

favor of alternative resources under equilibrium conditions. These results highlight the im- 

portance of trait-mediated indirect interactions for natural mutualistic–antagonistic sys- 

tems, and potential outcomes of manipulating ant defense services using baits in the case 

of agriculture. 
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1. Introduction 

Many resource-consumer trophic interactions are influenced by a third, modifier species [e.g., 14] that changes the prey- 

predator interaction strength. E.g., an alternative prey can weaken the focal prey-predator interaction strength when the 

focal prey density is low and the predator switches to the alternative prey which can lead to the focal prey-predator coex-

istence that would be otherwise impossible [e.g., 1 , [3,22,25] , 46] . One important modifier is protection mutualism where a

prey mutualist weakens interaction strength between the prey and its predator. An important case of protection mutualism 

occurs in systems with ants. 

Ants are a highly diverse insect group (Hymenoptera, Formicidae) that maintains mutualisms with all sorts of plants, 

animals and fungi. They organize as colonies of genetically related individuals with a complex division of labor. Activities 

such as scouting, foraging, nursing of immatures, building structures, attack and defense, can be very adaptable to current 

demands of energy and resources. As a result of this flexibility, and owing to their large numbers, ants have large impacts,

both antagonistic and mutualistic, on the populations with which they interact [7] . 
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Fig. 1. Adaptive ant foraging preference for the prey-supplied resource (4) as a function of prey density. If P ≤ π0 given in (5a) , ants (M) forage exclusively 

on alternative resources (F ) , and do not interfere with predators (H) . Increased preference for prey-supplied resources for prey densities between π0 = 

14 . 7 and π1 = 33 given in (5) , increases ants interference with predators. Ants forage exclusively on prey resources when P ≥ π1 , maximizing predation 

interference and prey-predator interaction strength. The thickness of arrows corresponds with the interaction strength. Parameters used in this simulation 

are from Table 1 with F = 2 . 2 and M = 50 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of mutualistic interactions, ants obtain energetic benefits in the form of food, and in return provide services

to their partners (e.g., fungus gardening [54] ; hygiene [6] ; pollination [15] ). One of the most important services that ants

can provide is defense against their partners’ natural enemies. Such is the case of ant–plant mutualisms where ants interfere 

with plant’s herbivores [23] , or ant–insect mutualisms in which ants protect aphids [48] and other insects from predators

and parasitoids. In the case of ant–plant mutualisms, ants are attracted by nectar supplied through special plant organs, e.g., 

nectaries . Many plants also provide shelter to their ant defenders. In the case of ant–insect mutualisms, ants are attracted

by the honeydew secreted by prey such as aphids, scale insects, and some butterfly larvae [49] . 

This form of mutualism in which at least three species participate (e.g., victim, exploiter & ant), is a subject of the great

interest for ecology [38] and agriculture [37,51] . Such complex interactions were studied using a variety of models, e.g., 

system of differential equations [2,10,40] , spatio–temporal models [50] , and by means of a board game in one instance [12] .

Since ants are adaptive foragers [52,53] , evolutionary game theory (EGT) can help us to understand the dynamics of ant-

defense mutualisms when multiple food types for ants are available. EGT postulates than when facing alternative sources 

of food, consumers (here ants) distribute their foraging effort such that individual fitness maximizes [27] . In the absence of

other constraints, this leads to the ideal free distribution of foraging preferences [IFD; 11] , where the number of consumers

for each resource type is proportional to the resource’s profitability , where profitability comprises both availability (e.g., 

amount, supply rate) and quality (e.g., calories, nutrient ratios) of the resource. 

In this article we study the consequence of ant optimal foraging for defense mutualism, where the defended species 

(hereafter the “prey”) can be either a plant or an insect herbivore (e.g., aphids), and the enemy (hereafter the “predator”)

can be an insect herbivore (e.g., aphids) or an insect carnivore (e.g., ladybugs). Rather than dealing with an explicit three

variable model for the populations of prey, predators and ants, we consider a two-species prey–predator model, with vari- 

able predation interference by a fixed size ant population. This approach allows us to demonstrate the effects of adaptive 

ant protection mutualism on prey–predator population dynamics. We show that adaptive ant protection mutualism allows 

coexistence of predators and prey at alternative equilibria, along limit cycles, or a combination of both. These results can be

useful to understand and predict effects of manipulations of ant defensive mutualism, by supplying artificial food sources in 

agricultural systems [36,37] . 

2. Models and methods 

We consider a community module consisting of prey with population density P , predators with density H, and a colony

of mutualists of size M. Mutualists weaken the prey–predator interaction strength, e.g., by interfering with predators or ac- 

tively deterring predators. The level of interference depends on the preference 0 ≤ u ≤ 1 of mutualists for resources produced

by the prey, versus 1 − u for alternative food sources provided at a fixed rate F (see the three inset interaction graphs in

Fig. 1 ). If mutualists specialize on alternative resources ( u = 0 , left graph), predator-prey interactions are strongest because

prey are not protected at all (interaction strength between prey and predators is shown by the thickness of the P → H ar-

row in Fig. 1 ). When mutualists are generalist foragers ( 0 < u < 1 , middle graph), the interaction strength as well as prey
2



T.A. Revilla and V. K ̌rivan Applied Mathematics and Computation 433 (2022) 127368 

Table 1 

Variables and parameters used in simulations. 

Symbol Description Default value 

P prey population density (time dependent) —

H predator population density (time dependent) —

u ant preference for the prey resources (time dependent) —

M ant colony size various values 

r prey’s intrinsic growth rate 0.1 

K prey’s environmental carrying capacity 50 

a maximum predation rate 0.01 

e predator’s conversion efficiency 0.5 

m predator’s intrinsic mortality rate 0.05 

q strength of ant interference on predation various values 

s prey resource supply rate (per capita) 0.1 

F alternative resource supply rate various values 

w resource loss rate 0.1 

b ant’s specific consumption rate 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

protection is intermediate, and when mutualists specialize on the prey resource ( u = 1 , right graph), the interaction strength

is weakest because the protection level is highest. The best known example of such a community consists of aphids (prey),

coccinellids (predators), and ants that protect aphids. Alternatively, we can consider plants (prey), aphids (predators), and 

ants that protect plants. For this reason we refer in this article to the mutualist as ants. In these systems prey secretions (i.e.,

plant’s nectar, aphid’s honeydew) compete with alternatives (e.g., other plants/aphids, artificial sources) for ant’s preferences, 

affecting the quality of the mutualistic service. 

We model the dynamics of the prey–predator–ant system through the feedback between prey–predator population dy- 

namics and adaptive foraging preferences by ants by assuming that ants are optimal foragers that instantaneously maximize 

their fitness at current prey and alternative resource densities. Section 2.1 describes how ant preferences affect prey and 

predator population dynamics, while Section 2.2 describes how ant’s foraging preferences depend on the primary prey and 

the alternative resource densities. Combination of these mechanisms leads to a non-smooth dynamic model whose equilib- 

ria we analyze in Section 3 . In Section 4 we analyze the model numerically with respect to changes in alternative resource

density and ant colony size. 

2.1. Prey–predator dynamics 

We consider variable prey P and predator densities H following the Lotka–Volterra (LV) equations 

dP 

dt 
= rP 

(
1 − P 

K 

)
− aP H 

1 + quM 

(1a) 

dH 

dt 
= 

eaP H 

1 + quM 

− mH, (1b) 

where r is the prey per capita population intrinsic growth rate, and K is the environmental carrying capacity. Predation takes 

place with the maximum specific rate a without ant interference. Predators convert eaten prey into new births with effi- 

ciency e , and decline with mortality rate m . A fraction u ( 0 ≤ u ≤ 1 ) of the ant colony forages on prey supplied resources (i.e.,

plant’s nectar, aphid’s honeydew). Foraging ants defend prey by attacking, evicting or threatening predators, decreasing prey 

exploitation with a strength modeled by the interference constant q . Thus, ant preference u is also a proxy for the protection

level that prey receive from the ants, i.e., u = 0 means the prey is “not protected”, u = 0 . 5 means it is “half-protected”, and

u = 1 means it is “maximally protected”. 

We assume that both ant colony size ( M) and the supply rate of alternative sources ( F ) are fixed parameters of the

model that can be manipulated. On the other hand, we consider ant foraging preference u as an adaptive trait that varies

in response to changes in prey density P caused by dynamics (1) . Although M is fixed, the effective size of the ant’s colony

( uM) affecting the prey–predator interaction strength can vary between 0 and M. 

We stress that Eq. (1) is the Lotka–Volterra predator-prey model when ant preferences for prey are fixed. Thus, for 

fixed u dynamics of (1) always converge to a globally stable equilibrium. For K < m (1 + quM) / (ae ) only prey survive at the

equilibrium (P, H) = (K, 0) , while for K > m (1 + quM) / (ae ) both prey and predators coexist at globally stable equilibrium 

(P, H) = 

(
m (Mqu + 1) 

ae 
, 

r(Mqu + 1)(aeK − mMqu − m ) 

a 2 eK 

)
. 

As we will see in Section 2.2 , when ants are optimal foragers, their preference u for prey will become a function of the prey

density, which makes model (1) highly nonlinear and with rich set of attractors. 
3 
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2.2. Adaptive ant preferences 

Let us assume that ants feed on prey (P ) supplied resources with preference u and on alternative resources (F ) with

preference 1 − u . The payoff U ( V ) that an ant obtains when foraging on resources supplied by P ( F ) depends on supply vs.

consumption balances and on the distribution of the colony foraging preferences. Appendix A shows that these payoffs are 

U = 

sP 

w + buM 

, V = 

F 

w + b(1 − u ) M 

, (2) 

where s is the prey per capita resource supply or secretion rate, b is the specific ant consumption rate of the resource, and

w is the loss rate of unconsumed resources (e.g., evaporation, re-absorption, or consumed by a different consumer). 1 Since 

survival and reproduction of ants depends on resource consumption we define a proxy for ant fitness as the average payoff

W = u 

(
sP 

w + buM 

)
+ (1 − u ) 

(
F 

w + b(1 − u ) M 

)
. (3) 

Next, we consider the optimal preference u that maximizes ant fitness for given prey population abundance P , alternative

resource supply rate F , and ant colony size M. Calculations in Appendix A show that the evolutionarily stable strategy (ESS)

for fitness (3) is 

u = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if P ≤ π0 

sP 

sP + F 
+ 

w (sP − F ) 

b(sP + F ) M 

if π0 < P < π1 

1 if P ≥ π1 , 

(4) 

where 

π0 = 

(
w 

w + bM 

)
F 

s 
(5a) 

π1 = 

(
w + bM 

w 

)
F 

s 
, (5b) 

are prey density thresholds at which ant foraging switches between specialization and generalism. When prey density is 

below π0 , prey resource supply is too low and it is better for ants to switch entirely to alternative resources, thus u = 0 .

Above π1 the ants do the opposite and forage exclusively on the resource provided by the prey, i.e., u = 1 . Between these

critical values, ant preference for the prey resource increases with prey density P , see Fig. 1 . Because ∂ 2 u 
∂P 2 

= − 2 F s 2 (bM+2 w ) 

bM(F + Ps ) 3 
< 0

for π0 < P < π1 , u (P ) is concave in this interval. As ant population M increases to infinity, π0 → 0 and π1 → ∞ , and ant

preference for the prey resource converges to sP 
sP+ F . In this case ant preferences for the two resources match supply resource

ratio u 
1 −u ≈ sP 

F which is called the Parker’s matching principle [39] , a special case of the Ideal Free Distribution [27] . 

Thus, our model combines predator-prey population dynamics described by Lotka–Volterra Eq. (1) and ant preferences 

ESS (4) that track instantaneously predator and prey population densities. This corresponds to time scale separation, where 

ant foraging behavior operates on a much faster time scale when compared to predator-prey population dynamics. Thus, 

changes in predator and prey population densities drive ant foraging preferences that, in turn, influence population dynam- 

ics, leading to a complex feedback between ant behavior and demography. In Section 3 we analyze conditions for equilibrium

existence and stability, and in Section 4 we study population-preference dynamics as a function of F and M using numerical

methods of bifurcation analysis. Table 1 gives a complete list of all model parameters together with their values. 

Equations in (1) with preferences given in (4) form a piecewise-smooth system [47] , where the right-hand-side of (1) is

continuous in state variables, but its Jacobian is not defined at thresholds π0 and π1 (5) . This also happens in other con-

sumer preference models [41–43] , where preferences are piecewise continuous, or in harvesting models where harvest- 

ing rates are piecewise continuous [55] . In contrast, when controls such as adaptive preferences [28] or harvesting rates

[56] have “jump” discontinuities, we have a Filippov system where dynamical phenomena such as sliding can occur [5,9] . 

3. Equilibria and local dynamics 

System (1) has a trivial equilibrium (P, H) = (0 , 0) and a prey-only equilibrium (K, 0) . In the absence of ant adaptation, i.e.,

assuming fixed u , a single coexistence equilibrium P ∗ > 0 , H 

∗ > 0 can exist at the intersection of prey and predator isoclines

[4,35] . By setting dP 
dt 

= 

dH 
dt 

= 0 in (1) , we get non-trivial isoclines 

H = 

r(1 + quM) 

a 

(
1 − P 

K 

)
(6a) 
1 For simplicity we assume the same values of b and w for both ant food sources, implying a similar resource ecology. 

4 
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P = 

m (1 + quM) 

ea 
, (6b) 

for prey and predators, respectively. The prey isocline (6a) is a decreasing line intersecting the prey axis at P = K and the

predator axis at H = 

r(1+ quM) 
a , respectively. The predator isocline (6b) is a line parallel to the predator axis. If K > P ∗ =

m (1+ quM) 
ea the isoclines intersect at interior predator-prey equilibrium 

(P ∗, H 

∗) = 

(
m (1 + quM) 

ea 
, 

r(1 + quM) 

a 

(
1 − m (1 + quM) 

eaK 

))
(7) 

which is globally asymptotically stable [4,35] . We observe that as the ant preference u for the prey resource increases,

the prey population density increases too, due to increased protection of prey by ants. On the other hand, dependence of

predator equilibrium density on ant preference u is quadratic with maximum at u = 

aeK−2 m 

2 mMq provided 

2 m 

ae < K < 

2 m (Mq +1) 
ae .

For smaller values of M satisfying K > 

2(mMq + m ) 
ae , the maximum predator equilibrium density is reached when u = 1 . On

the other hand, when K < 

2 m 

ae , maximum predator equilibrium density is reached at u = 0 . This non-monotonic response

of the predator equilibrium density on u is a consequence of two opposite mechanisms. First, as ant interference increases

(i.e., as quM increases), equilibrium prey density increases which also leads to increase in the predator population size. 

Second, increased ant interference decreases predator attack rate aP 
1+ quM 

. Combination of these two mechanisms leads to the 

hump-shaped dependence of the predator equilibrium population size on ant interference. 

In the next section we show the effects of adaptive ant foraging behavior on prey and predator isoclines and stability. 

3.1. Prey and predator isoclines under adaptive ant preference 

Now we assume that ant preference for the prey resource u , given in (4) , tracks instantaneously current prey and predator

population densities and we study the feedback between rapid ant adaptation and predator-prey population dynamics. Since 

ant preference is a continuous, non-linear function of prey density P and it is defined piece-wise, we show that isoclines

are defined piece-wise too and multiple coexistence equilibria are possible. 

First we study the non-trivial predator isocline which is formed by points in the prey-predator phase space that satisfy 
dH 
Hdt 

= 0 in (1b) with u given in (4) . This equation has up to four solutions 

P ∗0 = 

m 

ea 
if P ∗0 ≤ π0 (8a) 

P ∗− = 

ms ( bMq + b + qw ) −abeF −
√ 

( ms ( bMq + b + qw ) −abeF ) 
2 + 4 abeF ms ( b−qw ) 

2 beas 
if π0 < P ∗− < π1 (8b) 

P ∗+ = 

ms ( bMq + b + qw ) −abeF + 

√ 

( ms ( bMq + b+ qw ) −abeF ) 
2 + 4 abeF ms ( b−qw ) 

2 beas 
if π0 < P ∗+ < π1 (8c) 

P ∗1 = 

m ( 1 + qM ) 

ea 
if P ∗1 ≥ π1 (8d) 

where P ∗
0 

< P ∗
1 

and P ∗− ≤ P ∗+ , provided P ∗− and P ∗+ are real. It is proved in Appendix B that at most three of the four solu-

tions can be positive for a given set of parameter values. This shows that the predator non-trivial isocline can consists of

maximum three segments that are vertical lines in the prey-predator phase space (see the vertical solid lines in Fig. 2 ). The

following cases are possible (see Appendix B ): 

Case 1: π0 < P ∗
0 
, π1 < P ∗

1 
: the predator isocline consists of single segment P = P ∗

1 
( Fig. 2 a). 

Case 2: π0 > P ∗
0 
, π1 > P ∗

1 
and 

a: P ∗− and P ∗+ are real: the predator isocline consists of three vertical segments P = { P ∗
0 
, P ∗−, P ∗+ } ( Fig. 2 b). 

b: P ∗− and P ∗+ are not real: the predator isocline consists of single segment P = P ∗0 ( Fig. 2 c). 

Case 3: π0 < P ∗
0 
, π1 > P ∗

1 
: the predator isocline consists of single segment P = P ∗+ ( Fig. 2 d). 

Case 4: π0 > P ∗0 , π1 < P ∗1 : the predator isocline consists of three segments P = { P ∗0 , P ∗−, P ∗1 } ( Fig. 2 e). 

Different segments of the predator isocline correspond to qualitatively different ant preferences for the prey resource. 

Segments at P ∗0 (8a) and P ∗1 (8d) correspond to lowest and highest values of prey equilibrium density, where ants specialize

on alternative resources (u = 0) or prey resources (u = 1) , respectively. Segments of the predator isocline at P ∗− and P ∗+ (8b),

(8c) correspond to intermediate predator preference for prey and alternative resources (0 < u < 1) . 
5 
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Fig. 2. Isoclines of system (1) under adaptive ant preference (4) . Equilibria E i = (P ∗
i 
, H ∗

i 
) lie at intersections of the prey isocline (9) (black solid curve) and 

segments of the predator isocline at P = P ∗
i 

(8) (gray vertical lines). Black dots (circles) represent stable (unstable) equilibria. Dashed lines indicate P = π0 

and P = π1 thresholds (5) . Parameters used in panels are those given in Table 1 with M = 50 and q , and F indicated below each panel. 

 

 

 

 

 

 

 

 

 

 

Second, the non-trivial prey isocline satisfies dP 
Pdt 

= 0 in (1a) with u (P ) given in (4) . As a result, prey isocline H = �(P ) is

a continuous, piece-wise defined function 

�(P ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

r(K − P ) 

aK 

if P ≤ π0 

r(K − P ) 

aK 

(1 + qMu (P )) if π0 < P < π1 

r(K − P ) 

aK 

(1 + qM) if P ≥ π1 , 

(9) 

shown as the black curve in Fig. 2 . We observe that prey isocline segments for P ≤ π0 and P ≥ π1 are linearly decreasing

with prey density, and the second segment decreases faster than the first segment. Because we know that u (P ) is increasing

(i.e., d u/d P > 0 ) and concave (i.e., d 2 u/dP 2 < 0 ) for π0 < P < π1 , we get d 2 �
dP 2 

= 

rqM 

aK 

(
(K − P ) ∂ 

2 u 
∂P 2 

− 2 ∂u 
∂P 

)
< 0 for P < K, i.e., the

segment of the prey isocline for P ∈ [ π0 , π1 ] is concave too. The prey isocline is continuous, with values �(π0 ) = 

r(K−π0 ) 
aK and

�(π1 ) = 

r(1+ qM)(K−π1 ) 
aK . Depending on K and thresholds π0 and π1 , �(P ) has the following number of pieces in the positive

part of the prey–predator phase plane: (i) if K > π1 the prey isocline consists of three pieces, i.e., P ≤ π0 , π0 < P < π1 and

P ≥ π1 ; (ii) if π0 < K < π1 the prey isocline consists of two pieces P ≤ π0 and π0 < P < π1 ; and (iii) if K < π0 the prey

isocline consists of P ≤ π0 piece only which is linear. In all three cases the prey isocline intersects the H-axis at H = 

r 
a and

the P -axis at P = K. Prey density increases in the region below the isocline, i.e., where H < �(P ) , and decreases in the region

above where H > �(P ) . Fig. 2 shows the case where π < K and the prey isocline consists of three pieces. 
1 

6
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3.2. Equilibria and local stability 

Coexistence equilibria E i := (P ∗
i 
, H 

∗
i 
) correspond to intersections of prey and predator isoclines. Sub-index i = 0 , 1, –, +

indicates whether ants specialize on alternative resources (i = 0) , prey resources (i = 1) , or consume both resources ( i = −
or i = + ). At an equilibrium prey density P ∗

i 
is given in (8) and predator density H 

∗
i 

= �(P ∗
i 
) in (9) . From (9) coexistence

requires that P ∗
i 

< K, i.e., the prey equilibrium density cannot be higher than is the environmental carrying capacity. In

addition, the existence of E 0 , E 1 , E − or E + in the first quadrant of the prey–predator phase plane also depends on the supply

rate of alternative resources F and colony size M, which control ant preferences u given in (4) . Now we classify coexistence

equilibria as a function of K, F and M. 

Equilibrium E 0 in which ants specialize on alternative resources (u = 0) 

E 0 = (P ∗0 , H 

∗
0 ) = 

(
m 

ea 
, 

r(eaK − m ) 

ea 2 K 

)
, (10) 

exists provided (i) P ∗
0 

< π0 and (ii) P ∗
0 

< K. Using (5a) and (8a) condition (i) becomes 

F > φ0 (M) := 

sm (w + bM) 

eaw 

, (11) 

and (ii) becomes 

m 

ea 
< K. (12) 

Equilibrium E 1 in which ants specialize on resources supplied by prey (u = 1) 

E 1 = (P ∗1 , H 

∗
1 ) = 

(
m (1 + qM) 

ea 
, 

r(1 + qM)(eaK − m (1 + qM)) 

ea 2 K 

)
, (13) 

exists provided (i) P ∗
1 

> π1 and (ii) P ∗
1 

< K. Using (5b) and (8d) condition (i) becomes 

F < φ1 (M) := 

smw (1 + qM) 

ea (w + bM) 
, (14) 

and (ii) becomes 

M < 

aeK − m 

mq 
. (15) 

Equilibria E − and E + in which ants are generalists (0 < u < 1) 

E − = (P ∗−, H 

∗
−) = 

( 

m (1 + qu (P ∗−) M) 

ea 
, 

r(1 + qu (P ∗−) M) 
(
eaK − m (1 + qu (P ∗−) M) 

)
ea 2 K 

) 

(16) 

E + = (P ∗+ , H 

∗
+ ) = 

( 

m (1 + qu (P ∗+ ) M) 

ea 
, 

r(1 + qu (P ∗+ ) M) 
(
eaK − m (1 + qu (P ∗+ ) M) 

)
ea 2 K 

) 

(17) 

require that (i) P ∗−, P ∗+ are real and (ii) P ∗− < K, P ∗+ < K. Setting the square root in (8b) and (8c) equal to 0 condition (i) becomes

M > 

abeF − ms (b + qw ) + 2 

√ 

abems (qw − b) F 

bmsq 
, (18) 

and after some algebra conditions (ii) can be rewritten as 

M < 

b(eaK − m )(F + sK) + mqw (F − sK) 

bmqsK 

, (19) 

for both P ∗− and P ∗+ . 
Notice that if (12) does not hold then (15) does not hold for M ≥ 0 and E 1 is not feasible. From here onwards we will

assume that (12) holds, i.e., the environmental carrying capacity K is large enough so that some interior equilibria exist. This

means that prey are regulated by predators. Next, we use conditions (11), (14) and (18) to classify predator-prey equilibria

with respect to the supply rate of alternative resources F and ant colony size M: 

Case I: When alternative resource supply rate is low and satisfies F < min (φ0 , φ1 ) , there is only one coexistence equi-

librium E 1 (13) where ants specialize on prey resources (u = 1) . This corresponds to predator isocline Case 1 where

π0 < P ∗0 , π1 < P ∗1 : see Fig. 2 a where a single predator isocline segment at P ∗1 (8d) intersects the P > π1 part of the prey

isocline (9) . 

Case II: When alternative resource supply rate is high and satisfies F > max (φ , φ ) , there are two possibilities 
0 1 
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a: If condition (18) is true, there are three coexistence equilibria { E 0 , E −, E + } . At E 0 (10) ants prefer alternative re-

sources exclusively (u = 0) , at E − (16) and at E + (17) ants consume both prey and alternative resources. This cor-

respond to predator isocline Case 2.a ( π0 > P ∗
0 
, π1 > P ∗

1 
, Fig. 2 b) where the isocline segment at P ∗

0 
(8a) intersects

the P < π0 part of the prey isocline, and the two segments at P ∗− (8b) and P ∗+ (8c) intersect the π0 < P < π1 part

of the prey isocline. 

b: If condition (18) is false, there is one coexistence equilibrium E 0 where ants specialize on alternative resources (u =
0) . This correspond to predator isocline Case 2.b ( π0 > P ∗

0 
, π1 > P ∗

1 
, Fig. 2 c) where the predator isocline segment

at P ∗0 intersects the π0 < P part of the prey isocline. 

Case III: Alternative resource supply rate is intermediate and satisfies φ1 < F < φ0 . There is only one coexistence equilib-

rium E + where ants are generalists (0 < u < 1) . This correspond to predator isocline Case 3 ( π0 < P ∗
0 
, π1 > P ∗

1 
, Fig. 2 d)

where a single predator isocline segment at P ∗+ intersects the π0 < P < π1 part of the prey isocline. 

Case IV: Alternative resource supply rate is intermediate and satisfies φ0 < F < φ1 . There are three coexistence equilibria

{ E 0 , E −, E 1 } . At E 0 and E 1 ants specialize on alternative resources (u = 0) or prey resources (u = 1) , respectively, at E −
ants are generalists (0 < u < 1) . This correspond to predator isocline Case 4 ( π0 > P ∗

0 
, π1 < P ∗

1 
, Fig. 2 e) where predator

isocline segments at P ∗0 , P 
∗− and P ∗1 intersect the P < π0 , π0 < P < π1 and P > π1 parts of the prey isocline, respectively.

Like in standard prey–predator models, the geometry of isoclines intersections determines local stability of the prey–

predator equilibrium. We assume that the prey equilibrium density is different from π0 or π1 . This is because as we use

linear stability analysis, we need that the right-hand side of model (1) is differentiable. A general result in predator-prey

theory is that provided the prey isocline is decreasing at the equilibrium with prey density and the predator isocline is

vertical, the equilibrium is locally asymptotically stable [4,26,35] . Thus, equilibrium states where ants specialize either on 

the alternative resource ( E 0 ) or on the prey resource ( E 1 ) are always locally asymptotically stable because at these points

the prey isocline always decreases (see, e.g., E 1 in Fig. 2 a and e and E 0 in Fig. 2 b,c,e). 

For equilibrium cases where ants are generalists, i.e., E − or E + , Appendix C shows that E − is a saddle (e.g., Fig. 2 b and

e), and E + is unstable when the prey isocline is increasing at this equilibrium (e.g., Fig. 2 d) or E + is locally stable when the

prey isocline is decreasing (e.g., Fig. 2 b). 

4. Global predator-prey population & ant preference dynamics 

In previous sections we showed how predator-prey equilibria change as ant colony size (M) and alternative resources 

supply rate (F ) vary. We determine that local stability depends on the relative position of equilibria with respect to ant

specialization–generalism thresholds P = π0 and P = π1 given in (5) . This shows how global predator-prey population dy- 

namics and ant preference dynamics change with F and M, using analytical methods. Now we will consider parameters from 

Table 1 , at low ( q = 0 . 005 ), moderate ( q = 0 . 02 ), and strong ( q = 0 . 03 ) ant interference on predation (see Appendix D for

details) and in Section 4.1 we do bifurcation analysis along F gradient, and in Section 4.2 bifurcation analysis with respect

to both F and M. 

4.1. Effect of alternative resource supply F 

Fig. 3 shows bifurcation diagrams of prey (left column) and predator (right column) densities with respect to increasing 

alternative resource supply rate F at fixed ant colony of size M = 50 . Equilibria where predators specialize on the prey re-

source ( E 1 ), or on the alternative resource ( E 0 ) are independent of F and they are represented by horizontal line segments.

At intermediate values of alternative resource supply F the two equilibria E 0 and E 1 are connected by a curve of equilibria

corresponding to E + or E −. The diagrams are divided by vertical lines at F = φ0 (11) and φ1 (14) into four regions that corre-

spond to the four cases in classification of predator-prey equilibria given in Section 3.2 . Prey diagrams show ant preference

thresholds π0 and π1 as a function of F (see dashed lines). The effect of F on the global dynamics varies greatly with the

intensity of ant interference on predators q . 

Weak ant interference ( q = 0 . 005 ) Fig. 3 top row shows that equilibria E 1 and E 0 in regions I and II respectively, are

connected by a curve of equilibria E + in region III where ants are generalist (0 < u < 1) . E 1 is globally stable and coincides

with E + at the threshold F = φ1 ≈ 0 . 84 . E + is globally stable up to F ≈ 1 . 184 where a super-critical Hopf bifurcation HB

occurs. This bifurcation gives rise to a globally stable limit cycle that annihilates as F approaches the hb point at φ0 = 1 . 5

boundary, where E + and E 0 coincide with the threshold π0 at which population dynamics are non-smooth. The limit cycle 

dynamics for F = 1 . 2 (marked in Fig. 3 a by the 	 mark) is shown in Fig. 4 a. 

Moderate ant interference ( q = 0 . 02 ) Fig. 3 middle row shows that increased ant interference leads to more complex

predator-prey population dynamics. Like in the previous case, equilibrium E 1 in region I ( 0 ≤ F ≤ φ1 = 1 . 33 ) is globally sta-

ble. Equilibrium E 0 in region II ( F ≥ φ0 = 1 . 5 ) is locally stable, but the stability is not global. Equilibria E 1 and E + coincide

at φ1 ; E 0 and E − coincide at φ0 , and equilibria E − and E + collide and vanish at the saddle-node bifurcation SN (F ≈ 1 . 53) .

Going left-to-right along the F axis illustrates transitions between equilibrium cases I, III, II.a & II.b : single equilibrium E 1 
in region I is replaced by single equilibrium E + in region III , then follow equilibria { E + , E −, E 0 } in region II , until point SN

from which on only E remains. 
0 
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Fig. 3. Bifurcation diagrams with respect to alternative resource supply F at M = 50 . Black solid (dashed) lines are stable (unstable) equilibria E i = (P ∗
i 
, H ∗

i 
) . 

Lines with circles are stable limit cycles, and dotted lines are unstable limit cycles. SN stands for saddle–node bifurcation , HB & hb denote Hopf bifurcation , 

and FC & fc denote fold bifurcation of limit cycles. Limit cycles also fold at lp1 and lp2 . Vertical lines at F = φ0 and φ1 (11), (14) , dashed) separate 

equilibrium cases I, II, III, IV . Increasing lines π0 and π1 (dashed, left column only) are ant specialization and generalism thresholds (5) . Parameters from 

Table 1 ; q indicated on the labels; triangles (	 ) indicate F -values considered by Fig. 4 . 
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Fig. 4. Global dynamics predicted by Fig. 3 for M = 50 . Locally stable equilibria are shown as dots, unstable equilibria as circles. Locally stable limit cycles 

(solid curves) are shown together with unstable cycles (dashed curves). Parameters are taken from Table 1 with q and F given below panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As F increases, equilibrium E + loses its stability at a super-critical HB (F ≈ 1 . 36) giving rise to stable and unstable limit

cycles . Unlike the case of Fig. 3 a and b where the limit cycle is globally stable and restricted to region III , Fig. 3 c and d

displays a branch of limit cycles spanning regions III and II , from point HB to point hb where E 0 and E − coincide at φ0 .

Limit cycles switch orientation and stability at several folding points lp1 (F ≈ 1 . 363) , lp2 (F ≈ 1 . 385) , fc (F ≈ 1 . 352) and

FC (F ≈ 1 . 921) . Thus, there are two sub-branches of locally stable limit cycles: the short one lp1–lp2 and the longest one

fc–FC . And there are three unstable sub-branches of limit cycles: two short ones lp1–HB and fc–lp2 and the longest one

hb–FC . 

Unstable limit cycles delineate boundaries of several attractors in the prey–predator phase plane. For example, Fig. 3 c and

d shows that both locally stable limit cycles branches overlap with the unstable cycle branch lp1–lp2 at 1 . 363 < F < 1 . 385 ,

and Fig. 4 b shows the corresponding population dynamics at F = 1 . 37 (marked in Fig. 3 c and d by the 	 mark), where

unstable equilibrium E + is surrounded by two stable limit cycles separated by an unstable cycle. Thus, a moderately small 

perturbation of point E + leads to low amplitude oscillations, but initial conditions far enough from E + (e.g., near (0,0) or

(K, 0) ) lead to large amplitude oscillations instead. An unstable cycle also causes equilibrium E 0 to be only locally stable

between hb and FC (1 . 5 < F < 1 . 921) , and globally stable beyond FC where limit cycles do not exist anymore (F > 1 . 921) .

Fig. 4 c documents predator-prey dynamics at F = 1 . 8 (denoted by the right 	 mark in Fig. 3 c and d), where the unstable

limit cycle separates domains of attraction of equilibrium E 0 and the large amplitude oscillation limit cycle. 

Strong ant interference ( q = 0 . 03 ) Fig. 3 bottom row displays an important difference with previous cases. When ant

interference is strong, φ0 = 1 . 5 ≤ φ1 ≈ 1 . 667 , which contrasts with the previous cases where φ1 < φ0 . Like in the condition

of moderate interference (q = 0 . 02) , there is a continuous curve of equilibria where E 1 changes to E + at F = φ1 , E + changes

to E − at SN (F ≈ 1 . 754) , and E − changes to E 0 at hb (F = φ0 ) . This time however, going left-to-right along the F axis

illustrates transitions between equilibrium cases I, IV, II.a & II.b because the globally asymptotically stable equilibrium E 1 in 

region I is followed by three equilibria { E 1 , E −, E 0 } in region IV , then by three equilibria { E + , E −, E 0 } in region II , until point

SN from which only E remains. 
0 
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Here again the bifurcation diagram predicts multiple stable and unstable limit cycles. The branch of limit cycles spans 

regions IV and II , connecting points HB and hb and switching orientation and stability at several folding points lp1 (F ≈
1 . 716) , lp2 (F ≈ 1 . 716) , fc (F ≈ 1 . 699) and FC (F ≈ 2 . 2) . Unstable limit cycles originate in region IV at the hb point (F = φ0 ) ,

where equilibria E 0 and E − coincide and the prey density is equal to π0 . At this point population dynamics are non-smooth.

This is well below the HB point (F ≈ 1 . 72) where E + loses stability in region II . Fig. 3 e and f show that limit cycles are

always unstable in region IV , and stable limit cycles occur only in region II . 

For φ0 < F < φ1 , Fig. 4 d ( F = 1 . 613 indicated by the left 	 mark in Fig. 3 e and f) shows that the unstable limit cycle in

region IV separates the regions of attraction of equilibria E 0 and E 1 . Initial conditions inside the cycle lead towards E 0 while

initial conditions outside lead towards E 1 . For F > φ1 we have two interesting examples from region II where existence of

two unstable limit cycles leads to alternative states, either a stable coexistence at equilibrium E 0 or E + , or non-equilibrium

coexistence along a locally stable large amplitude limit cycle. Fig. 4 e illustrates the dynamics for F = 1 . 714 (indicated by the

middle 	 mark in Fig. 3 e and f) in the narrow interval between fc and lp2 , where points E 0 , E −, E + occur together with two

unstable limit cycles and one stable limit cycle. Initial conditions inside one or the other unstable limit cycle lead towards

stability at equilibrium E 0 or E + , but initial conditions outside of both cycles lead towards large amplitude predator-prey

oscillations along the locally stable limit cycle. A small increase in alternative resource supply rate to F = 1 . 732 (indicated

by the right 	 mark in Fig. 3 e and f) destabilizes E + and the limit cycle centered at this equilibrium disappears ( Fig. 4 f).

Qualitatively, the global dynamics are similar to the situation in Fig. 4 c. 

Fig. 3 a,c,e shows that the maximum amplitude of locally stable limit cycles increases with q . As ant interference increases,

oscillations cause ant preferences to vary periodically between specialization and generalism. This happens at those values 

of F where minima or maxima of limit cycles cross π0 and/or π1 threshold lines. This is also documented in Fig. 4 when

the locally stable limit cycle crosses these thresholds. 

Finally, Fig. 3 shows that as q increases locally stable limit cycles continue to exist for higher F -values. For q = 0 . 005

stable oscillations only occur if F < φ0 = 1 . 5 , for q = 0 . 02 they occur for 1 . 352 < F < 1 . 921 , and for q = 0 . 03 for 1 . 699 < F <

2 . 2 . 

4.2. Effect of ant colony size M

Fig. 5 shows which attractors, locally stable equilibria or locally stable limit cycles , occur at different combinations of al-

ternative resource supply rate F and ant colony size M for weak (q = 0 . 005) , intermediate (q = 0 . 02) , and strong (q = 0 . 03)

level of ant interference on predation. The φ0 (11) line (dashed) and φ1 (14) curve (dashed) divide the F vs. M parameter

space in up to four regions I, II, III and IV corresponding to equilibrium cases I, II, III and IV , respectively, from Section 3.2 .

We observe that φ0 is a line with a positive slope while φ1 is a hyperbola. As q increases, the slope of φ1 changes

from decreasing ( Fig. 5 a) to increasing ( Fig. 5 b and c). Both lines intersect at (M, F ) = 

(
0 , sm 

ea 

)
, and, provided qw > 2 b, at

(M, F ) = 

(
w (qw −2 b) 

b 2 
, 

ms (qw −b) 
abe 

)
( Fig. 5 c). The plane is further divided by curves corresponding to saddle–node bifurcations SN

(solid red), Hopf bifurcations HB (solid blue) and fold points of limit cycles fc and FC (solid black) from Fig. 3 (the hb line

coincides with φ0 ). 

Weak ant interference ( q = 0 . 005 ) For this condition Fig. 5 a shows regions I, III and II , corresponding to coexistence

at E 1 , E + and E 0 , respectively, i.e., equilibrium cases I, III and II.b , respectively. Coexistence is stable for most F and M

combinations except for the part of region III between the HB and φ0 lines where a globally stable limit cycle occurs

(cf. Fig. 3 a). 

Moderate ant interference ( q = 0.02 ) . For this condition Fig. 5 b shows regions I, III and II again, but predator-prey pop-

ulation dynamics are considerably more complex. Whereas regions I and III correspond to equilibrium cases I and III (with 

locally stable equilibria E 1 and E + , respectively), region II covers equilibrium cases II.a and II.b : there are two locally stable

equilibria E + and E 0 between φ0 and SN lines, or only E 0 below the SN line. Thus, equilibrium E + and Hopf bifurcations HB

exist in regions III and II . In contrast with Fig. 5 a where limit cycles reside entirely in region III , Fig. 5 b shows that stable

limit cycles bounded by φ1 , fc and FC lines span regions III and II . 

Strong ant interference ( q = 0 . 03 ) Fig. 5 c shows that all four parameter regions I to IV with qualitatively different equi-

libria can co-exist. There is a gray region where coexistence between prey and predators is not possible because conditions 

(15) and (19) are not met and predators are not viable (this region is above M = 150 , thus not displayed in Fig. 5 a and b).

In contrast with previous Fig. 5 b, in this bifurcation diagram Hopf bifurcations ( HB ) and stable limit cycles occur in region

II only, bounded by the φ1 , fc and FC lines. There are limit cycles in region IV , but they are unstable. 

To sum up, Fig. 5 shows that increasing ant colony size M increases the number of parameter combinations where prey 

get stable protection from predation, either fully, like in equilibrium E 1 where ants specialize on prey resources (u = 1) ,

or partially like in E + where ants are generalists and forage on prey and alternative food resources (0 < u < 1) . When q is

large enough, the full protection at E 1 is only locally stable in region IV , but Figs. 3 e,f and 4 d indicate that the equilibrium

without protection at E 0 has a very small attraction region. Finally, Fig. 5 b and c shows that ant interference extends to

non-equilibrium conditions via a limit cycle along which ant foraging preference changes periodically. As a result, outcomes 

without any prey defense from predation, i.e., E 0 where u = 0 , are globally stable only below the FC line in region II . Indeed,

as ant interference strength (q ) increases, the area of global stability for E 0 on parameter space F vs. M decreases, from the

totality of region II to only a part of it. 
11 
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Fig. 5. 2D bifurcation diagram for prey-predator dynamics with adaptive ant foraging preference with respect to the alternative resource supply rate F 

and the ant colony size M. Dashed lines φ0 (11) and φ1 (14) divide the M − F plane in four regions ( I, II, III, IV ) depending on whether ants behave as 

generalists or specialists at the corresponding predator-prey equilibrium. SN (red line) denotes the saddle–node bifurcation, HB (blue line) denotes the Hopf 

bifurcation, fc & FC (black lines) denote folds of limit cycles (see Fig. 3 ). E 0 , E 1 , E + and “cycles” indicate a region’s attractor(s). Small regions are numbered: 

[1] = [ E 0 , E + ], [2] = [ E 0 , cycles], [3] = [ E + , cycles], [4] = [ E 0 , E + , cycles]. A portion of panel (c) is expanded in panel (d) to help visualize the HB line between 

fc and SN . The gray area denotes the set of parameters at which no predator-prey coexistence is possible due to low environmental carrying capacity K, 

i.e., at these parameter values inequalities given in (19) and (15) do not hold. Parameters are taken from Table 1 with values of q indicated below panels. 

 

 

5. Discussion 

This article studies effects of mutualisms based on exchange of resources for defense, protection or deterrence against 

predation on predator-prey population dynamics. Our study demonstrates that interference of adaptive mutualists with 

predator-prey population dynamics leads to complex dynamics, including coexistence at alternative stable states, limits cy- 

cles, or a combination of both. This article contributes to a growing body of studies about the dynamics of mutualistic–

antagonistic communities and hybrid interactions [13,30–34] . The majority of these studies are based on mutualisms such 

as pollination or seed dispersal, in which the mutualist interacts directly with plants (here prey) but not with herbivores 

(here predators). In this article the mutualist interacts with both parties of a victim–exploiter pair at the same time. 

Our work is relevant for systems in which ants provide defense for plants against their insect herbivores, or de- 

fense to herbivores against their insect predators. The first category includes the well known associations such as Acacia–

Pseudomyrmex [23] and those involving Macaranga sp. and symbiont and non-symbiont ants [19] and the plant–ant interac- 

tion networks in cerrado savannas in Brazil [38] . The second category includes associations of ants with aphids, scale insects,

or lepidopteran larvae [49] . Ant-based mutualisms are very relevant for the diversity and stability of plant–animal commu- 

nities, and for agroecosystems where insect herbivores, such as aphids or scale insects, can turn into pests when protected 

by ants [12,50,51] . 

Our model for three species, prey, predator and mutualistic ants, does not consider birth-and-death rates in the case of 

the mutualist population (unlike e.g., Addicott and Freedman [2] , Freedman et al. [10] , Rai et al. [40] where birth-vs-death
12 
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processes are considered implicitly or explicitly). Instead, ant recruitment is driven by foraging preferences for resources 

provided by the prey, against competing alternatives, resulting in more or less “visitations” of the prey–predator system by 

ants. Using analytical and numerical methods, we predict coexistence of predators and prey at alternative equilibria and/or 

along limit cycles. When ants specialize either on resources provided by the prey/plant or they specialize on the alternative 

resource, the prey isocline is decreasing with the prey density which leads to local stability of the corresponding equilibria 

similarly as in the Rosenzweig and MacArthur [45] predator-prey model. 

The Rosenzweig–MacArthur model considers handling time predators need to process prey which causes the prey isocline 

being hump-shaped and leads to emergence of a globally stable limit cycle. In this article we assume that handling time is

zero but it is adaptive preference of ants that tracks prey abundance once it passes a critical threshold (P > π0 ) that causes a

part of the prey isocline being hump-shaped. Thus, “effective” predation rates display diminishing returns, like in the type II 

functional response, used in Rosenzweig–MacArthur models. It is also important to stress that in the Rosenzweig–MacArthur 

model limit cycles result from decelerating predation due to handling time, which allows prey to escape predatory regulation 

[44,45] . In the current model, limit cycles arise because at high enough prey densities ant recruitment increases and ants

interfere with predators which decreases the predation rate. Indeed, without ant recruitment driven by adaptive ant foraging 

preferences, Eq. (1) would predict global predator-prey stability at an equilibrium. 

On contrary to a single stable limit cycle in the Rosenzweig–MacArthur predator-prey model, adaptive ant foraging can 

lead to multiple locally stable/unstable limit cycles. Here unstable cycles enable scenarios such as alternative stable cycles 

( Fig. 4 b), bi-stability ( Fig. 4 d), or outcomes in which the prey–predator interaction converges to stable coexistence or non-

equilibrium coexistence depending on initial conditions ( Fig. 4 c,e,f). These complex dynamics are more likely when ant 

interference on predation is strong (large q ) and foraging rates or efficiency are low (small b or large w , respectively).

The maximum amplitude of prey oscillations tends to increase with ant interference. Thus, strong interference by adaptive 

mutualistic foragers tends to destabilize prey–predator population dynamics and promotes stronger dependence on initial 

conditions. 

Another interesting feature of the model is the emergence of limit cycles and equilibria at switching boundaries φ0 

(11) or φ1 (14) in the M − F parameter space. In one case limit cycles arise at the transition from equilibrium E 0 (where

ants specialize on alternative resources) to E + (where ants are generalists feeding on both resources), similarly to the super-

critical Hopf bifurcation ( Fig. 4 a). In the other case where E 0 (which is locally stable equilibrium) collides with E − (which is

a saddle point), an unstable cycle emerges (see point hb in Fig. 3 ). This phenomenon corresponds to the situation in which

a segment of the predator isocline (8) overlaps with a switching threshold (5) in phase space ( Fig. 6 ). These bifurcations are

due to non-smoothness of predator-prey population dynamics (1) with adaptive ant preferences (4) . Such continuous but 

non-smooth dynamical systems are discussed in the book of Simpson [47] . Interestingly, an article by Wu et al. [55] demon-

strates the so called discontinuous Hopf bifurcations coinciding with harvesting thresholds under spatio-temporal dynamics. 

By combining methods of dynamical system analysis and evolutionary game theory, we predict that defensive benefits 

provided by ants to prey are variable, and depend on feedback between prey–predator population dynamics (1) , and behav-

ioral adaptations of ants which can forage on alternative sources (4) , like e.g., nectar (honeydew) or another plant (insect

prey). This drives the combined demography–behavior dynamics across conditions where prey interfere indirectly with pre- 

dation through the ants. This is an example of indirect trait-mediated interaction [TMI, 3] where one species ( prey ) affects a

second one ( predator ) by altering the behavior of a third species ( ant ). This differs from other kinds of indirect interactions,

such as apparent competition [22] or resource competition [16] , where two species affect one another by increasing the 

birth rates of a common predator in the first case, or by depleting their common resource in the second. In our model,

the third party (ants) does not experience such demographic changes but changes its foraging preferences. In previous 

works [28,41–43] we predicted that TMI can lead to alternative stable states for plant–pollinator and mixed mutualistic–

antagonistic interactions. In this paper we found that TMI enable even more complex outcomes, such as predator-prey 

coexistence at alternative non-equilibrium states (e.g., the two coexisting locally stable limit cycles in Fig. 4 b) and periodic

switching of ants between mutualism and neutralism (e.g., oscillations spanning conditions where ants interact ( 0 < u ≤ 1 )

or do not interact ( u = 0 ) with prey, see Fig. 4 b–e). 

According to our model, ant preferences, and thus predation interference, can be altered by alternative food sources 

(e.g., other prey, artificial sources). Specifically, increasing such alternative sources weakens defensive ant–prey mutualisms. 

This prediction finds support in experiments performed by Nagy et al. [36] , 37 ] with ant–aphid–plant systems. The re-

searchers demonstrated that supplementary food such as honey or sucrose solutions can divert ants ( Lassius niger ) from 

tending aphids ( Dysaphis plantaginea or Aphis pomi ), resulting in increased predation by their natural enemies. This illus- 

trates a potential method for improving biological control of insect pests. In this context, our prediction of alternative states, 

stable and unstable ones, are relevant and worth of experimental investigation. As shown in Figs. 3 and 5 , the interplay

between prey–predator oscillations and adaptive ant preference extends protection mutualism beyond the point where ants 

would reject interaction with prey at an equilibrium. However, such extended protection is periodic and can collapse if 

external perturbations (e.g., an herbicide or pesticide application) are strong enough. 

Population dynamics (1) with adaptive mutualism (4) also demonstrate hysteresis , e.g., sudden switch from the pest 

state (e.g., high aphid density) to the controlled state (low aphid density) that depends on the past history of the system

( Fig. 3 e and f). Similarly, hysteresis also occurs between coexistence along the large amplitude limit cycle and equilibrium E 0 
( Fig. 3 c–f). Interestingly, hysteresis phenomena are suspected to play an important role for diversity and dynamics of coffee–
13 
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ant agroecosystems [50] , but this system is much more complex than our model because the focal ant species ( Azteca sp. )

interacts with many plants and insects at the same time. 

In developing our models we left out several details in order to achieve a higher generality. Future work can modify

our model to consider particular details for specific systems. For example, in the case of ant–plant mutualisms there is 

evidence of trade-offs relating chemical defense and indirect defense by ants [17–20] . These relationships can be used to

relate resource supply rates (s ) with intrinsic growth rates (r) , in order to model the evolution of plant traits and co-

evolution of ant–plant mutualism. There is also the issue of costs associated with ant activity such as interference with 

insect pollinators. And in the case of ant–aphid mutualisms, the association can bring additional cleaning and dispersal 

benefits for the aphids [6,24] . 

5.1. Conclusion 

Foraging flexibility of prey-defending ants gives rise to complex prey–predator non-smooth dynamics in which alterna- 

tive states and multiple limit cycles are possible. Alternative resources can distract ants from foraging on prey resource, 

weakening the ant–prey mutualism and destabilizing predation dynamics. If ant interference effect on predation is strong 

enough, dynamical regimes with and we ithout ant defense coexist for a wide range of parameters, but such state is prone

to catastrophic collapse if the supply of alternative resources is high enough for ants to abandon the mutualism with the

prey entirely. 
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Appendix A. Ant fitness and adaptive preference 

Let R and S respectively represent the total amount of resources supplied by the prey and by alternative sources, both 

foraged at the same specific rate b. If uM ants are foraging on R , and (1 − u ) M are foraging on S, the average foraging rate

by M ants is 

bR uM + bS (1 − u ) M = b ( uR + (1 − u ) S ) M. 

We assume that ant fitness W is directly proportional to average per capita consumption rate 

W := uR + (1 − u ) S (A.1) 

where we neglected the common factor b that does not qualitatively change the results. 

Resources R and S obey production and consumption dynamics, 

dR 
dt 

= sP − wR − ubRM 

dS 
dt 

= F − wS − (1 − u ) bSM, 

where w is a common loss rate, s is per capita supply rate of prey resources, and F is the supply rate of the alternative

resources. We assume that resource dynamics are fast when compared with prey and predator population dynamics (1) and 

they are at the equilibrium at the current population densities, i.e., 

(R, S) = 

(
sP 

w + buM 

, 
F 

w + b(1 − u ) M 

)
. 

Substituting (R, S) in W gives us fitness function (3) in the main text. 

Now we calculate evolutionarily stable ant foraging preference. This is a strategy that cannot be invaded by any other 

mutant strategy [29] . Payoffs U and V (2) are given by the distribution 0 ≤ u ≤ 1 of resident ant foraging preferences and 

the fitness of a mutant ant playing a different strategy 0 ≤ ˜ u ≤ 1 in the resident population is 

W ( ̃  u , u ) = 

˜ u 

(
sP 

w + buM 

)
︸ ︷︷ ︸ 

U(u ) 

+(1 − ˜ u ) 
(

F 

w + b(1 − u ) M 

)
︸ ︷︷ ︸ 

V (u ) 

. 

We observe that (i) when P ≤ π0 = 

(
w 

w + bM 

)
F 
s then payoff when feeding solely on the alternative food is higher than payoff

when feeding on the primary prey resource for any resident distribution, i.e., V (u ) > U(u ) for all u ∈ [0 , 1] and the optimal

strategy is u ∗ = 0 . Similarly, (ii) when P ≥ π1 = 

(
w + bM 

w 

)
F 
s then payoff when feeding solely on the primary food is higher

than payoff when feeding on the alternative resource for any resident distribution, i.e., V (u ) < U(u ) for all u ∈ [0 , 1] , thus
14 
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u ∗ = 0 . For prey resource densities (iii) between π0 and π1 , the Nash equilibrium must satisfy U = V [21] which yields

u ∗ = 

sP 
sP+ F + 

w (sP−F ) 
b(sP+ F ) M 

. Outcomes (i, ii, iii) combine into Eq. (4) in the main text. Because 

W (u 

∗, u ) − W (u, u ) = 

(bM(F u + P s (u − 1)) + w (F − P s )) 2 

bM( F + P s )( bM( 1 − u ) + w )(bMu + w ) 
> 0 

for every u 
 = u ∗, 0 ≤ u ≤ 1 , the stability condition in the definition of evolutionary stability [21] holds and u ∗ is evolution-

arily stable. 

Appendix B. Predator isoclines 

When ants are adaptive foragers, the predator isocline consists of up to three vertical segments depending on parameters 

as we will show now. By definition, a non-trivial predator isocline is the set of all points in the prey-predator phase plane

that satisfy 

dH 

Hdt 
= 

(
eaP 

1 + qu (P ) M 

− m 

)
= 0 , (A.2) 

where u is given in (4) . Solving this equation for P we obtain the non-trivial isocline that is defined piece-wise 

P = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

P ∗0 if P ∗0 ≤ π0 

P ∗− if π0 < P ∗− < π1 

P ∗+ if π0 < P ∗+ < π1 

P ∗1 if P ∗1 ≥ π1 , 

(A.3) 

where 

P ∗0 = 

m 

ea 

P ∗− = 

ms (bMq + b+ qw ) −abeF −
√ 

(ms (bMq + b+ qw ) −abeF ) 2 +4 abeF ms (b−qw ) 

2 beas 

P ∗+ = 

ms (bMq + b+ qw ) −abeF + 
√ 

(ms (bMq + b+ qw ) −abeF ) 2 +4 abeF ms (b−qw ) 

2 beas 

P ∗1 = 

m (1+ qM) 
ea 

. 

(A.4) 

Fig. A.1 represents these solutions as intersections between the piece-wise function 

�(P ) := 

⎧ ⎨ 

⎩ 

m 

ea 
P ≤ π0 

m (1+ qM u (P) ) 
ea 

π0 < P < π1 

m (1+ qM) 
ea 

P ≥ π1 , 

(A.5) 
Fig. A.1. Plant equilibria given by intersections of the �(P) function (A.5) and the identity line P = P. 

15 
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and the 45 ◦ line. Function �(P ) comes from rewriting (A.2) as P = 

m (1+ qM u (P) ) 
ea and considering the three cases given in 

(4) . Function �(P ) is horizontal for P ≤ π0 and P ≥ π1 , and increasing for π0 < P < π1 ( 
d�
dP 

> 0) and concave-down there

( d 
2 �

dP 2 
< 0) . 

Now we show that the predator isocline consists of one or three vertical segments. We can classify the predator isocline

segments by their relative position with respect to thresholds π0 and π1 given in (5) . We observe that P ∗
0 

< π0 iff F >
ms (bM+ w ) 

aew 

:= φ0 and P ∗
1 

> π1 iff F < 

msw (1+ Mq ) 
ae (bM+ w ) 

:= φ1 . The first condition holds when the alternative resource input rate is 

relatively high when compared to the prey resource while the second condition requires just the opposite. 

We get the following qualitative cases, sketched in Fig. A.1 : 

1. π0 < P ∗0 and π1 < P ∗1 , i.e., F < min { φ0 , φ1 } . After some algebra we get that neither π0 < P ∗− < π1 , nor π0 < P ∗+ < π1 and

the predator isocline consists of a single segment P = P ∗1 (see “Case 1” in Fig. A.1 ). 

2. π0 > P ∗
0 

and π1 > P ∗
1 

, i.e., F > max { φ0 , φ1 } . After some algebra we get that P = P ∗
0 

is always a segment of the predator

isocline, and there are two possibilities: 

a) there are two additional segments P = P ∗− and P = P ∗+ (see curve “a” of “Case 2” in Fig. A.1 ) 2 . 

b) there are no more isocline segments (see curve “b” in “Case 2” in Fig. A.1 ). 

3. π0 < P ∗
0 

and π1 > P ∗
1 

, i.e., φ1 < F < φ0 . After some algebra we observe that π0 < P ∗+ < π1 and the predator isocline con-

sists of a single segment P = P ∗+ (see “Case 3” in Fig. A.1 ). 

4. π0 > P ∗
0 

and π1 < P ∗
1 

, i.e., φ0 < F < φ1 . After some algebra we observe that π0 < P ∗− < π1 and the predator isocline con-

sists of three segments P = P ∗
0 
, P = P ∗−, P = P ∗

1 
(see “Case 4” in Fig. A.1 ). 

Appendix C. Stability of equilibria of system (1) 

Consider system (1) . The prey isocline is the curve 

�(P ) := 

r(K − P )(1 + qM u (P ) ) 

aK 

. (A.6) 

in the first quadrant of the phase plane. Because ant foraging strategy u given in (4) is defined piece-wised, �(P ) is also

defined piece-wise. We observe that �(P ) is continuous and for P 
∈ { π0 , π1 } 
d�

dP 
= 

qM�(P ) 

1 + qu (P ) M 

{
du 

dP 
− r(1 + qu (P ) M) 2 

aqMK�(P ) 

}
, (A.7) 

where π0 and π1 are given in (5) . 

The predator isocline consists of vertical segments P = P ∗
i 

> 0 ( i = 1 , 2 , 3 ) in the phase space, where P ∗
i 

satisfies equation

P = �(P ) ( Appendix B, Fig. A.1 ). The curve (A.5) has a derivative for P 
∈ { π0 , π1 } 
d�

dP 
= 

mqM 

ea 

du 

dP 
. (A.8) 

A coexistence equilibrium is a point E i = (P ∗
i 
, H 

∗
i 
) where H 

∗
i 

= �(P ∗
i 
) > 0 . The Jacobian matrix of system (1) evaluated at

E i is ⎡ 

⎣ 

∂ ̇ P 
∂P 

∂ ̇ P 
∂H 

∂ ̇ H 
∂P 

∂ ̇ H 
∂H 

⎤ 

⎦ 

E i 

= 

⎡ 

⎣ 

P 
(

aqHM 

(1+ qu (P) M) 2 
du 
dP 

− r 
K 

)
− aP 

1+ qu (P) M 

eaqMPH 
(1+ qu (P) M) 2 

(
1+ qu (P) M 

qMP 
− du 

dP 

)
0 

⎤ 

⎦ 

(P ∗
i 
,H ∗

i 
) 

. 

Equilibrium E i is locally asymptotically stable if the trace and determinant of the Jacobian matrix 

T i = 

(
∂ ˙ P 

∂P 
+ 

∂ ˙ H 

∂H 

)∣∣∣∣
E i 

= P 

( 

aqMH 

∗
i 

(1 + qu (P ∗
i 
) M) 2 

du 

dP 

∣∣∣∣
P ∗

i 

− r 

K 

) 

�i = 

(
∂ ˙ P 

∂P 

∂ ˙ H 

∂H 

− ∂ ˙ P 

∂H 

∂ ˙ H 

∂P 

)∣∣∣∣
E i 

= 

ea 2 qMP ∗2 
i 

H 

∗
i 

(1 + qu (P ∗
i 
) M) 3 

( 

1 + qu (P ∗
i 
) M 

qMP ∗
i 

− du 

dP 

∣∣∣∣
P ∗

i 

) 

, 

are negative (T i < 0) and positive (�i > 0) , respectively. Since �(P ∗
i 
) = H 

∗
i 

, and substituting d u/d P from (A.7) we get 

T i = 

aP ∗
i 

1 + qu (P ∗
i 
) M 

d�

dP 

∣∣∣∣
P ∗

i 

. 
2 We disregard the non-generic case where P ∗− = P ∗+ (i.e., the �(P) curve is tangent to the 45 ◦ line) 
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We use (A.5) and (A.8) to replace 1 + qMu by ea �
m 

and 

∂u 
∂P 

by ea 
mqM 

d�
dP 

in the expression for the determinant which yields 

�i := 

e 2 a 3 P ∗2 
i 

H 

∗
i 

m (1 + qu (P ∗
i 
) M) 3 

( 

�(P ∗
i 
) 

P ∗
i 

− d�

dP 

∣∣∣∣
P ∗

i 

) 

= 

e 2 a 3 P ∗2 
i 

H 

∗
i 

m (1 + qu (P ∗
i 
) M) 3 

( 

1 − d�

dP 

∣∣∣∣
P ∗

i 

) 

, 

where P ∗
i 

= �(P ∗
i 
) at a non-trivial equilibrium. 

Next, we use Fig. 2 from the main text and Fig. A.1 from Appendix B , to determine stability of equilibrium points

E 0 , E −, E + , E 1 corresponding to P ∗0 , P 
∗−, P ∗+ , P ∗1 from Appendix B : 

• E 0 is locally asymptotically stable because d�
dP 

∣∣
P ∗

0 

= 0 ( Fig. A.1 panels II, IV) implies �0 > 0 and since d�
dP 

∣∣
P ∗

0 

< 0 (decreas-

ing prey isocline, e.g., see Fig. 2 b,c,e) implies T 0 < 0 . 
• E 1 is locally stable because d�

dP 

∣∣
P ∗

1 

= 0 ( Fig. A.1 panels I, IV) implies �1 > 0 and since d�
dP 

∣∣
P ∗

1 

< 0 (decreasing prey isocline,

e.g., see Fig. 2 a and e) implies T 1 < 0 . 

• E − is locally unstable because d�
dP 

∣∣
P ∗−

> 0 ( Fig. A.1 panels II.a, IV) implies �− < 0 . The eigenvalues of E − are 
T −±

√ 

T 2 −−4�−
2 ,

i.e., real and with different signs, i.e., E − is a saddle. 
• E + can be either locally stable or unstable. Because d�

dP 

∣∣
P ∗+ 

< 0 , �+ > 0 ( Fig. A.1 panels II.a, III). Thus, this equilibrium is 

– locally asymptotically stable if d�
dP 

∣∣
P ∗+ 

< 0 (decreasing prey isocline, e.g., Fig. 2 b) which makes T + < 0 . 

– unstable if d�
dP 

∣∣
P ∗+ 

> 0 (increasing prey isocline, e.g., Fig. 2 d) which makes T + > 0 . 

Appendix D. Note about numerical bifurcation 

Curves SN (18) , HB, fc , and FC in Fig. 5 were obtained using XPPAUT [8] . Saddle–node curves ( SN ) and Hopf bifurcations

( HB ) can be continued accurately in the M − F plane. To continue fold bifurcations of limit cycles ( fc and FC ) we used a

smooth version of the piece-wise defined function u given in (4) 

u (P ) = smax 

(
0 , smin 

(
1 , 

sP 

sP + F 
+ 

w (sP − F ) 

b(sP + F ) M 

))
, 

where 

smax ( x, y ) = 

xe αx + ye αy 

e αx + e αy 
, smin ( x, y ) = 

xe −αx + ye −αy 

e −αx + e −αy 
, 

are smooth approximations of maximum and minimum functions, respectively. Here e is the base of natural logarithms, and 

the approximation of (4) improves as exponent α increases. In our numerical simulations we used α = 100 which gives a

very good approximation. 
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