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Abstract The first step of chemosensory transduction
consists in the association of ligand molecules with
receptor proteins borne by the cell membrane. In this
article, the time evolution of ligand-receptor complexes
is studied in the presence of a periodically changing
ligand concentration. This type of stimulation is a close
approximation to some natural situations, for example
in olfaction. The transient and steady-state periodic
levels of the complexes, resulting from a single-step
(binding) or double-step (binding and activation) reac-
tion, are determined. When possible, analytical solutions
are given, if not for the complete model, at least for its
simplified version at low ligand concentration. Other-
wise, solutions are found numerically and both the
complete and simplified versions of the model are com-
pared. The results obtained are discussed with respect to
actual experimental data based on the moth sex-phero-
mone receptor. Periodic steady states are achieved very
quickly and their amplitude decreases when the stimu-
lation frequency increases. We show that the simplified
description is adequate if only a fraction of activated
receptors is sufficient to produce the maximum response,
as is actually the case in the example treated. The role of
the frequency of stimulation is investigated and it is
shown to possess an optimal range between 2 and 5 Hz.
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Introduction

Most, if not all, cells are able to transduce chemical
stimuli present in their environment into a chemical or
electrical response. The ligand molecules can bind with
receptor proteins located in the cell membrane which
triggers specific responses (reviewed in Lauffenburger
and Linderman 1993). Depending on ligands and cells, a
single channel may be opened (e.g., nicotinic acetylch-
oline receptor) or an enzymatic active site be triggered
(typically phosphorylating proteins on tyrosine residues)
or a GTP-binding G-protein be activated. In the last
case, the G-proteins may act in turn on enzymes to
induce the generation of second messengers (e.g., cyclic
AMP). In neurons and especially olfactory receptor
neurons, which are at the center of our interest, these
second messengers open a large number of ion channels,
resulting in a change of the membrane potential and a
subsequent firing of action potentials (see e.g., Torre
et al. 1995).

Several models of ligand-receptor interactions have
been already studied in the context of chemoreception
by Beidler (1962), Ennis (1991), Getz (1999), Getz and
Akers (1995), Kaissling (1987, 1998a, 1998b), Malaka
et al. (1995), Lansky and Rospars (1993, 1995), and
Rospars et al. (1996). They can be characterized as fol-
lows. First, they generally assume that the cell chemo-
sensory membrane is directly exposed to the external
environment, i.e. no physically distinct perireceptor
space is present. Such systems were recently called
concentration detectors by Kaissling (1998a) and distin-
guished from flux detectors which encompass a physi-
cally distinct perireceptor space (Rospars et al. 2000a).
Second, two basic types of interaction of ligand mole-
cules with the receptor proteins have been studied. In the
first one, the transduction cascade is triggered by mere
binding of the ligand to the receptor to form a complex
(single-step interaction); in the second, additionally, an
activation of the receptor-ligand complex is required
(two-step interaction). Third, mostly the steady-state



responses were analyzed in the presence of a constant
concentration of a ligand but rarely the transient re-
sponses resulting from a step or square stimulation.

This last feature, concerning the time independency
of the stimulation, seems to be the most urgent to
reconsider, while keeping the two other features.
Concerning stimulation, the constant and step or square
deliveries are mainly used in experimental conditions,
while, in natural conditions, it has been shown that
turbulence of the carrier medium, air or water, physi-
cally breaks the initially continuous ligand plume into
spatially and temporally discontinuous patches (Dittmer
et al. 1995; Kramer 1986; Moore and Atema 1991;
Murlis 1997; Murlis and Jones 1981; Murlis et al. 1992).
For a flying insect, such a spatially discrete plume is
experienced as a discrete temporal signal. Similarly, in
vertebrates, breathing also periodically changes the
odorant concentration in the nasal cavity. Therefore, the
aim of the present paper is to investigate the response of
the one- and two-step systems when they are exposed to
a periodically varying ligand concentration. Such a
periodic stimulus is again an idealization, but it is a
better approximation of natural odorant stimuli than
the constant ones. Although we restrict ourselves to
olfaction as an example, the present approach offers a
much wider applicability, as many biological responses
are dependent on the frequency of excitation. The
models presented can describe not only the periodic
switching of ligand concentration between two values
but also the periodic change in conformation of the re-
ceptor, so that binding occurs only when the receptor
transiently resides in a bindable state. Examples of fre-
quency-dependent processes are synaptic depression, the
blockade of ion channels by local anesthetics or by
serotonin in the case of sensitization (see Starmer 1987,
1992).

As far as the concentration and flux detectors are
concerned, we restrict our attention to the concentration
detectors. However, if time fluctuation of the concen-
tration in the vicinity of the membrane closely follows
time fluctuation of the concentration in the external
space, then the only effect of introducing the peri-
receptor space is a substantial amplification of the
internal concentration with respect to the environment.
In this situation the flux detectors can be satisfactorily
approximated by concentration detectors.

Theory
Signaling complexes

A patch of sensory membrane uniformly covered with identical
receptors R of concentration N is considered. Ligand molecules can
bind to receptors R and create various complexes. Let us denote by
R(1) the concentrations of free (‘not interacting’’) receptors and by
R(r) the concentration of bound (“‘interacting”) receptors, so that
N =R(#) + R(¢). We assume that, up to time origin, no ligand is
present at the vicinity of the receptors, which means that the initial
conditions are R(0)=N and R(0) = 0. The number of different
forms creating R depends on the complexity of the model. Only the
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cases with one and two forms are studied. In the first case, called
single-step interaction, the cell response is triggered by the mere
binding of the ligand to the receptor, forming a ligand-receptor
complex denoted by C with concentration C (R = C). In the second
case, called double-step interaction, binding of the ligand is not
sufficient to trigger the response; the bound complex must go
through an additional step, which can correspond to allosteric or
covalent modification, to produce an activated complex C* with
concentration C* (R = C + C*). The concentrations of C in single-
step models and C* in double-step ones are the main variables
studied in this paper. Both are referred to as the signaling
complexes. More complex models with interconversion of receptor
forms possessing different binding properties have not been, to our
knowledge, used in a chemosensory context, and their introduction
is beyond the scope of this paper. Further generalizations con-
taining more than two steps, although formally complicated, can be
achieved by analogy.

Sine-wave stimulation

The ligand molecules L are uniformly diluted in the carrier medium
(water or air) which is in direct contact with the receptors. Two
types of time dependency of the concentration of the ligand, L(7),
are studied. In the first one, at time ¢, the concentration is described
by a sine wave:

_ [ Lo+ Lysin(wt + ¢) fort>0
L(Z)_{O fort<0 (M

where the parameters are the amplitude L,, angular frequency
w=2nf (expressed in rad s~'; f'is frequency in Hz), and phase shift
¢ of the oscillatory component of the stimulation. The amplitude
L; must be smaller than or equal to the level of the constant
component Ly, so that L(¢) > 0 is ensured. The main variable of
interest in the periodic stimulation is its frequency, which may
correspond to some external conditions, e.g., breathing in verte-
brate animals or segmentation of the air plume in insects. On the
other hand, the phase shift ¢ plays only a marginal and formal role
in this study, so we set ¢ =0. Stimulation (1) is also interesting at its
onset (small 7) for studying the transient effects and mimicking a
ramp-like stimulation. For large 7, the effect of stimulus initiation
disappears and we may wonder whether a periodic steady state can
be achieved.

Pulsed stimulation

Stimulation (1) is only an abstraction of real processes which can
arise under experimental as well as natural conditions. Its main
disadvantage is that the lengths of “low’” and “‘high” concentration
intervals are the same. To take into account the situation where
these intervals are different, we also investigate a second possible
type of stimulation composed of alternating square pulses, in the
form:

L(t) = {éz

where n={0, 1, ...}, ti is the duration of ligand application, and 7
is the duration of ligand absence (generalization for two levels L,;
and L, is straightforward). The stimulation frequency is f=
(tL+ 1) . Apparently, the stimulation frequency in model (2) can
be changed either by modifying 7 or ty. In order to conform to
actual experimental practice, we assume that L, and #y; are fixed in
Eq. (2), and that 7, is variable. Of course, this assumption implies
that the amount of ligand delivered per unit of time is different for
different stimulation frequencies.

For comparing with the sine-wave stimulation, the relationship
between Lo and L; in Eq. (1) and L, in Eq. (2) must be specified.
For example, L,= Lo+ L; ensures that for low frequency of stim-
ulation @ and sufficiently long 7y, the maximum number of acti-
vated receptors is the same with both kinds of stimulations. On the

forz € [n(tL 4 tu), n(tL + tn) + tu]
for elsewhere

(2)
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other hand, the condition L, = Ly, would mean that for sufficiently
long i, the maxima of the signaling complex for pulses coincides
with the mean value of the signaling complex achieved with sine
waves. The second-order discontinuity of Eq. (2) at the points of
concentration change is the opposite extreme to the smoothly
changing level in Eq. (1). While the disadvantage of stimulation (1)
is symmetry of its crests and troughs, the price to pay for removing
it is the replacement of the single parameter @ by the couple 7
and tg.

Analytical results
Single-step interaction
Time rate of change of the signaling complex C

In the simplest model, the transduction cascade is trig-
ky

gered by mere binding, L + R<k:’C, where C denotes
—1

the complex RL, and k; and k_; are the binding and
release rate constants, respectively. Taking into account
that R(7)+ C(f)=N is constant, only one independent
equation can be written for the system:

dC(z)
a4 (3)

Equation (3) takes into account the limited number of
receptor sites and implicitly assumes that the concen-
tration L(7) is not influenced by the binding and release
of ligand molecules. In particular, it does not describe
the detailed geometric properties of the membrane and
related phenomena (Lagerholm and Thompson 1998).

If k_; > >k L(t), which is equivalent to the condition
that the number of bound receptors is always far below
their total number, C(¢) < <N, Eq. (3) can be simplified
into the form:

dM(¢)
& (4)

where the concentration of the complexes is denoted by
M. This equation is suitable whenever a low concen-
tration of ligand is applied. The difference between M
and C is illustrated below (see Numerical results) and
has its counterpart in modeling electrical properties of
the neuronal membrane (see Appendix A).

= —(k_y + ki L(1))C(1) + ki L()N

Sine-wave stimulation

The solution of Eq. (4) in the case of stimulation (1) is
well known:

N i
M(t)—]lc_<LO(l_e k,]t)
1
Lik_ .
+ﬁ(l€1SlIlCOl—a)COSa)l—k1ek1t)> (5)

The asymptotic form of solution (5) is achieved with
time constant k_; and it can be written in the form:

Lo Ly sin (a)t - arctgk‘%l)

1/k31 +(,02

k_
The response of the signaling complex is periodic around
the mean level NLyk,/k | and with the same period 27/
as the stimulation. Its amplitude is:

Moo(l‘) =k N

(6)

k\NL,
A /k%l + (,02

from which it follows that the relative amplitude, 4,,
with respect to the largest obtainable amplitude when

w—0, is A, =k_1/\/k*, +®?. Amplitude 4 does not

A= (7)

depend on Ly, which is implicitly assumed to be small.
With increasing frequency of stimulation, 4 approaches
zero proportionally to 1/w. For large values of o the
asymptotic levels of constant (corresponding to L;=0)
and periodic stimulations coincide, since in this case the
concentration of bound receptors oscillates very fast
with a very small amplitude around k;NLo/k_;. The
phase shift between M and stimulation can also be de-
duced from solution (6). The response is delayed after
the stimulation by:

(8)

1 w
D, =—arctg—
: warc gk_1

so that the relative shift with respect to the period of
stimulation is Dy /T = arctg (,%) /2n. Analyzing D/T as

—1
a function of w, it can be seen that at low frequency of
stimulation the relative delay of the response is negligible.
With increasing stimulation frequency w, the response is
more and more delayed after the stimulation, up to one
quarter of the period of stimulation. The role of the dis-
sociation rate k_; in Egs. (7) and (8) is opposite to the role
of w.

The effect of the periodicity of the stimulation can be
best appreciated by determining the stimulation which
yields in some sense the optimal response of the system.
In agreement with observations in several insect species,
this stimulation must meet two conditions. First, the
amplitude of the periodic change in the concentration of
the signaling complex must be sufficiently large. Second,
the stimulation must maximize the change of the com-
plex per unit of time. So, the product of the amplitude
by the change per unit of time appears as a suitable
candidate to determine the optimal response. This can
be best illustrated on the simplified single-step model.
The amplitude A4 is given by Eq. (7) and, taking
the derivative of Eq. (6) with respect to time, the
maximum speed at which M () changes is (wk/NL;)/

k*, 4+ w* = wA. Thus, the suggested measure of the

tuning y caused by periodic stimulation is 4%w, which
takes for model (4) the form:



(klNL|)2(1)
1) = ©
This function tends to zero for high as well as low
stimulation frequencies and reaches its maximum at
wm=k_;. So, the optimum frequency of the stimulus is
fm:kfl/zn-

Solution of the complete model (3) for sine-wave
stimulation does not exist in analytical form but its as-
ymptotic periodicity is proved in Appendix B. In this
case the tuning curve y and its maximum can be calcu-
lated numerically (see Numerical results below).

Pulsed stimulation

Contrary to the sine-wave stimulation with stimulation
(2), the solution for the complete model is available. The
concentration of the signaling complex reaches a peri-
odic steady state in which each pulse gives rise to a
distorted response with a saw-like appearance. The as-
ymptotic maximum level of bound receptors (peak of
saw teeth) is:

k]NLz(l — exp(—(k,l —I-lez)l‘H))
(k- +k|L2)(1 — exp(—(k_ltL + (k_1 Jrk]Lz)tH)))
(10)

Cmax =

and for the minimum we have:
(11)

Between these two extremes, the function C(¢) alterna-
tively grows exponentially (with time constant k |+
kiL>) to the asymptotic level kyNL,/(k_;+kL,) and
decays (with time constant k_;) to zero. From extremes
(10) and (11) the amplitude A can be defined as half of
the difference Cpax—Crin:

Ciin = Crmax eXp(—kfth

—ekan

_ o (koi+kiLo)m
_kNLy(1—e ) 1 (12)
2(k_y +kiLy) 1 — e~k +(ka+kiLa)in)
which tends to zero for #; —0 (high-frequency stimula-
tion). Another limiting case of interest is that for which
the intervals of ligand application are very short, the
concentration of ligand is very high, formally /y—0 and
L>—0o0, and the product of these two quantities is con-
stant or at least asymptotically constant (the amount of
ligand delivered per pulse does not change), tyL,=gq.
Then Eq. (10) takes the form:

N(1 —exp(—kiq))

Cinax = 13
P —exp(—(k_1tL 4+ ki1q)) (13)
and the amplitude can be written directly:
N I —exp(—k
PERG) (1 —exp(—(kin))  (14)

T2 1—exp(—(k_1tL +k1q))

Combined with long periods without ligand or a fast
deactivation rate, amplitude (14) yields:
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A= (1 exp(~kig) (15)
Owing to the asymmetry of the stimulation, the term
amplitude does not have the same obvious interpretation
as in the case of the sinusoidal stimulation. Nevertheless,
similarly to tuning of Eq. (9), we can search for an op-
timum silent interval #; using the same concept, which
leads us here to choose 7(f1)=A>/t; as the tuning
function. Equation (12) for A4 permits only a numerical
determination of the maximum of function y. For il-
lustrative purposes, let us assume that L, is sufficiently
large and thus C,,, almost reaches k| NL,/(k_i+kiL>).
Then:

() (LN
N =\ 2k ki,

with an approximate solution 7 =1/(2k_;), which cor-
responds very well to the value obtained for stimulation
(1) from Eq. (9) (if ty =1L, the frequency is again k ;).

>2 (1—exp(—k_11))

N (16)

Double-step interaction
Time rate of change of the signaling complex C*

Adding a further step in the interaction scheme, of
course, makes the model more realistic but simulta-
neously less tractable. Therefore, analytical results
analogous to those presented in the previous section are
lacking, or, even if the results can be derived, they are
notationally so complex that they become of question-
able interest. For this reason we focus mostly on quali-
tative consequences brought about by the addition of
another step. ki k

The reaction scheme L+ R = C+=C* is a gener-

alization of the previous model, where k> and k_, are
rate constants characterizing the velocities of the acti-
vation (C—C%*) and deactivation (C*—C), respectively.
It assumes that the receptors may appear in three states,
unoccupied R, occupied and not activated C, occupied
and activated C*, with R = C + C*. For the concen-
tration C of occupied receptors, and the concentration
C* of activated receptors, two equations can be formu-
lated, taking again into account that at any time
R(t)+ C(r)+ C*(f)= N is constant. We have:

d((’;_gt) = —(k_1 + kiL(t) + k) C(¢)

+ (k-2 = RL(0)C () + kLN (17)
and:
dcd*t(t) = —k_,C*(t) + k2 C(2) (18)

If the same low-concentration approximation as that
described in the previous section, which lead to Eq. (4),
is used, the description of the system can again be
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substantially simplified. Now assuming that k_;>>kL(t)

and k_,>kL(1), instead of Eq. (17) we obtain:

dM(¢)
dt

whereas Eq. (18) remains unchanged (only with different
notation):

dM*(t

A = —k,zM*(l‘) + kzM(t)
d¢

Again, the stimulation appears in Eq. (19) as an additive

term only.

= — (k-1 + k2)M(t) + koM"(t) + ki L()N ~ (19)

(20)

Sine-wave stimulation

An analytical solution for M (), under stimulation (1),
can be obtained, but it is notationally complicated. We
only present the asymptotic formula for the periodic
steady state M (1)

_ klkzL()N kiko LN

M (¢
~(?) k_ik_y Ay — A
wcoswt + Ay sinwt @ coswt + A sin wt
A + 0? A3 + o?
(21)
where Ay =—(k_1+hka+k_r+A40)/2, Ar=—(k_1+

ky +k_p — Ao)/z, and A(% = k%l + 2k_1(k2 — k_z)Jr (k2+
k_»)*. After some calculation, we can find the amplitude:

kikoL\N 2 2
A= 2(4, — A Ar Ay —
(A%—I—coz)left(A%—l—wz) \/CO( 2 1) +( 241 (,!))
(22)
and the delay:
1 (Az —|—A1)CO
Dy = —arctg——"— 2
> wangAzAl—w (23)

It can be seen in Eq. (22) that the trend to zero ampli-
tude with increasing frequency is much faster here than
in the one-step model (proportionally to ). It seems
hardly possible to calculate the optimum frequency
directly from Eq. (22), contrary to the single-step
model.

Pulsed stimulation

A result analogous to Eq. (12) can be derived for the
two-step model under periodic stimulation (2). However,
it is again notationally hardly tractable. Also, the opti-
mum length of the silent intervals #; can be found only
numerically. Further, a faster trend to lower amplitudes
for decreasing #; than in the single-step model could be
proved. Thus, we can expect that longer intervals of si-
lence are needed to achieve the same amplitude as in the
single-step model.

Numerical results
Parameters and variables

The aim of this section is not to present a detailed
quantitative characterization of a specific chemoreceptor
under specific stimulation conditions, but to illustrate
the influence of the periodic stimulation on the general
behavior of the system. The total concentration of
receptors N and the rate constant k’s are intrinsic
parameters of the system which are considered as fixed,
while Ly, Ly, L>, w, ty, and {1 are external parameters
which can be modified. For this reason we investigate
only the effect of these extrinsic parameters on the shape
of the response. The main variables of interest are the
frequency f'in the case of the sine-wave stimulation and
the durations 7y and 71, of on and off intervals in the case
of the pulsed stimulation.

In our recent paper (Rospars et al. 2000a) on com-
parison of concentration detectors with other types of
chemoreceptors, the numerical values of the parameters
N, ki, and k_; characterizing the membrane were based
on extensive experimental observations presented in
Kaissling (1998a) for the sex-pheromone receptor neu-
ron of the male moth Antheraea polyphemus. The same
parameters are used here: k;=02 pmol L's
k1=10s", k,=20s" k,=5s"', N=10 umol L' (the
concentration of the receptor proteins is expressed with
respect to the volume of the hair lumen). In this species,
as in other species investigated, the physiologically
effective frequencies of stimulation flie approximately in
the interval 1-10 Hz (Rumbo and Kaissling 1989). This
receptor neuron is not a mere concentration detector
because a physically distinct perireceptor space is
created by the multiporous hair cuticle that houses the
sensory dendrite. In Rospars et al. (2000a) we showed
that the main effect of interposing this perireceptor space
was to increase the concentration L there with respect to
the concentration L., in the environment. With the pa-
rameters chosen for describing the perireceptor space, L
was found to be 10° times greater than L. Conse-
quently, with a constant level L. of the stimulation
lying in the interval 10 '—10° ymol L', as assumed
here, the level Ly in the perireceptor space is in the range
0.1-1000 pmol L', The responses of the models can be
expected to be gradual in this region.

In most examples we use an intermediate amplitude
of the stimulus, L;=Ly/2. Note that for L;=L, the
periodic component achieves its maximum possible
effect, i.e., the stimulus concentration oscillates between
0 and 2Ly. Thus, under the condition L,=2L, and for
tg=ty, both sine-wave and pulsed stimulations should
behave in a similar way.

Comparison of complete and simplified descriptions

What is the difference between the full description of
Eq. (3) and its approximation in Eq. (4)? We know that



this difference increases with the level of stimulation and
consequently with the number of activated receptors.
We also know that the amplitude of the concentration of
the signaling complex, due to the periodic modulation,
decreases with the stimulation frequency. For low
stimulation frequency, the maxima of the number of
activated receptors are identical with the steady states of
the number of activated receptors stimulated by a con-
stant stimulus L= Lo+ L;. Thus, the agreement between
the complete and the simplified descriptions increases
with the stimulation frequency and tends to that
achieved for the constant stimulus Ly. The maximum
difference between both descriptions is illustrated in
Fig. 1. We can see that the difference starts to be ap-
parent at Lo=10 pmol L', where it reaches 7% of the
total number of receptors. At the highest frequency
applied in this numerical investigation, f=10 Hz, the
difference decreases to 3.5% (Fig. 2). So, for approxi-
mately half of the range (in decadic scale) we are inter-
ested in, the approximation appears suitable. Any
further increase of the stimulation intensity leads to a
conspicuous difference between the two descriptions.
The fact that the agreement is not substantially im-
proved by increasing the frequency of stimulation comes
from the relatively fast activation/deactivation rates
chosen. On the other hand, Fig. 2 shows that curves C(7)
and M(¢) are rather well synchronized and of approxi-
mately the same amplitudes. Thus, Egs. (7) and (8) for
relative amplitude and relative delay between the
response and the signal can be applied also for charac-
terizing the complete description.

At first sight it could be expected that if C(f) can be
approximated by M(¢) then C*(¢) can be also well ap-
proximated by M*(¢), but this is not true. Our choice of
parameters ensures that whereas up to Lo=10 pmol L'

10
wow

(3%

—

e
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Concentration of signaling complex
p—
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Fig. 1 Comparison of the concentrations of signaling complex in
complete and simplified (low concentration) descriptions of single-
step receptor-ligand interaction for constant stimulation L=
Lo+ L,. The concentrations (in pmol L'') C (complete model,
solid line) and M (approximation, dashed line) are plotted against
concentration L in decadic logarithmic scale, with L;=L/2.
Parameters: N=10 pumol L™ k=02 pumol L's" k,=10s"
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the single-step description can be simplified, the same
does not hold for the double-step model. In this model
the difference also depends on the condition k_, > > kL,
which is not fulfilled at 10 umol L™'.

Concentration of signaling complex
as a function of time

It can be seen in Fig. 2 that, for short f and longer 71,
C(1) is below the concentration of the signaling complex
under sinusoidal stimulation. The asymmetric shape of
C(?) in the case of pulsed stimulation (2) in comparison
with sine wave (1) is apparent. The periodic steady state
is definitely achieved after 0.4 s. This is, of course,
faster than in the two-step model where binding and
activation are employed (see Fig. 3), which needs 1.5 s
for reaching the periodic steady state. Figure 3 also
clearly illustrates a strong dependency of the response
amplitude on the stimulation frequency. For the higher
frequency of stimulation (2.5 Hz) the modulation of the
number of activated receptors is apparently lower than
for slowly varying signal (1 Hz); for 10 Hz (not shown)
the amplitude is practically eliminated. The situation is
analogous in the case of pulsed simulation. There also
the amplitude is lower with decreasing silent periods 7,
but it is accompanied with an increase of the mean level
around which the number of signaling complexes os-
cillates because the amount of ligand delivered per time
unit increases. Finally, for w very large and #; very
short the curves coincide asymptotically at the level
4 yumol L.

The responses of single- and double-step systems are
compared in Fig. 4. Owing to the selection of the rate
constants, the baseline of the number of signaling
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Fig. 2 Concentrations of signaling complex C(¢) (solid lines) and
M(t) (dashed line) for single-step interaction as a function of time
for periodically changing stimulations. Upper curves with sine-wave
stimulation (Eq. 1), lower curve with pulsed stimulation (Eq. 2).
Parameters: N=10 pmol L k=02 pumol L™, k,=10s1,
Lo=10 pmol L™, L;=5pmol L', f=10 Hz; L,=10 pmol L',
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Fig. 3 Concentrations of signaling complex C*(¢) for double-step
reaction as a function of time for periodically changing stimula-
tions at low frequency (solid lines) and high frequency (dashed
lines). Upper curves with sine-wave stimulation (Eq. 1), lower curves
with pulsed stimulation (Eq.2). Parameters: N=10 pmol L',
ki=02pmol L's',  k,;=10s"', k=20s"'  k,=5s",
Ly=10pumol L', Ly=5pmol L), L,=10 pmol L'}, 7;=0.1s;
dashed lines f=2.5 Hz or t;, =0.3 s and full lines f=1 Hzor t;,=1s

receptors is higher in the double-step system C*(¢) than
in the single-step one C(¢). Thus, the approximation by
simplified equations cannot be used (the error is about
100%). However, despite higher constant baseline, the
amplitude is lower for C*(f); the amplitude for one-
step interaction in Fig. 2 at stimulation frequency
10 Hz contrasts with the practically constant response
at the same frequency for the two-step system in
Fig. 3.
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Fig. 4 Concentrations of signaling complex C(7) for single-step
reaction (solid lines) and C*(¢) for double-step reaction (dashed
lines) as a function of time for periodically changing stimulation.
Sinusoidal responses (top) are evoked by sine-wave stimulation
(Eq. 1), saw-like responses (bottom) by pulsed stimulation (Eq. 2).
Parameters: N=10 pmol L k=02 pumol L's!, k,=10s7,
k»=20s", k,o=5s'  Ly=10pmol L', L;=5pmol L,
L,=10 ymol L', f=1Hz, t4=0.1s, 1, =1s

Delay and tuning

The delay in response caused by the addition of a second
step is apparent in Fig. 4. In Fig. 5 the delay of the
response is shown in more detail, being based on the
approximation in the single-step model. We can see that
the absolute value of the delay decreases with the stim-
ulation frequency, whereas the relative delay, with
respect to the stimulation period, tends to 1/4. However,
the large relative delay under the fast stimulation con-
ditions does not play any important role because the
amplitude of the response tends quickly to zero (see
Numerical results below). Therefore, we may ask for
which stimulation frequency the relative effect of the
periodicity is largest.

For answering this question, the values of the tuning
function y given by Eq. (9) are plotted in Fig. 6 against
the frequency together with analogous values calculated
for both complete versions of the model, Eq. (3) (single-
step) and Egs. (17) and (18) (double-step). The results
suggest that, at least for the parameters used in this
example, the most efficient range of stimulation fre-
quencies is around 2 Hz in the case of one-step model
and even below 1 Hz for two-step model. The shift to
the lower frequencies in the case of the more complex
model is intuitive as there the decay of the amplitude
with increasing frequency is faster. Figure 7 shows the
tuning curves for the one-step reaction with pulsed
stimulation (2). It shows that the optimum length of the
silent interval 71 is close to 0.125 s, which means that
the optimal stimulation frequency is 3 Hz with a du-
ration of stimulation of #;=0.2 s. By decreasing the
stimulation interval ¢y and realizing that the length of
the silent interval #; is practically independent of it,
much higher optimum frequencies are obtained, up to
10 Hz. In general, the values derived for the pulsed
stimulation are larger than those derived for the sinu-
soidal stimulation.
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Fig. 5 Delay of response with respect to stimulation as a function
of stimulation frequency f in the single-step reaction in the low
concentration approximation M(¢) (solid decreasing curve) and
M*(t) (dashed decreasing curve). Relative delay D with respect to
the period of stimulation for M(¢) (solid increasing curve) and M*(t)
(dashed increasing curve). Parameters: N=10 umol L', k,=
02pmol L' s k=105, k,=20s", k,=55"
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Fig. 6 Tuning curve y with sine-wave stimulation (Eq. 1) for the
single-step model (middle solid line), its low concentration approx-
imation (dashed line), and for the double-step model (lower solid
line) as a function of stimulation frequency f. Parameters:
N=10 pmol L', k=02 pmol L' s, k ,=10s", k,=20s",
ko,=5s"' Lo=10 pmol L'}, L; =5 pmol L

Discussion
Importance of concentration detectors

The concentration detectors are the simplest and most
commonly used models for describing the early stages of
information transfer in olfactory systems. Basically, they
make no distinction between the concentration of an
odorant in the external space L., and its concentration
close to the sensory membrane. Their importance stems
not only from their simplicity but also from their
adaptability to more complicated types of detectors
actually observed in nature.

In our previous paper (Rospars et al. 2000a) we
investigated the response of concentration and flux
detectors, i.e., systems without and with a distinct peri-
receptor space and ligand degradation, as originally
defined by Kaissling (1998a). We also introduced a
“generalized detector”, in which the perireceptor space
is characterized by two reaction rate constants, k; de-
scribing the influx of ligand and & ; its removal (outflux
or degradation). In this case the equilibrium ratio be-
tween L and L, is equal to k;i/k_; (which can be called
the influx equilibrium constant Kj;). Thus, a sufficiently
fast influx with a relatively negligible outflux may ensure
that the internal concentration is substantially higher
than the external one. More exactly, if no other steps
modify concentration L, as in our present models, then
the ratio between the perireceptor concentration and the
external one is equal to ki/k ;. An amplification occurs if
this ratio is greater than one, with the consequence that
the response curves of the generalized detector are
shifted into the lower concentrations with respect to
concentration detector with the same rate constants, as
discussed in Rospars et al. (2000a) based on experi-

117

Tuning

0 02 04 0.6
a Length of low period [s]

—_ b

0.8

0 2 4 6 8 10 12 14
b Frequency [s]

Fig. 7 Tuning curve y with pulsed stimulation (Eq. 2) for single-
step model as a function of a the length of the silent interval #.
(from bottom to the top t;3=0.2, 0.1, and 0.05s), and b the
frequency 1/(zp+ty) (same values of ty from left to right).
Parameters: N=10 pmol L'!, k=02 umol L'!'s! k=101,
L,=10 pmol L'

mental measurements in the moth olfactory system (e.g.,
Kaissling 1998a; Zack 1979). It can be concluded that
the results derived for concentration detectors are true
even in the case when there exists a physically distin-
guishable perireceptor space, but the influx into it is so
fast that the inner concentration tracks in time suffi-
ciently closely the external one. This remark applies
especially to the carbon dioxide detectors of insects,
because unlike sex-pheromone molecules, carbon diox-
ide is only moderately lipophilic and is unlikely to be
adsorbed irreversibly to the cuticle of a sensillum
(Stange et al. 1995).

The description of the receptor-ligand interaction can
be substantially simplified, if the number of signaling
complexes remains small with respect to the total num-
ber of receptors. Description through the simplified
equations seems to be interesting not only because of its
tractability and versatility, but first of all because it
seems to offer a satisfactory description of actual
chemosensory systems. Indeed, various arguments
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(Cleland and Linster 1999; Rospars et al. 2000a, 2000b)
suggest that only a small fraction of the receptors has to
be activated to obtain the maximum response. This
description permits us to quantify the role of periodical
stimulation and it is a question for further experimental
verification if the measure proposed for finding an op-
timum stimulation frequency is the most suitable one.
Note, however, that with our choice of parameters the
low-concentration approximation works better with the
single-step detector than with the double-step one. In
the latter case the error with respect to C*(f) can reach
100%, whereas in the same concentration range C() is
well approximated by M(?).

Role of the stimulation frequency

In what follows we call “response of the system” the
concentration C or C* of the signaling complex. The
most obvious property of the response is that in all
cases, triggered by a single- or a double-step reaction
and stimulated by a sine wave or pulses, it achieves, after
a certain delay, a periodic behavior which follows the
stimulus with the same frequency. However, three
characteristics of the response depend on the stimulation
frequency: its amplitude, its time rate of change, and its
delay with respect to the stimulus.

First, the amplitude of the response decreases with
increasing frequency. For sufficiently slow frequency, the
amplitude of the response approaches a maximum which
is equal to the level that would be achieved by a constant
stimulation L=Ly+ L; (sine) or L=L, (pulse). With
increasing frequency, the response, although still peri-
odic, does not reproduce the upper and lower parts of
the signal, so that the amplitude of the oscillating part of
the response decreases. Finally, the system averages out
almost completely the quickly alternating signal, which
results in a practically constant response. The level
around which the response is modulated is the steady-
state level observed under constant stimulation. This
constant level can be also achieved by decreasing the
amplitude of the stimulation.

Second, the time rate of change of the response in-
creases with the frequency. In order to maximize both
amplitude and rate of change simultaneously, we con-
sider their product as a new measure of tuning between
stimulus and response. This quantity reflects the impor-
tance for an insect, for example, of assessing simulta-
neously the amplitude of the stimulus and its time rate of
change, both of which must not be too small since a
constant stimulation is not perceived (Kennedy et al.
1980, 1981; Willis and Baker 1984). With this measure
and the parameter values chosen, an optimum frequency
is found ca. 2 Hz for sine waves and ca. 3—5 Hz for pulses.

Third, the delay of the response with respect to the
stimulus decreases with the frequency but the relative
delay with respect to the period of the stimulus increases.

This delay becomes important to know in the case
when the time to reach a given threshold is investigated.

It is apparent from the description of the model given by
Eqgs (3) or (17) that the concentration of the ligand ap-
pears always in a product with the binding rate constant
ky. Therefore, all results presented in this article are valid
not only for periodically changing stimulus concentra-
tion but also for periodically fluctuating binding rate.
For examples that lead to this scenario, see Starmer
(1992).

Role of the number of receptor-ligand
interaction steps

The mean level, amplitude, and reaction time of the re-
sponse of double-step systems are different from those of
their one-step counterparts. In the case where the de-
activation equilibrium constant K, =k ,/k, is smaller
than one, as in our numerical example, the mean level of
the double-step detector is always greater than that of
the one-step, whatever the frequency of stimulation.
This is not true for the amplitude, time to each equi-
librium, and delay (see previous section), so we restrict
the discussion to a relatively low stimulation frequency
of one or a few hertz, close to the optimum stimulating
frequency of the system for the parameter values chosen.
Then, the double-step detector presents a slightly smaller
amplitude and reacts more slowly, as can be seen by the
time it needs to reach equilibrium (at onset of stimula-
tion) and its greater smoothing of the sine waves and
pulses (see Fig. 4). Therefore, the main advantage of
introducing a second step with K, <1 would be to in-
crease the strength of the response (mean level) and
consequently the sensitivity of the detector, since the
same response strength is reached at lower concentra-
tion. However, the tradeoff for this increase in sensitivity
is a lower contrast (amplitude) and time resolution, i.e.,
the ability to follow exactly the time variation of the
ligand concentration is sacrificed to the ability to finely
discriminate between the presence and absence of the
ligand.
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Appendix A: comparison of chemical
and neuronal models

Equation (3) describing the binding of ligand L to re-
ceptor R resembles formally the often-studied leaky-
integrator neuronal model dx/dr=-x/t+ p(¢) (Tuckwell
1988), in which x is the electrical potential of the neuron
membrane, p is the input (voltage change per unit time
due to the stimulation), and 1 is the time constant of the
membrane. However, the two models differ because in



Eq. (3) the input force k,L(z) also enters the leakage
constant 1/t of the neuronal model. Despite the models
formally coinciding for a constant stimulation, that is
when L(t) and p(¢) are constant, the variability of this
constant modifies the linear term in Eq. (3) whereas in
the leaky integrator it remains unchanged. In fact, the
model of binding considered here corresponds to the
neuronal model with reversal potentials (Lansky and
Lanska 1987), in which the voltage is restricted to the
interval between inhibitory and excitatory reversal po-
tentials. Similarly here, C(¢) is restricted to the interval
(0, N). Obviously, if Eq. (3) is replaced by Eq. (4) we
obtain the classical leaky-integrator model.

Appendix B: proof of periodicity of dynamic response

Let us define:

kL t
P(t) = exp <—1 1COS® >

)
Using the transformation C(¢)= P(#)Z(¢), Eq. (3) under
the input signal (1) becomes:

dz
n = —(kfl + k]Lo)Z(t) + exp (—

(A1)

kiL ¢
%) JiNL(1)

(A2)

Any solution of this equation has the following form:
2(1) = exp(— (k-1 + k1Lo)?)Z(0)
+ /Ot JuNL(7) exp <_ w
— (k_1 +kiLo)(t — T))dr (A3)

The periodic solution of the above equation is obtained
if one sets:

_ ﬁhNL(r) exp (- MEESO 4 (k) + ki Lo)T)dt

w

CXp((k,1 + k]Lo)%) -1

Z(0)

(A4)

Let Z*(¢) be the corresponding periodic solution and let
Z(t) be any solution. Then Z*(¢)-Z(t) converges to zero
for ¢ tending to infinity. This proves that any solution of
Eq. (3) converges to the periodic solution Z*(¢).
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