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Abstract

Predator–prey models consider those prey that are free. They assume that once a prey is captured by a predator it leaves the

system. A question arises whether in predator–prey population models the variable describing prey population shall consider only

those prey which are free, or both free and handled prey together. In the latter case prey leave the system after they have been

handled. The classical Holling type II functional response was derived with respect to free prey. In this article we derive a functional

response with respect to prey density which considers also handled prey. This functional response depends on predator density, i.e.,

it accounts naturally for interference. We study consequences of this functional response for stability of a simple predator–prey

model and for optimal foraging theory. We show that, qualitatively, the population dynamics are similar regardless of whether we

consider only free or free and handled prey. However, the latter case may change predictions in some other cases. We document this

for optimal foraging theory where the functional response which considers both free and handled prey leads to partial preferences

which are not observed when only free prey are considered.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical MacArthur–Rosenzweig predator–prey
model with Holling type II functional response (and
its later elaborations) assume that handled prey are
removed from the system immediately after the en-
counter with a predator so that the effective size of the
prey population is the number of free prey. Correspond-
ingly, the Holling type II functional response is a
function of free prey density only and predator–prey
population dynamics describe the time evolution of free
prey density. One may ask: What happens to the Holling
type II functional response and to population models if
free prey are replaced by all prey (i.e., free prey and prey
that are currently handled by predators)?
The effect of considering total prey density on the

functional response is that as the overall predator
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density increases, more prey will be handled and less
prey will be available to a searching predator. This will
decrease the encounter rate of a searching predator with
free prey which, in turn, will have a negative impact on
the functional response which becomes explicitly depen-
dent on predator densities. A negative effect of predator
density on its functional response is called predator
interference. The Holling type II functional response
was derived with respect to free prey and that is why it
does not account for interference. However, Skalski and
Gilliam (2001) showed that predator dependence in the
functional response is a nearly ubiquitous property of
the published data sets that they analysed. In 18 out
of 19 studies, the classical Holling type II functional
response was rejected in favor of one of three predator-
dependent functional responses. The effect of interfer-
ence on predator–prey population dynamics was con-
sidered in many theoretical studies (Beddington, 1975;
De Angelis et al., 1975; Free et al., 1977; Freedman,
1979; Polis, 1988; Ruxton et al., 1992; van der Meer and
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Ens, 1997; Fretwell and Lucas, 1970), to mention a few.
A general conclusion from these studies is that inter-
ference promotes predator–prey stability. Thus, con-
sidering both free and handled prey might result in a
higher degree of stability in predator–prey population
dynamics.
In this article we derive a functional response

considering also those prey that are handled by
predators. Naturally, this functional response coincides
with the Holling type II functional response in environ-
ments with a single predator. Then we derive a predator–
prey model which considers both free and handled prey,
but only free prey reproduce. It is a well-known fact that
the Holling type II functional response destabilizes the
classical Lotka–Volterra population dynamics (Murdoch
and Oaten, 1975). This is because the positive handling
times decrease efficiency of predators to control an
exponentially growing prey population. When handled
prey are considered then we show that the interior
population equilibrium can be stable, but only for
ecologically unrealistic parameters. However, we also
show that in some cases ecological predictions may differ
depending on whether we consider only free, or all prey.
As an example we choose in this article optimal foraging
theory (Charnov, 1976; Stephens and Krebs, 1986) and
we show that when both free and handled prey are
considered, partial preferences for the alternative prey
arise in multiple predator environments.
2. Predator consumption rate when handled prey are

considered

Classical derivation of Holling type II functional
response (Holling, 1959) considers a single predator in a
time interval ð0;TÞ: It is assumed that the prey density in
this time interval does not change and the predator
spends all the time either searching for or handling prey.
In this case, it is irrelevant whether the functional
response is derived with respect to free prey or with
respect to all prey (i.e., free prey and the single prey
which is being handled by the predator) because these
two quantities are practically the same as there is only
one predator. However, in multiple predator environ-
ments such a derivation cannot reflect the effect of
predator abundance (i.e., interference) on the functional
response. Here we derive a functional response for
multiple predators with the overall density y: The
density of searching predators is denoted by ys and the
density of predators already handling a prey item is
denoted by yh; respectively ðy ¼ yh þ ysÞ: If an average
predator spends Ts time units searching for prey and Th

time units handling prey then

yh

ys

¼
Th

Ts

:

Similar to predators, we can distinguish between prey
that are free ðxf Þ and those that are handled by
predators ðxhÞ: Assuming that one predator is handling
exactly one prey item then the abundance of handled
prey equals the abundance of handling predators ðxh ¼
yhÞ: Functional response can be derived either with
respect to free prey abundance ðxf Þ or to overall prey
abundance ðx ¼ xf þ xhÞ: If it is derived with respect to
the abundance of free prey then we get the Holling type
II functional response. This is because the encounter
rate of a predator with prey does not depend on the
number of prey handled because the abundance of free
prey is assumed to be constant. However, if functional
response is derived with respect to the overall prey
density (free and handled prey), i.e., when the overall
prey density is assumed to be constant then the number
of available free prey for searching predators will
decrease because some prey will be handled by
predators. This later case leads to interference between
searching predators and the corresponding functional
response is given by

F ðx; yÞ ¼
lxf ys

y
¼

yh

yh

¼
2lx

ðx þ yÞhlþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx þ yÞhlþ 1Þ2 � 4xyh2l2

q ;

ð1Þ

see Appendix A. We remark that if handling time h

equals zero then x ¼ xf and

F ðx; yÞ ¼ lx

which is the linear functional response used in the
Lotka–Volterra model. For a low predator density the
prey density ðxÞ equals approximately to the density of
free prey ðxf Þ and the functional response becomes again
Holling type II functional response

FhðxÞ ¼
lx

1þ lhx
: ð2Þ

The upper asymptote of F ðx; yÞ for every fixed predator
density ðyÞ is the same as for the Holling type II
functional response, i.e., 1=h: Moreover, the slope of the
functional response at zero prey density

l
1þ yhl

decreases with increased predator densities (Fig. 1). This
is due to the fact that as predator densities increase, the
encounter rate of a searching predator with free prey
decreases (because some prey are already handled)
which leads to a lower per capita average predator
intake rate. Fig. 1 shows the effect of increasing
predator densities on the functional response F ðx; yÞ:
Parameters l and h were estimated from Fig. 2 in
Eveleigh and Chant (1982) for the case where only a
single predator was present. Using these parameters we
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Fig. 1. Plot of the functional response F given by formula (1) for four

predator densities: y ¼ 1; 5; 10; 30: As predator density increases, the

initial slope of F decreases. Parameter values h ¼ 0:13; l ¼ 1:27 were

estimated from data given in Eveleigh and Chant (1982), for details see

text.

Fig. 2. This figure shows predator preferences for the preferred prey

type as a function of the preferred prey type density. The dashed line

shows zero–one preferences predicted by the classic optimal foraging

model (here ‘‘prey’’ mean free prey only) while the solid line shows that

partial preferences arise when prey include those that are handled (here

‘‘prey’’ mean both free and handled prey). Parameters for the preferred

prey type are those given in Fig. 1. Parameters for the alternative prey

type are the same with the exception that the energetic content of the

alternative prey type is one half of the preferred prey type (i.e.,

e1=e2 ¼ 1
2
). The density of the alternative prey type was set arbitrarily

to x2 ¼ 20:
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plotted then the corresponding functional responses for
several predator densities.
3. Population dynamics

A predator–(free)prey population model with the
Holling type II functional response

dxf

dt
¼ rxf � Fhðxf Þy;

dy

dt
¼ eFhðxf Þy � my; ð3Þ
describes interactions between free prey and predators.
Here r is the per capita prey growth rate, e is the
efficiency rate with which handled prey are converted to
new predators, m is the per capita predator mortality
rate, and Fhðxf Þ denotes the classic Holling type II
functional response.
It is known that the above system has, for small

handling times ðhoe=mÞ; one positive equilibrium

Eh ¼
m

lðe � hmÞ
;

er

lðe � hmÞ

� �

which is unstable for all parameter values. For small
handling times, trajectories spiral away from the
equilibrium with an increasing amplitude.
We are interested to know if a similar predator–prey

model which describes the evolution of the overall prey
and predator densities can lead to qualitatively different
dynamics. Using functional response F ; predator–prey
population dynamics are described by

dx

dt
¼ rx � ð1þ mh þ rhÞF ðx; yÞy;

dy

dt
¼ eF ðx; yÞy � my; ð4Þ

see Appendix B. We remark, that model (4) assumes
that only free prey reproduce (i.e., those that are
handled do not reproduce) and newborn predators are
deemed to be of the searching rather than handling type.
Compared with model (3) the above system describes
the total prey–predator dynamics (including those prey
which are currently handled). Model (4) has the
following non-zero equilibrium:

E ¼
mð1þ hr þ hmÞ

lðe � hmÞð1þ hmÞ
;

er

lðe � hmÞð1þ hmÞ

� �
:

Thus, when compared with model (3), the equilibrium
for total prey density is higher and the predator density
is lower. For small handling times ðhoe=mÞ this
equilibrium is positive. Contrary, to the interior
equilibrium ðEhÞ of model (3), the above equilibrium
can be stable but only for ecologically unrealistic
efficiencies ðeÞ which are higher than 1 (see Appendix
B). Thus, we can conclude, that for ecologically
plausible parameters, interference described by func-
tional response F is not strong enough to stabilize
predator–(total)prey population dynamics.
We remark that if handled prey can produce offspring

just as free prey can then population dynamics are
described by the predator–prey model (3) where the
Holling type II functional response is replaced by the
functional response F ðx; yÞ; i.e.,

dx

dt
¼ rx � F ðx; yÞy;

dy

dt
¼ eF ðx; yÞy � my: ð5Þ
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4. Some consequences for optimal foraging theory

In multiple predator environments the distinction
between free prey and total prey will have consequences
for ecological predictions that relay on Holling disc
equation. As an example, we present here some
implications for optimal foraging theory. Optimal
foraging theory predicts (Stephens and Krebs, 1986)
that in environments with two prey types the alternative
prey type will be either always included or always
excluded from the predator’s diet. This result was
termed ‘‘zero–one’’ preference. In experiments a more
gradual switching, called partial preferences, was
observed (Stephens and Krebs, 1986). Various mechan-
isms can lead to partial preferences: incorrect classifica-
tion of prey types by predators (Krebs et al., 1977;
Rechten et al., 1983), uncertainty about the actual
resource densities (McNamara and Houston, 1987),
population dynamics (K$rivan, 1996; K$rivan and Sikder,
1999; K$rivan and Eisner, 2003), a limited memory
capacity of predators (B!elisle and Cresswell, 1997),
limited spatial omniscience (Berec and K$rivan, 2000)
and interindividual differences in physiological state
(Mangel and Clark, 1988; Houston and McNamara,
1999; K$rivan and VrkoW, 2000). Here we show that
partial preferences for the less profitable prey type arise
when handled prey are considered.
The prey model assumes that animals maximize a

proxy of their fitness measured by the average energy
intake rate. In the case of two prey types the energy
intake rate is derived from the Holling disc equation
which considers only free prey and has the following
form:

Eðxf 1;xf 2; u1; u2Þ ¼
u1l1e1xf 1 þ u2l2e2xf 2

1þ u1l1h1xf 1 þ u2l2h2xf 2
; ð6Þ

(Stephens and Krebs, 1986). Here xfi is the density of
free prey i and ui is the probability that upon an
encounter with prey type i predators will include this
prey type in their diet. Other parameters have the same
meaning as in the previous part, the subindex refers now
to the first or second prey type. The main prediction of
optimal foraging theory states that the more profitable
prey type (i.e., the prey type with higher ratio ei=hi;
which is implicitly assumed to be prey type 1 in this
article) will always be attacked upon an encounter with
a predator (i.e., u1 ¼ 1), and the less profitable prey type
will be included in the predator diet only if the density of
the more profitable free prey type is below a switching
threshold given by

x�f 1 ¼
e2

l1ðe1h2 � e2h1Þ
ð7Þ

(Charnov, 1976; Stephens and Krebs, 1986). This
implies, that the less profitable prey type is either always
ignored, or always attacked by a searching predator,
i.e., u2 ¼ 0 or 1 and no partial preferences for the less
profitable prey type arise.
Now we consider the case where both free and

handled prey are considered in an environment with
multiple predators. The criterion to be maximized is
now given by

Rðx1;x2; u1; u2Þ

¼
e1l1u1ðx1 � yh1Þ þ e2l2u2ðx2 � yh2Þ

1þ l1h1u1ðx1 � yh1Þ þ l2h2u2ðx2 � yh2Þ
; ð8Þ

where densities of handling predators satisfy the
following equations (see Appendix C):

yh1 ¼ l1h1u1ðx1 � yh1Þðy � yh1 � yh2Þ;

yh2 ¼ l2h2u2ðx2 � yh2Þðy � yh1 � yh2Þ: ð9Þ

In general, we cannot compute explicitly the fraction of
predators handling prey type 1 ðyh1Þ and prey type 2
ðyh2Þ; respectively, from Eq. (9). We remark that these
fractions will be functions of predator preferences u1
and u2; respectively. Maximization of R with respect to
predators diet choice is more complicated than in the
case of classical optimal foraging because in the present
case densities of handling predators depend also on the
predator diet choice. Nevertheless, it is proved in
Appendix C that to maximize R the first, more profit-
able prey type must always be attacked when encoun-
tered, i.e., u1 ¼ 1: The optimal predator strategy with
respect to the alternative prey type cannot be computed
analytically. Numerical simulations show that contrary
to the classic optimal foraging theory the inclusion of
the less profitable prey type will be more gradual as
density of the preferred prey type decreases (Fig. 2) and
partial preferences for the alternative resources arise
when handled prey are considered. We remark, that
scales differ in Fig. 2 for the two curves. In the case of
‘‘zero-one’’ switch (dashed line) the meaning of ‘‘prey’’
is free prey while in the case of partial preference curve
(solid line) ‘‘prey’’ means both free and handled prey.
This causes that switching for the partial preference case
occurs at higher ‘‘prey’’ densities.
5. Discussion

In predator–prey models prey are removed from the
system once they have been captured. Thus, these
models neglect the effect, if any, of handled prey on
predator–prey population dynamics. In this article we
have studied the effect of handled prey on predator–prey
population dynamics, i.e., we have assumed that prey
are removed from the system only after they have been
handled. In this context ‘‘prey’’ mean those that are free
and those that are handled. The question arises whether
distinction between these two cases has any bearing on
predictions of models of theoretical ecology. To shed
some light on this controversy, we have first re-derived
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the Holling type II functional response with respect to
the overall prey density. The classic Holling type II
functional response (Holling, 1959) relates the con-
sumption rate of a single predator to the density of free
prey. Assuming that a single predator does not handle
more than a single prey at a time, it does not make sense
to distinguish between free and handled prey. However,
when more predators are considered then functional
response can be derived either with respect to free prey
density, or with respect to the overall prey density
(including those prey that are handled). The first case
leads to the classical Holling type II functional response,
while the second case leads to a functional response that
depends explicitly on the predator density. This is
because as some prey are handled, the encounter rate
of a searching predator with free prey decreases which
leads to interference between predators. In environ-
ments with a single predator, both scenarios lead to the
same functional response. As the number of predators
increases, the initial slope of the functional response
declines. Such an effect was experimentally observed by
Eveleigh and Chant (1982) in experiments with various
numbers of predacious phytoseiid mites, Phytoseiulus

persimilis (Athias-Henriot) and Amblyseius degenerans

(Berlese). Although these experimental results qualita-
tively agree with our predictions (as predator number
increases, the initial slope of the functional response
decreases, Fig. 1), quantitatively our functional response
predicts a slower decrease of the initial slope of the
functional response than was observed by Eveleight and
Chant.
Various forms of interference can be found in

literature (for a recent review see Skalski and Gilliam,
2001). When compared with the Holling type II
functional response, all these functional responses with
interference assume an additional parameter, i.e.,
another degree of freedom. Contrary to this our
functional response assumes only two parameters.
Then we have studied behavior of an analogue of

the MacArthur–Rosenzweig predator–prey population
dynamical model without any prey density dependence.
It is well known that when only free prey are considered,
this model has an unstable population equilibrium. We
have proved in this article that when handled prey
are considered and only free prey reproduce, then
the population equilibrium can be stable but only for
ecologically implausible parameter values (for stability
the efficiency with which prey are converted to predators
must be larger than 1). Thus, for realistic parameter
values, population dynamics predict the same type
unstable equilibrium behavior regardless of whether
we consider only free prey, or both free and handled
prey together. It is a well-known fact that density-
dependent prey growth described by the logistic growth
stabilizes the MacArthur–Rosenzweig predator–prey
model for not too high values of the resource carrying
capacity. For high carrying capacities the equilibrium
is destabilized and a stable limit cycle emerges.
Numerical simulations not reported here suggest the
same pattern for our model. Thus, we conclude that
the use of the classic predator–prey models with the
Holling type II functional response seems to be a
good approximation of reality. Including more detailed
description of the foraging process that distinguishes
between free and handled prey does not change the
stability properties of the basic population dynamical
model. However, it makes the functional response
dependent on the predator density which is referred to
as interference in ecological literature. It has been
shown earlier that interference has stabilizing effect
on predator–prey population dynamics (Beddington,
1975; DeAngelis et al., 1975; Free et al., 1977; Freed-
man, 1979; Polis, 1988; Ruxton et al., 1992; van der
Meer and Ens, 1997; Fretwell and Lucas, 1970). In
this article we have showed that interference caused
by decrease in free prey density due to positive handl-
ing times in a multiple predator environment is not
strong enough to stabilize the classical predator–prey
population dynamics with exponentially growing prey
population.
The interference which is naturally caused by positive

handling times can, however, lead to some qualita-
tively new predictions. In this article we have showed
that inclusion of handled prey leads to the emergence
of partial preferences for the alternative, less profitable
prey type. Partial preferences mean that the less profit-
able prey type is included in the predator’s diet
with a probability which is between zero and one. The
classical optimal foraging theory that considers a single
predator does not predict such partial preferences
(Charnov, 1976), although partial preferences were
widely reported in literature. In this article we have
showed that in multiple predator environments partial
preferences arise naturally as a consequence of inter-
ference among predators. If handling times are very
small, than our form of the functional response in two-
prey environment (8) will be very similar to the classical
multiprey Holling type II functional response and
partial preferences will be very weak. Thus, one can
expect that the interference discussed in this article can
lead to some stronger partial preferences only provided
the handling times are long enough and there are more
predators.
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Appendix A. Derivation of the functional response (1)

Let us consider a single predator in time interval
ð0;TÞ: By Th we denote time devoted to handling a prey
and by Ts the search time. Then we get

Th ¼ lhxf Ts;

where h denotes handling time of one prey item and l
is the search rate of predators. Because T ¼ Th þ Ts

we get

Ts ¼
T

1þ lhxf

; Th ¼
lhxf T

1þ lhxf

:

Thus,

yh ¼
Th

Ts

ys ¼ lhxf ðy � yhÞ ¼ lhðx � yhÞðy � yhÞ:

Solving the above quadratic equation for yh gives

yh ¼
x þ y þ 1=ðlhÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ y þ 1=ðlhÞÞ2 � 4xy

q
2

and

ys ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � y þ 1=ðhlÞÞ2 þ 4y=ðhlÞ

q
� ðx � y þ 1=ðhlÞÞ

2
:

This gives the functional response (1).
Appendix B. Derivation of model (4)

Predator–prey population dynamics are described by
the following model:

dxf

dt
¼ rxf � lxf ys;

dys

dt
¼ �lxf ys þ

yh

h
� mys þ e

yh

h
;

dyh

dt
¼ lxf ys �

yh

h
� myh; ðB:1Þ

where r is the per capita prey growth rate, l is the
predator cropping rate, h denotes handling time of one
prey item, e is the efficiency rate in which handled prey
are converted to new predators and m is per capita
predator mortality rate. The number of handled prey
ðxhÞ is equal to the number of handling predators ðyhÞ:
The above model assumes that only free prey reproduce
and newborn predators become immediately searching
predators. Functional response allows us to approx-
imate the above system (B.1) by a two-dimensional
system. Adding the last equation of (B.1) to the first and
second one we obtain

dx

dt
¼ rx � ð1þ mh þ rhÞyh=h;

dy

dt
¼ eyh=h � my;
where x ¼ xf þ yh; y ¼ ys þ yh and substitution yh=h ¼
F ðx; yÞy leads to model (4).
Characteristic polynomial of Eq. (4) with functional

response F evaluated at the equilibrium E is

s2 þ
hmrð1� e þ 2hmÞ

hrðhm � eÞ � eð1þ hmÞ
s þ

mrðe � hmÞð1þ hmÞ
eð1þ hmÞ þ hrðe � hmÞ

:

The last coefficient in the characteristic polynomial is
positive. The coefficient by s is positive if e > 1þ hm

which implies local stability of E: Otherwise, E is
unstable.
Appendix C. Optimal foraging theory

Let us consider a predator during a small time interval
ð0;TÞ: In this time interval the predator is either
searching for a prey (for time Ts), or handling prey
type 1 (for time T1

h ), or prey type 2 (for time T2
h ). In time

Ts a searching predator will encounter liðxi � yhiÞTs free
prey type i: Thus,

Ti
h ¼ lihiuiðxi � yhiÞTs

and

Ts ¼
T

1þ l1h1u1ðx1 � yh1Þ þ l2h2u2ðx2 � yh2Þ
:

Because

yhi

ys

¼
Thi

Ts

; i ¼ 1; 2

we get the following system of equations for yh1 and yh2

yh1 ¼ l1h1u1ðx1 � yh1Þðy � yh1 � yh2Þ;

yh2 ¼ l2h2u2ðx2 � yh2Þðy � yh1 � yh2Þ:

Let xi > 0; i ¼ 1; 2; y > 0: We show that this system (see
also (9)) has only one solution yhi; i ¼ 1; 2 such that

0pyhioxi; i ¼ 1; 2; yh1 þ yh2oy:

Set ai ¼ lihiui and assume 0oa1oa2: Certainly

yh2 ¼
a2x2yh1

a1x1 þ ða2 � a1Þyh1
:

Using this equality the first equation of (9) can be
rewritten

yh1½a1x1 þ ða2 � a1Þyh1� ¼ a1ðx1 � yh1Þ½a1x1y

þ ðða2 � a1Þy � a1x1 � a2x2Þyh1

� ða2 � a1Þðyh1Þ
2�: ðC:1Þ

The left side of the above equation is a quadratic
polynomial (in yh1) whereas the right side is a cubic
polynomial. Taking into consideration their values at
yh1 ¼ 0 and x1 we conclude that (C.1) has at least one
solution in the interval ð0;x1Þ: Since left side of Eq. (C.1)
converges to infinity and the right side converges to
minus infinity as yh1 converges to minus infinity,
Eq. (C.1) has a solution yh1o0: Since the cubic
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polynomial diverges to infinity faster then the quadratic
one for yh1 converging to infinity, Eq. (C.1) has a
solution with yh1 > 0: This implies that there exists
exactly one solution in the interval ð0;x1Þ: If 0oa2oa1
then we exchange yhi and the proof follows exactly the
same lines as above.
@R

@u1
¼

ð@w1=@u1Þðe1=h1 þ ðe1=h1 � e2=h2Þw2Þ þ ð@w2=@u1Þðe2=h2 � ðe1=h1 � e2=h2Þw1Þ

ð1þ w1 þ w2Þ
2

:

Now we prove that predator’s optimal foraging
strategy is to include the more profitable prey type in
diet, i.e., u1 ¼ 1: For simplicity, we define

di ¼ xi � yhi; d ¼ y � yh1 � yh2;

wi ¼ uilihiðxi � yhiÞ; i ¼ 1; 2:

Thus,

R ¼
ðe1=h1Þw1 þ ðe2=h2Þw2

1þ w1 þ w2
: ðC:2Þ

Eq. (9) become

yh1 ¼ l1h1u1d1d; yh2 ¼ l2h2u2d2d:

Deriving the above two equations with respect to u1
yields

@yh1

@u1
ð1þ l1h1du1 þ l1h1d1u1Þ

þ
@yh2

@u1
l1h1d1u1 ¼ l1h1d1d;

@yh1

@u1
l2h2d2u2

þ
@yh2

@u1
ð1þ l2h2du2 þ l2h2d2u2Þ ¼ 0: ðC:3Þ

From (C.3) we get

@yh1

@u1
¼ l1h1d1dð1þ l2h2du2 þ l2h2d2u2Þ=D;

@yh2

@u1
¼ �l1h1d1dl2h2d2u2=D;

where

D ¼ ð1þ l1h1du1 þ l1h1d1u1Þð1þ l2h2du2 þ l2h2d2u2Þ

� l1h1d1u1l2h2d2u2
¼ 1þ l1h1du1 þ l1h1d1u1 þ l2h2du2 þ l2h2d2u2

þ l1h1du1l2h2du2 þ l1h1d1u1l2h2du2

þ l1h1du1l2h2d2u2 > 0:

From (9) we get

@w1

@u1
¼

@

@u1

yh1

y � yh1 � yh2

¼
ð@yh1=@u1Þðy � yh2Þ þ yh1ð@yh2=@u1Þ

ðy � yh1 � yh2Þ
2

;

@w2

@u1
¼

@

@u1

yh2

y � yh1 � yh2

¼
ð@yh2=@u1Þðy � yh1Þ þ yh2ð@yh1=@u1Þ

ðy � yh1 � yh2Þ
2

:

From (C.2) we get
Because yhi; @yi=@u1;wi; @wi=@u1 are independent of ei;
@R=@u1 is a linear function of e2: We distinguish two
cases.
First, let us assume that e2=h2 ¼ e1=h1: Then

@R

@u1
¼

e1ð@w1=@u1 þ @w2=@u1Þ

h1ð1þ w1 þ w2Þ
2

¼
e1yð@yh1=@u1 þ @yh2=@u1Þ

h1ð1þ w1 þ w2Þ
2ðy � yh1 � yh2Þ

2

¼
e1y

h1ð1þ w1 þ w2Þ
2ðy � yh1 � yh2Þ

2

�
l1h1d1dð1þ l2h2du2Þ

D
> 0:

Thus R is increasing function of u1:
Second, let us assume that e2 ¼ 0: From (C.2) we have

R ¼
e1w1

h1ð1þ w1 þ w2Þ
:

Thus, R is an increasing function in w1: Because

D

l1h1d1d
ðy � yh1 � yh2Þ

2@w1

@u1

¼
D

l1h1d1d
@yh1

@u1
ðy � yh2Þ þ yh1

@yh2

@u1

¼ ð1þ l2h2du2 þ l2h2d2u2Þðy � yh2Þ � yh1l2h2d2u2
¼ ð1þ l2h2du2Þðy � yh2Þ

þ l2h2d2u2ðy � yh1 � yh2Þ > 0;

w1 is an increasing function of u1 and, consequently, R is
an increasing function of u1 too.
It follows that @R=@u1 is positive in the interval

0pe2=h2pe1=h1 and, consequently, u1 ¼ 1:
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