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Abstract In this article we construct Lyapunov functions for models described
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we use a geometrical approach to construct a Lyapunov function. Then we apply
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biologically meaningful parameter combination the model has a globally stable
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1 Introduction

Some models in mathematical biology lead to piecewise-continuous differential
equations. These models are described, except along some lower dimensional
manifolds, by ordinary differential equations with continuous right-handsides.
So called “piecewise-linear models” that describe gene and neural regulatory
networks fall in this category [8,12,14,15,18–20,28]. In ecology, piecewise-con-
tinuous differential equations arise in models that combine animal behavior
with population dynamics [7,9,25,38] or optimal harvesting [29]. Discontinu-
ities enter these models due to sudden switches in the model dynamics. For
example, in a gene regulatory network, a gene is off below some switching
threshold value of an input signal, and on above that threshold. Likewise,
in behavioral ecology, fitness maximization suggests that animals feed on the
most abundant resource which leads to “resource switching” as proportions of
resources in the environment change [30]. A reasonable definition of a solution
for discontinuous differential equations was given by [16]. Filippov definition
replaces the original discontinuous differential equation by a differential inclu-
sion that is obtained from the original model by replacing the discontinuous
right-handside by an appropriate set-valued map [4,6,16].

Analyzing equilibrium stability for discontinuous differential equations is
more complicated when compared with smooth dynamical systems because
it uses non-smooth analysis and theory of multivalued functions [5]. A theo-
retical bifurcation analysis for planar discontinuous systems was given in [16]
and [24]. A numerical bifurcation analysis software was also recently devel-
oped [13]. Stability of discontinuous systems can be analyzed by a Lyapunov
function [4,6,16,37]. However, Lyapunov functions for discontinuous differen-
tial equations are typically non-smooth. In fact, [37] provides an example of a
non-smooth Lyapunov function for a simple discontinuous differential equation
with a globally stable equilibrium for which a smooth Lyapunov function does
not exist. General conditions under which a non-smooth Lyapunov functions
decreases along trajectories of a discontinuous differential equation are given
in [37].

In this article we use a more direct approach to prove global stability of an
equilibrium for some models that are described by a piecewise-independent
non-linear differential equation. The piecewise-linear models of gene regula-
tory networks fall in this category. Then we apply our theory to a particular
system that was used to describe a competition of two consumer species in a
two patch environment [26]. This model extends the Ideal Free Distribution
(IFD), originally defined for a single species [17] to two-species environments.
The IFD assumes that animals live in discrete patches between which they move
freely and instantaneously. They also have a perfect knowledge of the qualities
of all patches, and they settle in the patch that provides them with the highest
resource intake rate. This results in a spatial animal distribution under which
no individual can unilaterally increase its fitness by changing its strategy.

Several attempts to extend the IFD for two or more species can be found in
the literature. For example, in a series of articles Rosenzweig [32,33,35] intro-
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duced “isolegs”, which are the lines in the population-density phase space, that
separate regions where qualitatively different habitat preferences are observed
(e.g., the first species occupies patch 1 only while the second species occupies
both patches etc.). The IFD for multiple species is then graphically visualized
by using isolegs. In the literature the shape of isolegs was often assumed to
have some a priori chosen functional form [1–3,34,36]. Other authors tried
to evaluate the shape of isolegs on the basis of some theoretical arguments
[21–23,27,31]. In particular, [27] considered two competing consumer spe-
cies in a two patch environment and using a game-theoretical approach they
defined a corresponding multi-species IFD. Their model was based on the
Lotka–Volterra competition model which considers consumer population dynam-
ics but treats resources as fixed. They showed that due to bistability of the
underlying model the corresponding IFD may not be uniquely defined pro-
vided interspecific competition is strong when compared with intraspecific
competition. Using an extension of the evolutionarily stable strategy (ESS)
in multispecies environments [10] extended the IFD for two species that ei-
ther compete for common resources (that do not undergo population dynam-
ics), or are in a predator–prey interaction. [26] considered a reciprocal case
where consumer densities are treated as fixed quantities but the resources
undergo population dynamics. To derive isolegs, [26] assumed that there exists
a globally stable equilibrium for resource dynamics. In this article we analyze
this model with respect to parameters and using an appropriate Lyapunov func-
tion we show that for any biologically reasonable parameters the model has a
globally stable equilibrium.

2 Lyapunov functions for differential inclusions

We consider a system of differential equations

dxi

dt
= fi(x1, . . . , xn), i = 1, . . . , n (1)

with functions fi that are measurable and locally bounded. Solutions for such
differential equations are defined in the Filippov sense [16,6]. Filippov solutions
are solutions of the following differential inclusion

dx
dt

∈ K(x), (2)

where

K(x) =
⋂

δ>0

⋂

µ(N)=0

cof
(
B(x, δ) \ N

)
.

Here co stands for the closed convex hull, B(x, δ) is the open δ–neighborhood
of x, and µ denotes the Lebesgue measure. We remark, that for every initial
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condition differential inclusion (2) has at least one solution [16]. In general,
solutions of model (2) may not be uniquely defined. The right uniqueness of
solutions follows if, e. g., K satisfies the one–sided Lipschitz condition [16]. The
right uniqueness of solutions implies continuous dependence of solutions of
differential inclusion (2) on initial data [16, Corollary 1, p. 89].

A point E = (E1, . . . , En) is an equilibrium of model (2) if it satisfies the
following inclusion

0 ∈ K(E).

Thus, either the right handside of (1) is continuous at equilibrium E in which
case E satisfies the ordinary condition for an equilibrium (f (E) = 0), or it is
discontinuous in which case the above inclusion must hold. We say that an
equilibrium is strictly positive if all its coordinates are positive.

Now we study global asymptotic stability of an equilibrium E of model (1)
by using a Lyapunov function. We define Rn+ = {(x1, . . . , xn) : xi ≥ 0, for i =
1, . . . , n}, intRn+ = {(x1, . . . , xn) : xi > 0, for i = 1, . . . , n}, and ∂Rn+ = Rn+ −
intRn+. For a function V : Rn �→ R and a positive number a we define

B(V, a) = {(x1, . . . , xn) ∈ Rn : V(x1, . . . , xn) < a},

and

S(V, a) = {(x1, . . . , xn) ∈ Rn : V(x1, . . . , xn) = a}.

In what follows we assume that Rn+ is invariant for differential equation (1).
The set of all ω limit points that can be reached from intRn+ is denoted by �int
(i.e., there exists a solution x(t) of (1) and a sequence of times tk, tk → ∞ such
that x(tk) > 0, i.e., xi(tk) > 0 for every i = 1, . . . , n, and limn→∞ x(tn) = x).

“Natural” Lyapunov functions for discontinuous differential equations often
lack differentiability [16]. For locally Lipschitz Lyapunov functions generalized
derivatives based on the Clark’s gradient can be used [16,37]. Here we give a
definition of a Lyapunov function which assumes continuity only.

Definition 1 Function V : Rn �→ R is a Lyapunov function if it satisfies the
following conditions:

(i) V is a continuous, non-negative function
(ii) V(x) → ∞ when ‖x‖ → ∞

(iii) There exists a unique point E such that V(E) = 0
(iv) For every a > 0, every solution of (1) starting from S(V, a) ∩ intRn+ enters

B(V, a) for a small positive time interval.

The next theorem is a slight modification of standard stability theorems for
differential equations with discontinuous right-handsides [16,37]. First, it does
not assume any sort of differentiability of the Lyapunov function, second, it
predicts stability with respect to a given set (here with respect to intRn+).
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Theorem 1 Let an equilibrium E of model (1) be strictly positive. Let a Lyapu-
nov function V be given, �int ∩ ∂Rn+ = ∅, and ∂Rn+ be an invariant set. Then the
equilibrium E is globally asymptotically stable in intRn+.

Proof First, we prove that equilibrium E is stable. Let η > 0 and mη = inf{V(x) :
‖x−E‖ = η}. Due to our assumptions (i) and (iii) on function V, we have mη > 0.
Let δ > 0 be such that {x : ‖x − E‖ < δ} ⊂ Rn+ and V(x) < mη for ‖x − E‖ < δ.
If x(t) is a solution of (1) such that ‖x(0) − E‖ < δ, then V(x(0)) < mη and
because V decreases along solutions of (1), V(x(t)) < mη for all t > 0. It follows
that ‖x(t) − E‖ < η for all t > 0.

Second, we prove asymptotic stability. Let x̃(t) be a solution of (1) such that
x̃(0) ∈ S(V, a1) ∩ intRn+ for some a1 > 0. Let l(t) = V(x̃(t)). Due to (iv) l(t) is
decreasing and L = limt→∞ l(t) = 0. Indeed, if L > 0 then an ω-limit point
O ∈ �int exists. Due to the assumption �int ∩ ∂Rn+ = ∅ point O belongs to
S(V, L)∩ intRn+. Thus, there exists a sequence tn → ∞ such that x̃(tn) → O. Let
xn(t) be solutions of (1) such that xn(0) = x̃(tn). Due to Lemma 1 on page 87 in
[16] there exists a subsequence which converges to a solution x(t) of model (1).
Because x(0) = O and this solution enters B(V, L) for some t > 0, it follows that
some of the functions xn(t) must also enter B(V, L), which is a contradiction
with the definition of L. Since E is a unique point in B(V, a1) for which V = 0,
the solution x̃(t) converges to E. The global asymptotic stability of E is proved.

In what follows we will assume that functions fi are discontinuous along a
discontinuity manifold M that is given by a function h : Rn−1+ �→ R,

M = {(x1, . . . , xn) : xn = h(x1, . . . , xn−1)},

and for x0 ∈ M we define (we assume that the limits below exist)

f−(x0) = lim
x↗x0

f (x), f+(x0) = lim
x↘x0

f (x).

Let γ be an orthogonal vector to M at point x0 ∈ M, i.e.,

γ =
(

− ∂h
∂x1

, . . . , − ∂h
∂xn−1

, 1
)

.

At the points of the discontinuity manifold M where solutions cannot leave
it (such part of the discontinuity manifold is called the sliding regime and the
points satisfy 〈f−(x0), γ 〉 > 0 and 〈f+(x0), γ 〉 < 0 where 〈· , ·〉 stands for the
usual scalar product) the right hand-side of (2) can be replaced by the “Filippov
field”

fF(x0)=µ(x0)f+(x0)+(1−µ(x0))f−(x0)= 〈f−(x0), γ 〉 f+(x0)−〈f+(x0), γ 〉 f−(x0)

〈f−(x0) − f+(x0), γ 〉 ,
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where

µ(x0) = −〈f−(x0), γ 〉
〈f+(x0) − f−(x0), γ 〉 , (3)

Filippov [16]. The Filippov vector field fF is obtained as the intersection of the
tangent plane to M with the line segment that connects the two adjacent vector
fields f+ and f−.

Filippov [16, p. 156] showed that if the Lyapunov function decreases every-
where except the discontinuity manifold (which is a set of zero measure), the
corresponding equilibrium may not be stable, because trajectories can diverge
from the equilibrium along the discontinuity manifolds. This causes a problem
how to define a “derivative” of the Lyapunov function at the discontinuity
manifolds, because at these points the Lyapunov function is often non differen-
tiable. [37] proved that the derivative of a regular (e.g., a pointwise maximum of
smooth functions) function V along solutions of model (2) satisfies for almost
all times t

dV(x(t))
dt

∈ DV(x(t)),

where

DV(x(t)) =
⋂

ξ∈∂V(x(t))

〈ξ , K(x(t))〉,

∂V denotes the Clarke’s generalized gradient. If E is an equilibrium of model
(2), V is a non-negative function that attains its minimum at E, and DV(x) ≤ 0
then V is a Lyapunov function and the equilibrium is stable. However, compu-
tation of DV can be quite complicated task.

2.1 A Lyapunov function for piecewise-independent differential inclusions

In this article we assume that model (1) is described by a piecewise-independent
differential equation

dxi

dt
= fi(xi), i = 1, . . . , n (4)

and that the discontinuities form a linear manifold. In this case we define

V(x1, . . . , xn) = max
0≤i≤n

ci|xi − Ei|, (5)

where ci is a positive constant, and E is an equilibrium.

Remark 1 Conditions of Definition 1 are easily verified for the Lyapunov func-
tion given by (5). If the point x0 belongs to S(V, a) then there exists an index
set {i1, . . . , ik} such that
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x0
i� = (−1)εi�

a
ci�

+ Ei� , � = 1, . . . , k

where εi is 0 or 1. If x0 is a point of continuity of function f then for V to be a
Lyapunov function we require

(−1)εi1 fi1(x
0
i1) < 0, . . . , (−1)

εlk fik(x
0
ik) < 0.

If the point x0 lies on the discontinuity manifold then there are two possibili-
ties: (1) It is in the sliding regime and then vector f is replaced by the Filippov
vector field fF ; (2) It is not in the sliding regime (in which case trajectories of (2)
pass transversally through the discontinuity manifold) and then we require the
above inequalities hold for both f+ and f−. We show how to apply Theorem 1
to analyze a particular system that arises in ecology.

3 The IFD of two competing species

Here we consider a model of competition of two species N and P in an envi-
ronment consisting of two foraging patches [26]. We assume that consumers do
not undergo population dynamics while resources are exploited by consumers.
The resource dynamics are described by the following model

dR1

dt
= r1R1

(
1 − R1

K1

)
− λN1u1NR1 − λP1v1PR1,

dR2

dt
= r2R2

(
1 − R2

K2

)
− λN2u2NR2 − λP2v2PR2.

(6)

Here, Ri is density of resources in patch i (= 1, 2), N and P are (fixed) overall
abundances of the two competing populations, ri is the per capita instantaneous
resource growth rate, λNi , λPi are the resource cropping rates, Ki is the resource
environmental carrying capacity, and ui (vi) is the portion of individuals N (P)
in patch i. Because we assume that travel time between patches is negligible we
have u1 + u2 = v1 + v2 = 1, ui ≥ 0, vi ≥ 0. The functions ui(t), vi(t) are chosen
so that the consumer fitness defined as

WN = λN1u1R1 + λN2u2R2, WP = λP1v1R1 + λP2v2R2

maximizes at every time instant. Thus, the average food intake rate is taken
here as a proxy for Darwinian fitness. Fitness maximization gives the following
optimal strategy:

• If λN1R1 − λN2R2 > 0 then u1 = 1,
• If λP1 R1 − λP2 R2 > 0 then v1 = 1,
• If λN1R1 − λN2R2 < 0 then u1 = 0,
• If λP1 R1 − λP2 R2 < 0 then v1 = 0,
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Fig. 1 Position of sectors S1,
S2 and S3 in the resource
1—resource 2 density phase
space provided inequality (7)
holds. Model (6) is
discontinuous along lines L1
and L2
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• If λN1R1 − λN2R2 = 0 then WN is constant and ui is not uniquely defined
(0 ≤ ui ≤ 1),

• If λP1R1 − λP2R2 = 0 then WP is constant and vi is not uniquely defined
(0 ≤ vi ≤ 1).

By Li we denote the half lines

L1 =
{
(R1, R2) : R1 ≥ 0, R2 = λN1

λN2

R1

}
; L2 =

{
(R1, R2) : R1 ≥ 0, R2 = λP1

λP2

R1

}

that separate three sectors in the resource density phase space:

S1 =
{
(R1, R2) : 0 ≤ R1, 0 ≤ R2 <

λN1

λN2

R1

}
,

S2 =
{
(R1, R2) : 0 ≤ R1,

λN1

λN2

R1 < R2 <
λP1

λP2

R1

}
,

S3 =
{
(R1, R2) : 0 ≤ R1,

λP1

λP2

R1 < R2

}
.

Without loss of generality we will assume that

λN1

λN2

<
λP1

λP2

, (7)

see Fig. 1. The right hand side of model (6) in these sectors will be denoted by
(fi, gi), (i = 1, 2, 3). In particular, in sector S1

f1(R1, R2) = r1R1(1 − R1/K1) − λN1NR1 − λP1PR1,

g1(R1, R2) = r2R2(1 − R2/K2),
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in sector S2

f2(R1, R2) = r1R1(1 − R1/K1) − λP1PR1,

g2(R1, R2) = r2R2(1 − R2/K2) − λN2NR2,

and in sector S3

f3(R1, R2) = r1R1(1 − R1/K1),

g3(R1, R2) = r2R2(1 − R2/K2) − λN2NR2 − λP2PR2.

Thus, this model falls into the category of piecewise-independent equations,
because in all these sectors the two resource population dynamics are decou-
pled. We remark that model (6) is multivalued along lines Li (i = 1, 2) and it
coincides with the Filippov regularization of the discontinuous system defined
on sectors S1, S2 and S3. We study resource dynamics along the lines Li now. In
principle there are three possibilities. Either trajectories cross Li transversally,
or they move along Li for some positive time, or they are not uniquely defined.
First, we study trajectories that start from a point on line L1. By M we denote
the set of points on L1 in which the sliding regime occurs (M is also called the
sliding domain). The sliding regime is governed by the Filippov system [16]

dR1

dt
= fF(R1, R2) = µ(R1)f1(R1, R2) + (1 − µ(R1))f2(R1, R2),

dR2

dt
= gF(R1, R2) = µ(R1)g1(R1, R2) + (1 − µ(R1))g2(R1, R2),

(8)

where

µ(R1) =
(

λN1 r2

λN2 K2
− r1

K1

)
R1 + r1 − r2 + λN2N − λP1P

(λN1 + λN2)N
(9)

is between zero and one.

Remark 2 Let γ = (−λN1 , λN2) be an orthogonal vector to L1. Because along
the line L1, 〈(f1, g1), γ 〉 − 〈(f2, g2), γ 〉 = λN1(λN1 + λN2)NR1 > 0 we get

〈(f1, g1), γ 〉 > 〈(f2, g2), γ 〉. (10)

There are just two possibilities: Either solutions of model (6) cross the line
from one side to the other, or solutions move along the line in “sliding motion”.
The regime in which trajectories along L1 are not unique (i.e., 〈(f1, g1), γ 〉 < 0
and 〈(f2, g2), γ 〉 > 0) is not possible. The sliding regime takes place if and only
if 0 ≤ µ ≤ 1. Indeed, if the sliding regime occurs, than 〈(f1, g1), γ 〉 ≥ 0 and
〈(f2, g2), γ 〉 ≤ 0 and one of these expressions is nonzero. From (3) (where we
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set f+ = (f1, g1) and f− = (f2, g2)) it follows that 0 ≤ µ ≤ 1. On the contrary, if
0 ≤ µ ≤ 1 then

〈(f1, g1), γ 〉 = (µ − 1)〈(f2, g2), γ 〉
µ

.

This means that the signs of 〈(fi, gi), γ 〉 (i = 1, 2) are different and 〈(f1, g1), γ 〉 ≥ 0
and 〈(f2, g2), γ 〉 ≤ 0 because of (10).

Model (8) has an equilibrium

D = (D1, D2) =
(

K1K2λN2(r2λN1 + λN2r1 − λN2(λN1N + λP1P))

r2K1λ
2
N1

+ r1K2λ
2
N2

,
λN2

λN1

D1

)

(11)
if

P <
λN2r1 + λN1r2 − λN1λN2N

λN2λP1

and 0 ≤ µ(D1) ≤ 1. In this case the equilibrium is positive. Equilibrium D is
asymptotically stable in L1 because

dfF(D)

dR1
= − D1

λN1 + λN2

λ2
N2

r1K2 + λ2
N1

r2K1

λN2K1K2
< 0 (12)

whenever the equilibrium exists. However, this does not imply that D is asymp-
totically stable in the resource density phase space.

A similar situation holds along the discontinuity line L2 in which case the
resource population dynamics in the sliding regime are governed by the follow-
ing system

dR1

dt
= fF(R1, R2) = ν(R1)f3(R1, R2) + (1 − ν(R1))f2(R1, R2),

dR2

dt
= gF(R1, R2) = ν(R1)g3(R1, R2) + (1 − ν(R1))g2(R1, R2),

(13)

where

ν(R1) =
(

r1
K1

− λP1 r2

λP2 K2

)
R1 + r2 − r1 + λP1 P − λN2N

(λP1 + λP2)P
(14)

is between zero and one. The corresponding equilibrium is

F = (F1, F2) =
(

K1K2λP2(r2λP1 + r1λP2 − λP1(λN2N + λP2 P))

r2K1λ
2
P1

+ r1K2λ
2
P2

, λP1/λP2 F1

)
.

(15)
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This equilibrium is positive when

P <
λP2 r1 + λP1r2 − λN2λP1N

λP2λP1

and 0 ≤ ν(F1) ≤ 1. Equilibrium F is also asymptotically stable in L2 whenever
it exists because

dfF(F)

dR1
= − F1

λP1 + λP2

λ2
P2

r1K2 + λ2
P1

r2K1

λP2 K1K2
< 0.

Isolegs for the two consumer species are the lines in the consumer density
phase space (N, P) that separate regions where qualitatively different habitat
preferences are predicted [27,31–33,35]. In particular, the 100% (0%) isoleg
separates the part of the consumer density phase space where all individuals
of the given species occupy the second (first) patch from the rest of the phase
space. There are four such isolegs [26]:

I100%
N (N) = r1r2(λN1K1 − λN2K2) + r1K2λ

2
N2

N

r2λP1λN1K1
,

I0%
P (N) = r1r2(λP1 K1 − λP2 K2) + r1K2λN2λP2N

r2λ
2
P1

K1
,

I0%
N (N) = r1(λN1K1 − λN2K2) − K1λ

2
N1

N

λP1λN1K1
,

I100%
P (N) = r2(λP2K2 − λP1K1) − K2λN2λP2N

λ2
P2

K2
.

The isolegs are shown in Fig. 2 as the thick lines. The thick solid line is the 0%
isoleg for species N, the long-dashed line is the 100% isoleg for the same species.
Similarly, the short-dashed line is the 0% isoleg for species P and dot-line is the
100% isoleg for the same species.

Qualitative behavior of model (6) depends on the position of the following
points:

A = (A1, A2) =
(

K1

(
1 − λP1 P

r1

)
, K2

(
1 − λN2N

r2

))
,

B̃ = (B1, K2) =
(

K1

(
1 − λN1N + λP1P

r1

)
, K2

)
,

B = (B1, 0) =
(

K1

(
1 − λN1N + λP1 P

r1

)
, 0

)
,
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Fig. 2 This figure analysis
resource equilibrial densities
(for definition of qualitative
cases (i), …,(vii′) see text) and
consumer spatial distribution
(shown as pairs of numbers)
as function of consumer
densities N and P. The thick
lines are isolegs (solid line is
the 0% isoleg for species N,
the long-dashed line is the
100% isoleg for species N, the
short-dashed line is the 0%
isoleg for species P and
dot-line is the 100% isoleg for
the same species). The gray
region shows consumer
densities for which both
resources are depleted. In (a)
the first patch is better for
both species at low densities
(λP1

/λP2 > λN1
/λN2 >

K2/K1, K1 = 35, K2 = 20), in
(b) the first patch is better for
species P and the second
patch is better for species N
when at low densities
(λP1

/λP2 > K2/K1 >

λN1
/λN2 , K1 = 23, K2 = 10)

and in (c) the second patch is
better for both species at low
densities (K2/K1 >

λP1
/λP2 > λN1

/λN2 ,
K1 = 23, K2 = 40). Other
parameters: λN1

= 0.3,
λN2 = 0.4, λP1

= 0.3,
λP2 = 0.2, r1 = 0.1, r2 = 0.2
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C = (0, C2) =
(

0, K2

(
1 − λN2N + λP2P

r2

))
,

C̃ = (K1, C2) =
(

K1, K2

(
1 − λN2N + λP2 P

r2

))
.

We remark, that points A, B, B̃, C and C̃ are equilibria of model (6) provided
they belong to the adequate sectors (i.e., A ∈ S2, B, B̃ ∈ S1, C, C̃ ∈ S3). If this is
not so then we call the point a “virtual equilibrium” (e.g., A ∈ S1). Position of
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these equilibria with respect to the two consumer densities can be analyzed by
using isolegs.
Using Lyapunov functions given by (5) we will analyze existence and stability
of equilibria with respect to consumer densities.

(i) We assume that A is an equilibrium of model (6), i.e., A ∈ S2 (Fig. 3a)
which happens for consumer densities satisfying

I100%
N (N) < P < I0%

P (N) (16)

(see the region denoted by (i) in Fig. 2). The above inequalities immediately
imply that species N occupies patch 2 while species P occupies patch 1 (which is
indicated by distribution (0, 1) in Fig. 2 where the first number is the proportion
of species N in patch 1 and the second number is the proportion of species P in
patch 1). Let

V(R1, R2) = max

( |R1 − A1|
A1

,
|R2 − A2|

A2

)
. (17)

The following proposition is proved in Appendix A.

Proposition 1 Point A ∈ S2 is a globally asymptotically stable equilibrium of
model (6) in intR2+. Function V defined by (17) is a corresponding Lyapunov
function.

The following three cases lead to the Lyapunov function given in Proposi-
tion 2.

(ii) We assume that A is a virtual equilibrium which belongs to sector S1 and
A2 > λN1/λN2B1 (Fig. 3b). In the consumer density phase space this means that

I0%
N (N) <

r1r2(K1λN1 − K2λN2) + (λ2
N2

r1K2 − λ2
N1

r2K1)N

K1r2λN1λP1

< P < I100%
N (N)

and

N ≤ r2

λN2

(see region (ii) in Fig. 2a, where the thin dotted line is given by the expression
in the first of the two above formulas). This immediately implies that the first
consumer species occupies both patches. We observe that P > I0%

N (N) is equiv-
alent with K2 > λN1/λN2B1 which implies that B̃ is either in sector S2 or S3.
Trajectories starting in sector S2 are driven toward the virtual equilibrium A
which is in sector S1 and trajectories that start in sector S1 are driven to virtual
equilibrium B̃ which is either in S2 or S3. Thus, Ã = (λN2/λN1A2, A2) is a point
in the sliding domain (0 < µ < 1) and solutions of the Filippov system (8) move
at the point Ã along line L1 in the direction away from the origin (gF(Ã) > 0
because f1(Ã) < 0, g1(Ã) > 0, f2(Ã) > 0, g2(Ã) = 0).



478 V. Křivan, I. Vrkoč
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Ã

B1

C

D

(c)

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

R1

R2

L1

L2

K1

K2

A

A

Ã
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Fig. 3 Qualitatively different positions of equilibria A, B and C of model (6). Panels (a)–(g)
correspond to cases (i)–(vii) discussed in text and shown in Fig. 2

Let

A� =
⎧
⎨

⎩

(
A1,

λN1
λN2

A1

)
if

λN1
λN2

A1 < K2,
(

λN2
λN1

K2, K2

)
if

λN1
λN2

A1 > K2.
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Since A2 > λN1/λN2 B1, we have B1 < Ã1 < A�
1. Because either f1(A�) < 0,

g1(A�) > 0, f2(A�) = 0, g2(A�) < 0 in which case fF(A�) < 0, or f1(A�) < 0,
g1(A�) = 0, f2(A�) > 0, g2(A�) < 0 in which case gF(A�) < 0, the Filippov field
at A� points toward the origin. It follows that there exists a locally attractive
equilibrium D of the Filippov field in L1 (B1 < Ã1 < D1 < A�

1 ≤ A1). Due to
the linearity of µ(R1) in R1 we know that there is just one such point and it is
given by (11). The point D is between Ã and A�.

(iii) Third, we assume that B1 > 0, A1 > 0, K2 > λN1/λN2B1 and A2 ≤
λN1/λN2B1 (Fig. 3c) (we remark that from definition of points A and B it fol-
lows that B1 < A1). In the consumer density phase space this corresponds to
the case where

I0%
N < P <

r1r2(K1λN1 − K2λN2) + (λ2
N2

r1K2 − λ2
N1

r2K1)N

K1r2λN1λP1

, P ≤ r1

λP1

,

see Fig. 2a. Similarly to the previous case the above inequalities imply that the
first consumer N occupies both patches. Let us consider point B0 = (B1, λN1/

λN2B1) which is on L1. We have f1(B0) = 0, g1(B0) > 0, f2(B0) > 0, g2(B0) < 0,
see Fig. 3c. Point B0 is in the region of the sliding regime where the Filippov
field points in the direction away from the origin. Because the Filippov field
at the point A� points toward the origin there exists an equilibrium D of the
Filippov regularization (8) on the line L1 (B1 < D1 < A�

1 ≤ A1) and it is given
again by formula (11).

The point D is between B0 and A�.
(iv) We assume that B1 ≤ 0, A1 > 0, A2 ≤ 0,

P <
λN2r1 + λN1r2 − λN1λN2N

λN2λP1

.

The right hand side of the above inequality is the line separating regions denoted
as (vi) and (v) in Fig. 2.

In this case we consider B� = (ε, λN1/λN2ε) (Fig. 3d) where ε is a small
positive number such that the R1 component of the Filippov field

fF = R1

λN1 +λN2

(
λN2r1+λN1 r2−λN2λP1P − λN1λN2N−

(
r1

K1
λ2

N2
+ r2

K2
λ2

N1

)
R1

λN2

)

(18)
evaluated at B� is positive, i.e.,

fF(B�) > 0. (19)

We have f1(B�) < 0, g1(B�) > 0, f2(B�) > 0, g2(B�) < 0. The point B� is on L1
and it is a point of the sliding regime (Remark 2) at which trajectories move
along L1 in the direction away from the origin due to inequality (19).

Because the Filippov field at the point A� points toward the origin as we
have already shown, there is an interval with the sliding regime (Remark 2) and
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there exists an equilibrium D (see (11)) of the Filippov field on the line L1. The
point D is between 0 and A�.

So far we have proved that under condition (ii)–(iv) the sliding regime occurs
along the segment of the line L1 with the end-points

T1 = (Q1, λN1/λN2Q1), T2 = (Q2, λN1/λN2Q2), (20)

where

Q1 = max

{
0, (r2 − r1 − λN2N + λP1P)

(
λN1r2

λN2K2
− r1

K1

)−1
}

Q2 = max

{
0, (r2 − r1 + λN1N + λP1P)

(
λN1r2

λN2K2
− r1

K1

)−1
}

.

Moreover, the equilibrium D of model (6) belongs to the sliding regime. At
this equilibrium, species N occupies both patches while species P occupies
only patch 1. The set of consumer densities under which this distribution at
the resource equilibrium exists corresponds to species distributions denoted as
(µ, 1) in Fig. 2. The boundary of this set is formed by isolegs I100%

N (long-dashed
line), I0%

N (solid line) and the extinction line (which is the boundary of the gray
area). The exact distribution of the N species at the equilibrium is given by
formula (9). The next proposition, which is proved in Appendix A, shows that
this equilibrium is globally asymptotically stable.

Proposition 2 Under one of the assumptions (ii)–(iv) equilibrium D, given by
formula (11), is globally asymptotically stable in intR2+.

Function

V(R1, R2) = max

( |R1 − D1|
D1

,
|R2 − D2|

D2

)
(21)

is a corresponding Lyapunov function.

Now we will treat two cases that lead to the extinction of both resources.
(v) We assume that B1 ≤ 0, A1 > 0, A2 ≤ 0,

P ≥ λN2r1 + λN1r2 − λN1λN2N
λN2λP1

,

in Fig. 3e. We observe that the Filippov vector field evaluated at B� and A�

points toward origin. Because B� is arbitrarily close to the origin and the Filip-
pov vector field is linear in µ it follows that the sliding regime operates along
the segment of L1 between the origin and A�. Along this segment trajectories
move toward the origin.
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(vi) We assume that A belongs to the third quadrant (A1 < 0, A2 < 0; Fig. 3f)
which corresponds to consumer densities that satisfy

N >
r2

λN2

, P >
r1

λP1

.

The following Proposition is proved in Appendix A.

Proposition 3 If (v) or (vi) hold then the origin is globally asymptotically stable
in R2+. Function

V(R1, R2) = max(λN1 |R1|, λN2 |R2|) (22)

is the corresponding Lyapunov function.

The set of consumer densities that correspond to cases (v) and (vi) is shaded
in Fig. 2. As both species go extinct, it does not make any sense to speak about
their distribution at the equilibrium.

(vii) We consider the remaining case where B̃ is an equilibrium of model (6),
which means that it is in S1. Moreover, we assume that A belongs either to S1
(Fig. 3g), or to the fourth quadrant (A1 > 0, A2 < 0). The following Proposition
is proved in Appendix A.

Proposition 4 Let (vii) be fulfilled. Then the point B̃ is globally asymptotically
stable equilibrium in intR2+. The corresponding Lyapunov function is

V(R1, R2) = max

(
|R1 − B̃1|

B̃1
,
|R2 − B̃2|

B̃2

)
. (23)

Thus, in case (vii) both species occupy the more profitable patch 1 at the
resource equilibrium (Fig. 2a). The boundary of this region in the consumer
density phase space is formed by the isoleg I0%

N .
We summarize our results.

Theorem 2 Let us assume that λN1/λN2 ≤ λP1/λP2 . Then model (6) has the
following globally asymptotically stable equilibria:

1. A is globally asymptotically stable in intR2+ if assumption (i) holds.
2. D given by (11), which is in the sliding domain with end-points T1, T2,

is globally asymptotically stable in intR2+ if one of the conditions (ii)–(iv)
holds.

3. 0 is globally asymptotically stable in R2+ if (v) or (vi) holds.
4. B̃ (which is in sector S1) is globally asymptotically stable in intR2+ if (vii)

holds.

Appendix B shows that conditions (i)–(vii) cover all relevant possibilities
except the case where A belongs to S3, or the second quadrant. In these cases
we proceed in an analogous way. We define symmetric cases (see Fig. 2):
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(i′) This case is identical to (i),
(ii′) A1 ≥ λP2/λP1 C2, A ∈ S3,

(iii′) C2 > 0, A1 ≤ λP2/λP1 C2, A2 > 0, K1 > λP2/λP1 C2,
(iv′) C2 ≤ 0, A1 ≤ 0, A2 > 0 and

P <
λP2 r1 + λP1r2 − λN2λP1N

λP1λP2

,

(v′) C2 ≤ 0, A1 ≤ 0, A2 > 0 and

P ≥ λP2r1 + λP1 r2 − λN2λP1 N
λP1λP2

,

(vi′) This case is identical to the case (vi),
(vii′) C̃ ∈ S3 where

C̃ =
(

K1, K2

(
1 − λN2N + λP2 P

r2

))
.

The corresponding equilibrium in the sliding regime along L2 is then F
(given by formula (15)), instead of D.

Theorem 3 Let λN1/λN2 ≤ λP1/λP2 . If assumptions (ii′), …, (iv′) hold then F is
a globally asymptotically stable in intR2+ equilibrium of model (1) which is in
the sliding domain of L2. If (v′) holds then the origin is globally asymptotically
stable in R2+. If (vii′) holds then point C̃ which is in the sector S3 is globally
asymptotically stable in intR2+.

The proof is analogous to the proof of Theorem 1.

4 Discussion

Lyapunov functions for differential equations with discontinuous right-hand-
side are often only Lipschitz continuous, non-differentiable functions. In fact,
[37] gave an example of a system for which any Lyapunov function must be non-
differentiable. Lyapunov theory for such systems was developed using Clarke’s
generalized gradients [16,37]. However, verifying the condition under which
the corresponding Lyapunov function along trajectories is decreasing can be
quite difficult for non-trivial problems. In this article we used a simpler geo-
metrical approach that can be applied in some fairly simple problems that
arise in biology. This approach is based on a particular choice of a Lyapunov
function for which it is easy to verify that it decreases along trajectories of a
differential equation. Our approach can be useful in those applications that
lead to differential equations which are piecewise-independent. Such models
arise in description of gene and neural networks [8,12,14,15,18,28] in optimal
harvesting problems [29], and in population dynamics [26].
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Using this approach we have completely analyzed a model of two competing
species in a two patch environment that was introduced in [26]. This model
assumes adaptive animal dispersal between two patches which leads to popula-
tion dynamics that are described by piecewise-independent nonlinear differen-
tial equations. Using a Lyapunov function we validated analytically predictions
of numerical simulations given in [26] which suggested that a single, globally
asymptotically stable equilibrium exists for all biologically relevant parameter
values. Moreover, we analyzed the position of the equilibrium as a function of
all parameters of the model.
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A Appendix

Here we prove Theorem 1.
First, we prove that functions V given in Propositions 1, …,4 (cases (i)–(vii))

are Lyapunov functions for model (6).
Case (i). For a positive number a the level set V(R1, R2) = a (with V given

by (17)) is a rectangle with sides

s1(a) =
{
(R1, R2) : R2 < A2,

|R1 − A1|
A1

≤ a,
|R2 − A2|

A2
= a

}
,

s2(a) =
{
(R1, R2) : R1 > A1,

|R1 − A1|
A1

= a,
|R2 − A2|

A2
≤ a

}
,

s3(a) =
{
(R1, R2) : R2 > A2,

|R1 − A1|
A1

≤ a,
|R2 − A2|

A2
= a

}
,

s4(a) =
{
(R1, R2) : R1 < A1,

|R1 − A1|
A1

= a,
|R2 − A2|

A2
≤ a

}
.

The lower boundary of the rectangle s1(a) is either completely in the first quad-
rant (Fig. 4a), or it is disjoint with the first quadrant (Fig. 4b). Let us assume
that s1(a) ⊂ intR2+ (Fig. 4a). Then g2(R1, R2)/R2 = r2(1 − R2/K2) − λN2N > 0
along the side s1(a) in sector S2 because A ∈ S2 is an equilibrium of model
(6) (g2(A1, A2) = 0), function g2/R2 is a decreasing function of R2 in sector
S2, and R2 < A2 along s1(a). Similarly, g1(s1(a)) > 0 in sector S1 (because
g1(s1(a)) > g2(s1(a)) > 0). Due to the construction of level sets, s1(a) is a subset
of sectors S1 and S2 only. Let L1 ∩ s1(a) = U. Then either U belongs to the
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Fig. 4 This figure shows the
position of the sides
s1(a), . . . , s4(a) of the level set
V(R1, R2) = a. Panel A (B)
shows the case where side s1
is subset of (disjoint with) the
first quadrant
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sliding regime M in which case we have that the Filippov vector field gF(U) > 0
(as g1(U) > g2(U) > 0), or U is not in the sliding regime in which case we have
g2(U) > 0. We have proved that solutions starting from points on the lower
boundary s1(a) of the level set enter the interior of the rectangle V = a with
the possible exception of end-points.

Now let us consider the part of the second side s2(a) which is in the first quad-
rant. This side is in sectors S1 and S2 (Fig. 4). Points on s2(a) fulfill R1 > A1 > B1
and because f2(A1, A2) = 0 and f2/R1 decreases in R1, f2(s2(a)) < 0 on S2. As
f1(s2(a)) < f2(s2(a)) we get that also f1(s2(a)) < 0 on S1. These inequalities imply
that even if (R1, R2) is in the sliding regime of L1 (i.e., (R1, R2) ∈ L1 ∩ M) we
have fF(R1, R2) < 0. If L1 intersects with the lower right corner of the rectangle
(i.e., s1(a)∩ s2(a)∩L1 = {V}), then the inequalities g1(V) > g2(V) > 0, f1(V) <

f2(V) < 0 imply that the lower left corner of the rectangle cannot be in the slid-
ing regime M. We conclude that solutions that start from s2(a) also enter the
rectangle. The proof that solutions starting from sides s3(a) and s4(a) enter
the interior of the rectangle follows the same lines and we omit it here. Since
we considered all sides s1(a), . . . , s4(a) the solutions starting from end-points of
the sides enter the considered rectangle as well. Thus, if a solution reaches at
some moment τ the boundary of the rectangle (i.e., V(R1(τ ), R2(τ )) = a for
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some a > 0) then it enters the interior of this rectangle, i.e., V(R1(t), R2(t)) < a
for τ < t < τ + δ and sufficiently small δ. We have proved that V is a Lyapunov
function according to Definition 1.

If s1(a) is disjoint with the first quadrant (Fig. 4b) then we consider rectangle
bounded by s1(a), s2(a), and ∂Rn+ (i.e., the rectangle is in R2+). In this case tra-
jectories of the model cannot leave this rectangle because ∂Rn+ is invariant and
the above analysis along sides s2(a) and s3(a) holds also in this case.

Now, we shall deal with cases (ii), …(iv). The function V is defined as in Prop-
osition 2. From analysis of cases (ii), …,(iv) we know that B1 < D1 < A�

1 ≤ A1
in cases (ii), (iii), and 0 < D1 < A�

1 ≤ A1 in case (iv). We can proceed as
follows. If the side s1(a) is in the first quadrant then due to our definition of
the function V it is completely in the sector S1 and g1(R1, R2) > 0 (because the
side is below the line R2 = K2). On the part of s2(a) which is completely in
sector S1 we have f1(R1, R2) < 0 because B1 < R1 there. On s3(a) which is in
the first quadrant we have g2(R1, R2) < 0 for (R1, R2) ∈ S2 and g3(R1, R2) < 0
on S3 since D2 > Ã2 = A2. Finally, on the part of s4(a) in first quadrant
we have f2(R1, R2) > 0 on S2 and f3(R1, R2) > 0 on S3 since this side is left
from D and D1 < A1 < K1. To complete the proof we have to consider point
(Z1, Z2) = (D1(1 + a), D2(1 + a)). If this point belongs to the sliding domain
M then the solution starting at this point tends to the point D which follows
immediately from the analysis of the cases (ii)–(iv). If this point does no belong
to M then the solution starting from this point crosses L1 transversally. Assume
that the solution leaves S1 and enters S2. It means that for some small positive
t the solution will be in S2 but there is g2 < 0 such that the solution must enter
the rectangle. Similar reasoning is valid for points

(Z1, Z2) = (D1(1 − a), D2(1 − a)).

Case (v) (Proposition 3). We remark, that for Lyapunov function (22), the
level set V(R1, R2) = a is the part of the R2 plane bounded from the right by

s2(a) = {(R1, R2) : R1 = a/λN1 , R2 ≤ a/λN2},

and from above by

s3(a) = {(R1, R2) : R2 = a/λN2 , R1 ≤ a/λN1}.

As B1 ≤ 0 it follows that λN1N + λP1 P ≥ r1 and

f1

R1
= r1

(
1 − R1

K1

)
− λN1N − λP1P < 0

in S1. Since we assume A2 = K2(1 − λN2N/r2) ≤ 0, we get that

g2

R2
= r2

(
1 − R2

K2

)
− λN2N < 0
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in S2. In sector S3 we have g3/R2 ≤ g2/R2 < 0 which implies that V defined by
(22) is the Lyapunov function.

Case (vi) (Proposition 3). Since we assume λN2N > r2 and λP1P > r1 we
have f1/R1 = r1(1 − R1/K1) − λN1N − λP1P < −r1R1/K1 − λN1N < 0 in
S1, g2/R2 = r2(1 − R2/K2) − λN2N < −r2R2/K2 < 0 in S2, and g3/R2 =
r2(1−R2/K2)−λN2N −λP2 P < g2/R2 < 0 in S3. Once again, V defined by (22)
is the Lyapunov function.

Case (vii) (Proposition 4). The Lyapunov function is given as in case (i) (see
(17)). We remark that the lower side s1(a) of the rectangle is in S1. Because
R2 < K2 along s1(a), we get g1(s1(a)) > 0. Similarly, the right side s2(a) of the
rectangle is in S1. Because R1 > B1 along s2(a) we have f1(s2(a)) < 0. Along
the part of s3(a) that is in S1 we have g1(s3(a)) < 0 as R2 > K2, along the part
of s3(a) that is either in S2 or S3 we have g3(s3(a)) < g2(s3(a)) < g1(s3(a)) < 0.
Similarly, f1(s4(a)) > 0 in S1 since R1 < B1 there, f2(s4(a)) > f1(s4(a)) > 0 in S2
and finally f3(s4(a)) > 0 since R1 < K1.

Second, it remains to prove that points from �int do not belong to ∂Rn+ in
cases (i), …,(iv), and (vii) (Theorem 1). Such points could be only the origin,
B, and C. In these cases we use Lyapunov functions given by (17) and the equi-
libria A, D, B̃ are strictly positive. First we show that 0 /∈ �int. Let us consider
B(V, V(0)) (we have V(0) = 1) which contains the region {(R1, R2) : 0 < Ri <

ε, i = 1, 2} for a small positive ε. Let us assume that there exists a sequence
of tn, tn → ∞, x̃(tn) → 0, x̃i(tn) > 0. For sufficiently large tn the points x̃(tn) will
be in B(V, V(0)) which means that V(x̃(tn)) < V(0). Since the function V(x̃(t))
is decreasing, we get a contradiction with the assumption that x̃(tn) → 0. Point
B is excluded by the fact that g1(R1, R2) > 0 close to this point in the first open
quadrant. Similarly, point C is excluded because f3(R1, R2) > 0 in the first open
quadrant. Applying Theorem 1, assertions 1,2, and 4 of Theorem 2 are proved.

Now we prove assertion 3 of Theorem 2, i.e., we consider cases (v), (vi) for
which the corresponding Lyapunov function is given by (22). Let x̃(t) be a solu-
tion of model (6) starting from R2+ \ 0. It follows that functions x̃1(t), x̃2(t) are
strictly decreasing at every point in R2+ \ 0. Since 0 is a unique point fulfilling
V(0) = 0, all solutions converge monotonically to the origin (we remark that
points B, C are outside of R2+ which implies global asymptotic stability of the
origin).

B Appendix

Here we show that if A ∈ S1 ∪ S2 ∪ {(R1, R2) : R1 > 0, R2 < 0}, then conditions
(i), …,(vii) cover all possibilities.

Condition (ii) can be rewritten:

(ii) : A1 > 0, A2 > 0, A2 > λN1/λN2B1, A2 < λN1/λN2A1.

The complement can be expressed:

(α) : A1 ≤0, or (β) : A1 >0, A2 ≤0, or (γ ) : A1 >0, A2 > 0, A2 ≤λN1/λN2B1,
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or (δ) : A1 > 0, A2 > 0, A2 > λN1/λN2 B1, A2 ≥λN1/λN2A1.

In the case (γ ) we have B1 > 0, in the case (δ) the condition A2 > λN1/λN2B1
is superfluous since A1 > B1.

Case (α) is covered by (vi) and if A ∈ {(R1, R2) : R1 < 0, 0 < R2} then we
use Theorem 2. Case (β) is covered by (iv) + (v) (B1 ≤ 0, A1 > 0, A2 ≤ 0) for
B1 ≤ 0 and by (iii) + (vii) (B1 > 0, A1 > 0, A2 < λN1/λN2 B1) for B1 > 0. Case
(γ ) is covered by (iii)+(vii) (B1 has to be positive). Case (δ) is covered by (i)
and if A is in the third quadrant then we use Theorem 2.
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488 V. Křivan, I. Vrkoč
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27. Křivan, V., Sirot, E.: Habitat selection by two competing species in a two-habitat environment.
Am. Nat. 160, 214–234 (2002)

28. Mestl, T., Lemay, C., Glass, L.: Chaos in high-dimensional neural and gene networks. Physica
D 98, 33–52 (1996)

29. Meza, M.E.M., Bhaya, A., Kaszkurewicz, E., Costa, M.I.S.: Threshold policies control for
predator–prey systems using a control Liapunov function approach. Theoret. Popul. Biol. 67,
273–284 (2005)

30. Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–131 (1975)
31. Possingham, H.P.: Habitat selection by two species of nectarivore: habitat quality isolines.

Ecology 73, 1903–1912 (1992)
32. Rosenzweig, M.L.: Optimal habitat selection in two-species competitive systems. Fortschritte

der Zoologie 25, 283–293 (1979)
33. Rosenzweig, M.L.: A theory of habitat selection. Ecology 62, 327–335 (1981)
34. Rosenzweig, M. L.: Hummingbird isolegs in an experimental system. Behav. Ecol. Sociobiol.

19, 313–322 (1986)
35. Rosenzweig, M.L.: Habitat selection and population interactions: the search for mechanism.

Am. Nat. 137, S5–S28 (1991)
36. Rosenzweig, M.L., Abramsky, Z.: Contrifugal community structure. Oikos 46, 339–348 (1986)
37. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat.

Control 39, 1910–1914 (1994)
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