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1. INTRODUCTION

In this paper we construct for a given measurable set-valued map
K: (0, T) ~R" with convex and compact values a lower semicontinuous
set-valued map H(-) with convex compact values such that H(t) = K(¢) for
almost all 1€ (0, T). Moreover, H{(-) contains every local continuous selec-
tion from K(-), i.e., every continuous function r: (a, b)—R", (4, b) < (0, T)
such that r(r) e K(1) for almost all ¢ € (a, b). Then we construct a set-valued
map L(-) with convex compact values such that L(z) = K(¢) for almost all
te(0, T), and L(-) contains every Lipschitzian selection from K{(-) defined
on the previously given open set P < (0, T') with the Lipschitz constant less
or equal to k=0. If L(-) is not identically equal to the empty set then it
is continuous on P. In both cases we define the maps H(-) and L(-) using
the support function.

One motivation for construction of these regularizations of the set-
valued map K(-) comes from viability theory (see [ 1, 2]). If a set-valued
map F: Graph(K) ~ R" is given we may regard K(-) as a viability map and
we consider the following viability problem

xe F(, x(1)) (1

x(t)e K(t) for almost all ¢e (0, T). (2)
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Since K(-) is not regular enough (for example, with locally compact
graph) we cannot use any viability existence theorem for (1), (2) (see
[1,2,5,6]) Nevertheless, we may approximate K(-) by L(-). If L(-) has
non-empty values we consider differential inclusion (1) with the viability
constraint

x(t)e L(1) for almost all 1e(0, T). (3)

Since the graph of the continuous map L(-) is locally compact, we may
use the standard viability argument to check whether (1) has a solution
satisfying the viability constraint (3). Such a solution is obviously also
a viable solution to (1), (2). Since it is well known that under some
continuity assumptions (see [1,p.91]) the solutions to (1),(2) with
F(x):= f(x, V) coincide with the solutions to the following control
problem

x(1y= f(x(2), v(1))
v(t)eV (4)
x(t)e K(t) foraa. te(0,7),

we can also get an existence theorem for control problems with the state
constraints that depend only measurably on time.

2. NOTATION AND BAsSIC DEFINITIONS

R” is the Euclidean r-dimensional space; <., -) stands for the scalar
product in R”. By F: 4 ~ R” we denote a set-valued map F, i.e., a map that
associates with every xe 4 a set F(x)cR” For x¢ 4 we set F(x)= (.
The domain of a set-valued map F(-) is defined to be Dom(F):=
{xeR"| F(x)#}. The inverse image of a set M is defined to be
F ' (M) :={xeR"| F(x)n M # }. A set-valued map is called essentially
bounded if |F|, :=inf{f>0| u(F (R"\B(0, ))=0} < o0, where B(0, )
denotes an open ball of radius § and p denotes Lebesgue measure. We say
that F(-) is measurable if F~'(U) is measurable for every open set U, see
[3, 4]. We say that F(-) is lower semicontinuous at x, € Dom(F) if for any
¥yo € F(x,) and any neighborhood N of y,, there exists a neighborhood M
of x, such that for every xe M, F(x)n N # J, see [1,3,4]. F(-) is lower
semicontinuous if it is lower semicontinuous at every x,€ Dom(F).
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3. LocAaLLy CONTINUOUS SELECTIONS

DeFinmTION 1. Let K: (0, T) ~R” be a measurable set-valued map.
A continuous map ¢: (a, b)— R" (0<a<b<T)

r(t)e K(t) foraa. re(a b)
is called local continuous selection of K(-).

It is convenient to introduce the following definitions:

DEFINITION 2. Let K:(0,T)~R” be a set-valued map. Then we
define U(Dom(K)) to be the maximal open set in (0, T) fulfilling
u(U(Dom(K))\Dom(K))=0.

We prove the following theorem:

THEOREM 1. Let K: (0, T)~R" be a measurable essentially bounded
set-valued map with convex and compact values. Then there exists a lower
semicontinuous set-valued map H:(0, T)~R" with convex compact
( possibly empty) values, H(t) < K(t) for a.a. te (0, T) such that for every
local continuous selection r(-) from K(-) the following holds:

r(t)e H(t) for t from the domain of r(-).

Remark. 1f H(t)= ¢ then there does not exist any local continuous
selection from K(-) at the point . Moreover Dom(H) may be possibly
empty.

To prove Theorem 1 we use the following:

Lemma 1. Let P (0, T) be an open set and f: P— R be a measurable
essentially bounded (single valued) map. Then there exists a lower semi-
continuous map g: P— R, such that g(t)< f(t) for aa. te P and for every
continuous map h: Q> R, where Q < P is an open set for which h(t) < f(t)
for a.a. te Q holds h(t)< g(t) for every te Q.

Proof. Let % :={p(-)| p: P—R is lower semicontinuous, p(f)< f(?)
for a.a. te P}. Since f(-) is essentially bounded, % is a non-empty set. Let
us define

g(r) :==sup p(1) for teP.
peb
It is easy to see that for every re P, g(f) < + . Indeed, let us suppose
g(ty) = + oo for some toe P. Since f(-) is essentially bounded there exists
a constant k >0 such that

S <k, foraa. te(0, T).
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It follows that there exists p(-)e ¥ and t,€ (0, T) such that

pto) > k.

Lower semicontinuity of p(-) implies that the set {te (0, T) | p(r)>k} is
non-empty open and therefore

p()> f(1)

on a set of a positive Lebesgue measure.
Since g(-) is supremum of lower semicontinuous functions it is also
lower semicontinuous. We prove that

g()< f(1) fora.a. relP.
Let us suppose that there exists a set Z < P such that u(Z)>0 and
f(H<g(t) foraa teZ

Due to the Luzin’s theorem for u(Z)/2 there exists a continuous function
[: P R such that

u({te Pl U(1)# f(1)})<u(Z2)/2,
i.e., there exists a set 4 = Z such that
wA)=u(Z))2

and
gt)y=>ln)=f(1) for teA.

Let toe 4 be a point of density of 4, ie.,

lim wA N (to—1n, 1o+ 1))

=1
n—04 21’]

It follows that there exists a function p(-)e % such that

plto) > 1) = f(1,).
Let us denote
K:={teP|p(t)—1I(t)>0}.

Since p—1 is lower semicontinuous, K is nonempty and open. Conse-
quently

plt)> f(1) on a set of a positive Lebesgue measure.

We got a contradiction with the definition of g(-).

409:166,2-19
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Let #: Q— R be a continuous function such that
h(t)< f(1) foraa. reQ.
Let us define

% :={p(-)| p: @+ R is lower semicontinuous, p(¢)< f(¢) for a.a. re Q}

and
g(t):=sup p(1) for teQ.
pe{’}
Certainly,
gry=g(t)y for teQ
Since
h(-)e%
it follows

h(t) < g(1) forevery te(.

Proof of Theorem 1. Let e;e S, i=1,.. be a sequence of unit vectors
that is dense in the unit sphere S. Let

5:(K(1)) ;== sup <{x,¢,), i=1,.., te Dom(K).

xeK(1)

Let U :=U(Dom(K)), see Definition 2. We can consider s,(K(-}) on U.
Due to Lemma 1 for the function s,(K(-)} we may construct a maximal (in
the sense of Lemma 1) lower semicontinuous function f;(-) on U. Let

A1) = {xeR"| {x,e,><filt),i=1, ..} for 1eU
g otherwise.

Since the set
D:={1e(0.7)| H(1)# &}
is not open in general we define a set-valued map H: (0, ') » R”

H(1) for teint(D)

H{1):= {@ for r¢int(D).

Let

D:=int(D).
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Since D is an open set and f; are lower semicontinuous it follows that
H(-) is lower semicontinuous [4, p. 54]. Since

Ji{)<s(K(t)) foraa. telU

it follows that H(t)< K(t), for a.a. te U, and since H(t)=J for t¢ U we
have

H(t)c K(1) foraa. 1e(0, 7).

Let 0<a<b< T and
r:(a,b)—R
be a local continuous selection from the set-valued map K(-). Since
s (r(1))<s;(K(1)) fora.a. re(a, b)

and s,(r(-)) is continuous, Lemma 1 implies that

s (r(t)) < fi(2) forall re(a, b)
and consequently

r(t)e H(t) forall te(a,b).

COROLLARY. Consider the set-valued map K(-) and its lower semi-
continuous regularization H(-) as in Theorem 1. Let us denote for every
te(0, T)

M(t) .= {x e R"|there exists a loc. cont. selection r(-) from K(-), r(t)=x}

Then

Proof. If xe M(r) then there exists a local continuous selection #(-)
such that r(t) = x. Theorem 1 implies r(t) e H(t).
Conversely, if x e H(t,) then the set-valued map

~o (H(1) for t#1¢,
H(t)_{{x} for t1=1,4

is lower semicontinuous and due to Michael’s selection theorem (see
[1, 3,47]) there exists a continuous selection r(-) such that

r(ty)=x.
It follows that xe M(¢y).
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4. LIPSCHITZIAN SELECTIONS

DEerINITION 3. Let Pc R, k= 0. By Lip(k, P) we denote the set of all
Lipschitzian maps g: P— R with the Lipschitz coefficient less or equal
to k.

We prove the following theorem.

THEOREM 2. Let K: (0, T)~R" be a measurable essentially bounded
set-valued map with convex and compact values. Let k>0 and an open set
Pc UDom(K)) be given. Then there exists a set-valued map L: (0, T) ~R"
with convex compact ( possibly empty) values, L(t)c K(t) for aa. te(0,T)
such that for every Lipschitzian selection r(-)e Lip(k, P) from K(-) it holds:

r(tye L(t) for teP.

Moreover if the set-valued map L(-) is not identically equal to J then it is
continuous with nonempty values on P.

The proof of Theorem 2 is analogous to that of Theorem 1.

LemMMmA 2. Let P< (0, T) be an open set and [: P— R be a measurable
essentially bounded map. Let k>0 be given. Then there exists a map
geLip(k, P) such that g(t)<f(t) for aa. teP and for every map
heLip(k, P) for which h(t)< f(1) for a.a. te P holds h(t)< g(t) for every
te P.

Proof. Let
% .= {p(-)| pelip(k, P), p(t)< f(t)foraa.re P}.

Let us define
g(t) :=sup p(¢) for teP.

pe¥
Certainly
glty<w for teP.

We prove that g(-)e ¥
Let ¢,,t,€ P and g(¢,) > g(¢,). Let £>0 be given. Then there exists pe ¥
such that

glty) — p(t) <.
It follows
0< g(t2) — glt)) = gl12) — p(t2) + pley) — pley) + plty) — g(1y)
<e+k|t,—1.
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Since the last formula holds for very ¢ > 0 it follows
glt)—gln) <kl —1,].
We proved that g e Lip(k, P). To prove that
g(t) < f(1) foraa. teP

we can use the same argument as in the proof of Theorem 1. Let
he Lip(k, P) be such that

h(t)< f(1) fora.a. teP.
From the definition of g(-) it follows that
h(t)< g(t) forall teP.

Proof of Theorem 2. Let e;€S, i=1,.., be a sequence of unit vectors
that is dense in the unit sphere S. Let U := U(Dom(K)) and

s;(K(1)):= sup {x,e;>, i=1,.., teU.

xe K(r)

Due to Lemma2 we may construct functions f;(-)e Lip(k, P) for the
functions s,(K(-)). Let

L(t):={xeR"| {x,e,><fi(1),i=1,..}  for teP.
Since the set
D:={teP|Lit)# T}
is not necessarily equal to P we define a set-valued map L: P~R”

[%] for te(0, T)IfD#P
L(t):=<{L(t) for teDifD=P
%) for te(0, T\DifD=P.

Since D is an open set and f, are continuous, it follows that L(-) is

i

continuous on D (see [4, p. 54]). Since

Si(1) <5,(K(¢)) foraa. teP

it follows that L(t) = K(t), for a.a. te P. Let r€ Lip(k, P) be a Lipschitzian
selection from the set-valued map K(-). Since

s,(r(2)) <s;(K(1)) foraa. reP
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and s5,(r(-))eLip(k, P) is Lipschitzian it follows from Lemma 2 that
s;(ret) < fi(t)y  forall teP
and consequently

r(t)ye L(1) forall reP.

REFERENCES

J.-P. AuBIN AND A. CELLINA, “Differential Inclusions,” Springer, Berlin, 1984,

J.-P. AuBIN, Viability theory, to appear.

J.-P. AuBIN AND H. FRANKOWSKA, “Set-Valued Analysis,” Birkhduser, Boston, 1990.

. C. CASTAING AND M. VaraDIER, Convex analysis and measurable multifunctions, in
“Lecture Notes in Mathematics,” Vol. 580, Springer, Berlin, 1977.

5. K. DEIMLING, Multivalued differential equations on closed sets II, Differential Integral

Equations, to appear.
6. G. HapDAD, Monotone trajectories of differential inclusions and functional differential
inclusions with memory, Israel J. Math. 39 (1981), 83-100.

oW -



