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1. INTRODUCTION 

In this paper we construct for a given measurable set-valued map 
K: (0, T) -+ R” with convex and compact values a lower semicontinuous 
set-valued map H( .) with convex compact values such that H(t) c K(t) for 
almost all t E (0, T). Moreover, H( ) contains every local continuous selec- 
tion from K( ), i.e., every continuous function r: (a, b) H R”, (a, 6) c (0, T) 
such that r(t) E K(t) for almost all t E (a, b). Then we construct a set-valued 
map f( .) with convex compact values such that L(t) c K(t) for almost all 
t E (0, T), and L( .) contains every Lipschitzian selection from K( .) defined 
on the previously given open set PC (0, T) with the Lipschitz constant less 
or equal to k 3 0. If L( .) is not identically equal to the empty set then it 
is continuous on P. In both cases we define the maps H( .) and L( .) using 
the support function. 

One motivation for construction of these regularizations of the set- 
valued map K( .) comes from viability theory (see [ 1, 21). If a set-valued 
map F: Graph(K) c-f R” is given we may regard K( .) as a viability map and 
we consider the following viability problem 

.t.~ F(t, x(t)) (1) 

x(t) E K(t) for almost all t E (0, T). (2) 
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Since K( .) is not regular enough (for example, with locally compact 
graph) we cannot use any viability existence theorem for (1) (2) (see 
[ 1, 2, 5, 61). Nevertheless, we may approximate K( .) by L( .). If L( .) has 
non-empty values we consider differential inclusion (1) with the viability 
constraint 

x(r)eL(t) for almost all t E (0, T). (3) 

Since the graph of the continuous map ,5.( .) is locally compact, we may 
use the standard viability argument to check whether (1) has a solution 
satisfying the viability constraint (3). Such a solution is obviously also 
a viable solution to (l), (2). Since it is well known that under some 
continuity assumptions (see [ 1, p. 911) the solutions to ( 1 ), (2) with 
F(x) :=,f(x, V) coincide with the solutions to the following control 
problem 

i(t) =f(x(t), u(t)) 

U(f)E v (4) 

x(t)EK(t) for a.a. t E (0, T), 

we can also get an existence theorem for control problems with the state 
constraints that depend only measurably on time. 

2. NOTATION AND BASIC DEFINITIONS 

R” is the Euclidean n-dimensional space; ( ., > stands for the scalar 
product in R”. By F: A * R” we denote a set-valued map F, i.e., a map that 
associates with every x E A a set F(x) c R”. For x$ A we set F(x) = $3. 
The domain of a set-valued map F( .) is defined to be Dam(F) := 
{XE R” / F(x) # @}. Th e inverse image of a set M is defined to be 
F-‘(M) := {X E R” 1 F(x) n M # 0). A set-valued map is called essentially 
bounded if IFI 3c := inf{/I > 0 ) p(FP’(R”\B(O, j3)) = 0) < co, where B(0, b) 
denotes an open ball of radius fl and p denotes Lebesgue measure. We say 
that F( .) is measurable if Fe ‘(U) is measurable for every open set U, see 
[3, 41. We say that F( .) is lower semicontinuous at x0 E Dam(F) if for any 
y, E F(x,) and any neighborhood N of y,, there exists a neighborhood A4 
of x0 such that for every x E M, F(x) n N # 0, see [ 1, 3,4]. F( .) is lower 
semicontinuous if it is lower semicontinuous at every x0 E Dam(F). 
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3. LOCALLY CONTINUOUS SELECTIONS 

DEFINITION 1. Let K: (0, T) -+ R” be a measurable set-valued map. 
A continuous map Y: (a, h) H R” (0 < c1< h d T) 

r(t)E K(t) for a.a. t fz (u, h) 

is called local continuous selection of K( ). 

It is convenient to introduce the following definitions: 

DEFINITION 2. Let K: (0, T) -+ R” be a set-valued map. Then we 
define U(Dom(K)) to be the maximal open set in (0, T) fulfilling 
,u( U(Dom(K))\Dom(K)) = 0. 

We prove the following theorem: 

THEOREM 1. Let K: (0, T) -+ R” h e u measurable essentially bounded 
set-valued map with convex und compact values. Then there exists a lower 
semicontinuous set-valued mup H: (0, T) -+ R” with convex compact 
(possibly empty) values, H(t) c K(t) for u.a. t E (0, T) such that for every 
local continuous selection r( . ) ,from K( . ) the following holds : 

r(t) E H(t) ,for t from the domain of r( . ). 

Remark. If H(t) = @ then there does not exist any local continuous 
selection from K( .) at the point t. Moreover Dam(H) may be possibly 
empty. 

To prove Theorem 1 we use the following: 

LEMMA 1. Let P c (0, T) he an open set and f: P H R be a measurable 
essentially bounded (single valued) map. Then there exists a lower semi- 
continuous map g: PH R, such that g(t) <,f(t) for u.a. t E P and for every 
continuous map h: Q H R, where Q c P is an open set for which h(t) <f(t) 
,for au. t E Q holds h(t) < g(t) for every t E Q. 

Proof Let 3 := {p(.) 1 p: P H R is lower semicontinuous, p(t) d f(t) 
for a.a. t E P}. Since f( .) is essentially bounded, 3 is a non-empty set. Let 
us define 

g(t) := sup p(t) for tEP. 
p B 4 

It is easy to see that for every t E P, g(t) < + cc. Indeed, let us suppose 
g(to) = + x for some t, E P. Since ,f( .) is essentially bounded there exists 
a constant k > 0 such that 

.f(t) dk, for a.a. t E (0, T). 
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It follows that there exists p( .)E% and t,,~ (0, T) such that 

P(~o) > k. 

Lower semicontinuity of p( .) implies that the set {t E (0, T) 1 p(r) > k} is 
non-empty open and therefore 

on a set of a positive Lebesgue measure. 
Since g( .) is supremum of lower semicontinuous functions it is also 

lower semicontinuous. We prove that 

s(t) <f(t) for a.a. t E P. 

Let us suppose that there exists a set 2 c P such that p(Z) > 0 and 

f(t) < g(t) for a.a. t E Z. 

Due to the Luzin’s theorem for y(Z)/2 there exists a continuous function 
I: Pt-+R such that 

A{tW 4wf(t)jkPL(z)/2~ 

i.e., there exists a set A c Z such that 

and 
AA 12 AZ)/2 

g(t) > l(t) =f(t) for SEA. 

Let to E A be a point of density of A, i.e., 

lim PM i-l (to- yl, to + rl)) = 1, 
‘I-0, 2rl 

It follows that there exists a function p( .) E 99 such that 

P(to) ’ 4to) = f(to). 

Let us denote 
K:= {ZEP / p(t)-l(t)>o}. 

Since p - 1 is lower semicontinuous, K is nonempty and open. Conse- 
quently 

P(t) >f(t) on a set of a positive Lebesgue measure. 

We got a contradiction with the definition of g( .). 

409 166.2-19 
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Let h: Q H R be a continuous function such that 

Mf) G.f’(t) for a.a. t E Q, 

Let us define 

<!? := { p( .) 1 p: Q H R is lower semicontinuous, p(t) <,f(t) for a.a. t E Q j 

and 
i(t) := sup p(t) for ~EQ. 

p G <ii 

Certainly, 

s(f) = g(t) for ~EQ. 

Since 

it follows 

h(t) 6 s(r) for every f E Q. 

Proof of Theorem 1. Let e,E S, i= 1, . . . be a sequence of unit vectors 
that is dense in the unit sphere S. Let 

s,(K(t)) := sup (.u, e,), i= 1 , . . . . t E Dom( K). 
x t K(l) 

Let U := U(Dom(K)), see Definition 2. We can consider s;(K( .)) on U. 
Due to Lemma 1 for the function s,(K( )) we may construct a maximal (in 
the sense of Lemma 1) lower semicontinuous function f,( .) on U. Let 

f?(t) := 
(xER” 1 (x, e,) <,f;(t), i= 1, . ..} for tEU 

0 otherwise. 

Since the set 

d:=(t~(O, T)I fi(t)#@j 

is not open in general we define a set-valued map H: (0, T) -+ R” 

fiw for 
H(t) := 

t E int(li) 

0 for t 4 int(B). 

Let 

D := int(b). 
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Since D is an open set and f; are lower semicontinuous it follows that 
H( .) is lower semicontinuous [4, p. 541. Since 

.L(f) GJ,(K(f)) for a.a. t E U 

it follows that H(t) c K(t), for a.a. t E U, and since H(r) = 0 for t $ U we 
have 

H(t) = K(r) for a.a. t E (0, T). 

Let O<~l<h<Tand 

r: (a,h)~-+R 

be a local continuous selection from the set-valued map K( .). Since 

s,(r(r))Gs,(K(r)) for a.a. t E (a, h) 

and si(r(. )) is continuous, Lemma 1 implies that 

s,(r(t)) <.f,(t) for all t E (a, h) 

and consequently 

r(t) E H(r) for all t E (a, h). 

COROLLARY. Consider the set-vulued map K( .) and its loti,er semi- 
continuous regularization H( .) us in Theorem 1. Let us denote .for every 
t E (0, T) 

M(t) := {x E R” 1 there exists a lot. cont. selection r( .) ,from K( ), r(t) = x} 

Then 
M(t) = H(t). 

Proof If x E M(t) then there exists a local continuous selection r( .) 
such that r(t) = X. Theorem 1 implies r(t) E H(t). 

Conversely, if x E H( t,) then the set-valued map 

A(t)= y;’ { 
for tft, 
for t= to 

is lower semicontinuous and due to Michael’s selection theorem (see 
[ 1, 3, 41) there exists a continuous selection r( ) such that 

r( to) = x. 

It follows that x E M(t,). 
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4. LIPSCHITZIAN SELECTIONS 

DEFINITION 3. Let PC R, k 3 0. By Lip(k, P) we denote the set of all 
Lipschitzian maps g: PH R with the Lipschitz coefficient less or equal 
to k. 

We prove the following theorem. 

THEOREM 2. Let K: (0, T) -+ R” be a measurable essentially bounded 
set-valued map with convex and compact values. Let k>O and an open set 
P c U(Dom(K)) be given. Then there exists a set-valued map L: (0, T) -+ R” 
with convex compact (possibly empty) values, L(t) c K(t) for a.a. t E (0, T) 
such that for every Lipschitzian selection r( ) E Lip(k, P) from K( . ) it holds : 

r(t) E L(t) ,for t E P. 

Moreover if the set-valued map L( .) is not identically equal to Iz( then it is 
continuous with nonempty values on P. 

The proof of Theorem 2 is analogous to that of Theorem 1. 

LEMMA 2. Let P c (0, T) be an open set and f: PH R be a measurable 
essentially bounded map. Let k > 0 be given. Then there exists a map 
g E Lip(k, P) such that g(t) <,f(t) f or a.a. t E P and ,for every map 
h E Lip(k, P) for which h(t) <f(t) for a.a. t E P holds h(t) < g(t) for every 
t E P. 

Proof. Let 

F?:=(p(.)Ip~Lip(k, P),p(t)<f(t)fora.a.t~P}. 

Let us define 

Certainly 

g(t) := sup p(t) for tEP. 
ptC4 

g(t) < a for t E P. 

We prove that g( .) E 9. 
Let t , , t2 E P and g( t2) 2 g( t i ). Let E > 0 be given. Then there exists jj E 9 

such that 
dt2) - B(tz) < E. 

It follows 

0 d dt2) - s(t1) = dt2) - P(t*) + P(t2) - F(fl) + d(t1) - At,) 

6&+k It,-t,I. 
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Since the last formula holds for very E > 0 it follows 

We proved that g E Lip(k, P). To prove that 

s(t) <f(t) for a.a. t E P 

we can use the same argument as in the proof of Theorem 1. Let 
h E Lip(k, P) be such that 

Nt) <f(t) for a.a. t E P. 

From the definition of g( .) it follows that 

h(t) d g(t) for all t E P. 

Proof of Theorem 2. Let eiE S, i = 1, . . . . be a sequence of unit vectors 
that is dense in the unit sphere S. Let U := U(Dom(K)) and 

s,(K(t)) := sup (4 e,), i= 1, . ..) tE u. 
xit KC/) 

Due to Lemma 2 we may construct functions f,( .) E Lip(k, P) for the 
functions si( K( . )). Let 

i(t) := (xER” 1 (x, e,) <f,(t), i= 1, . ..} for tEP. 

Since the set 

is not necessarily equal to P we define a set-valued map L: P -+ R” 

0 for tE(0, T)ifD#P 

L(t) := i(t) for tEDifD=P 

0 for t E (0, T)\D if D = P. 

Since D is an open set and f, are continuous, it follows that L( .) is 
continuous on D (see [4, p. 541). Since 

.Ltt) Gsi(K(t)) for a.a. t E P 

it follows that L(t)c K(t), for a.a. TV P. Let rE Lip(k, P) be a Lipschitzian 
selection from the set-valued map K( .). Since 

s,(r(t)) Gs,(K(t)) for a.a. t E P 
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and si(r( .)) E Lip(k, P) is Lipschitzian it follows from Lemma 2 that 

.y,(r(t)) G.!;(t) for all t E P 

and consequently 

r(f) E L(f) for all r E P. 

REFERENCES 

1. J.-P. AUBIN AND A. CELLINA, “Differential Inclusions.” Springer, Berlin, 1984. 
2. J.-P. AUBIN. Viability theory, to appear. 
3. J.-P. AUBIN AND H. FRANKOWSKA, “Set-Valued Analysis,” BirkhCuser, Boston, 1990. 
4. C. CASTAINC AND M. VALADIER, Convex analysis and measurable multifunctions, in 

“Lecture Notes in Mathematics,” Vol. 580, Springer, Berlin, 1977. 
5. K. DEIMLING, Multivalued differential equations on closed sets II, Differential Integral 

Equarions, to appear. 
6. G. HA~DAD, Monotone trajectories of differential inclusions and functional differential 

inclusions with memory, I.rrae/ J. Math. 39 (!981), 83-100. 


