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INTRODUCTION

In this paper we prove that the barycentric selection from an absolutely con-
tinuous set valued map F: (0, T) ~=+R" with nonempty convex values is absolutely
continuous. Moreover we prove using the barycentric selection that under certain
conditions for every x, € F(1;) there exists an absolutely continuous selection f(+)
from a set valued map F(-) such that f(t,) = x,.

The existence of an absolutely continuous selection plays an important role in
the viability theory (see [1]) if the viability map K(+) depends only measurably on
time. Then the necessary condition for the existence of a viable solution is the
existence of an absolutely continuous selection from K(-).

NOTATION

R” is the Buclidian n-dimensional space; d(x, y) is the Euclidian distance from x
to y. B(x, M} denotes the open ball of radius M about x and B := B(0, 1}. S denotes
the unit sphete. If 4, B are subsets of R", d(x, A) := inf {d(x, y}| y € 4}, 6(4, B) : =
:= sup {d(x, B} | xe A} denotes the separation of 4 from B and d*(4, B):=
sup (6(4, B), &(B, A)) is Hasudorff distance of the sets 4 and B. For x, y e R?,
(x y> denotes the scalar product. Let 4 c R, A+ 0, ee S then o,{¢):=
SUP.e4 <4, € is the support function of the set A. By ri(4) we denote the relative
interior of the set A.

MAIN RESULTS

Definition 1. Let F: (0, T)~~R* be a set valued map with convex and compact
values. We say that F is an absolutely continuous map if the following condition is
fulfilled

¥e >0, 34 > 0 such that for every system of intervals

[t [t tm], 0SS0, 8...80,51,2T)
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the following holds
Z (v;—t)<é= maX(Z #A(F(t;) + B)N(F(z)) + B)),

T pl(r) + BINEE) + B) <o,

where p, denotes n-dimensional Lebesgue measure.
Let A = R be a convex compact set with nonempty interior. Then we define

(see [17) D) = t J‘ < ds,.

Jun(A)

Theorem 1. Let F: (0, T)~—+R" be an absolutely continuous set valued map with

nonempty convex and compact values. Let F() be bounded, i.e. there exists M > 0
such that

Vie(0,T), F({)=M.B.
Then the map f: (0, T) —» R"
f(t) := b(F(t) + B)
is an absolutely continuous selection from F(-).
To prove this theorem we use the following lemma. .

Lemma 1 (see Aubin and Cellina, 1984, p. 78). Let A = R"be a convex and compact
set and A; := A + B. Then b(4,) e A.
Proof of theorem 1. Let
&(f) := F(t) + B.
Let & > 0. Since F(+) is an absolutely continuous set valued map there exists 6 > 0
such that for every system of intervals.

[11!11]9-'-s[tmstm}: (0<t1= é-v-étmérméT)
holds

13

(t; ~ 1;) < & = max (-i#"(qj(tj) s &(z)),

2 (@) @) < e 1(B) (404 + 1),

It follows that -

Z 1£(t) = )] =
1 1
(#n(q)(‘ ) R(Ep(ﬁ))) J- B(t)nB(z)) e

1 1
— xdpy ~ ——— x dpy
#n(’p(‘s)) Dt \Pirs) ﬂn(d’(fi)) SeNB(1)

1
ﬂn((p(Ti)) D{rs}

)_

dnun - X dnu‘n =

(CID(; )) @iri)

IFA
i [v] 3




Using lemma 1 and boundedness of the map F(-) we get
ﬂn(¢(ll)) :=>, .un(B) ' #n(¢(‘rl)) g .un(B) , i= l, e M

<

(#"(;(t‘)) ) ‘""(“;(7:'))) .[D(tt)ndﬁ(ﬂ) x det

< il @(z)) ~ m(@(0))| (M + 1)/u(B),

<

1 j 1
xdu, — xdp,
1 2(1:)) SENB(r) 1 D(7,)) BEH\B(L)
< (ol B(1) N (x)) + g @)\ SN} (M + 1)/, (B) .
Since F(+} is an absolutely continuous map -

2 1ed00) - (o) =

= £ 1000~ 0(6) = m0(e) B0 < 1B 200 + 1),
Using these estimates we get

S1stw) - 1)l <o
We proved that f( -} is absolutely continuous on the interval (0, T). O

Lemma 2. Let M > 0. Then there exists k > 0 such that for every two nonempty
convex and compact sets, C, D < R” such that C, D = M, B holds

kd*(C, D) = max [1{(C + B) ~(D + B)), u((P + B)~(C + B)}].
Proof. We prove that there exists k, > 0 such that
ki0(C, D) = ky6(C + B, D + B) z u{(C + B)~(D + B)).
There exists k; > 0 (see [1], p. 80) such that
#f(C + B)N(D + B)) < u(B(D + B, 8(C + B, D + B)) —
- (D + B) £ k,6(C + B, D + B).
Similarly we prove that there exists k, > 0 such that
k28(D, C) = ko6(D + B, C + B) 2 p((D + B)~(C + B)).
Let
k= max (k, k;).
Then
kd*(C, D} z max [1,{(C + B)~(D + B)), u{((D + B)~(C + B))] .

(|
The following definition was used by Kikuchi and Tomita, [3].

Definition 2. Let F: (0, T)~~R" be a set valued map with nonempty compact
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values. We say that F is d*-absolutely continuous if for Ye > 0, 36 > 0 such that
for every system of intervals

[71,11],...,[5,",1,'"'], (0 =n = Ty . i . . T)

the following holds

(2, — 1) < 6 =>121d*(F(tj), F(z,)) < e.

g

f=1

From lemma 2 follows:

Lemma 3. Let F: (0, T)~~R"be a bounded, d*-absolutely continuous set valued
map with nonempty convex compact values. Then F(} is an absolutely continuous
map.

Lemma 4, Let F: (0, T)~~R" be a set valued map with nonempty convex and
compact values and h: (0, T) = R® be an absolutely continuous function such that

VeeS, Vi, 1e(0, T), opyle) — opple} < |h(t) — k(7).
Then F(-) is d*-absolutely continuous set valued map.

Proof. Using the minimax theorem (see [2]) we get

8(F(t} + B, F(r) + B) = sup sup inf {e,y — x> =

eeS yeF(1)+ 8 xeF(1)+B

= SuP( sup (e, .V) — sup (e, x)) = sup (O'F(:)+B(e) - G'F(:}-o-.n(e)) =

eeS yeF(1)+B xeF(x)+B esS
= sup (orle) = orele)) = 6(F(2), ().
It follows that

O(F(1), F(x)) = [W(t) ~ b(z)| . O(F(z), F(z)} = |h(r) — A(t)] ,
dH(F(1), F()) = |1(t) = k()] .

Since h(*) is an absolutely continuous function then F(+) is d*-absolutely continuous
set valued map. [

ie,

Theorem 2. Let H: (0, T)~—~R" be a bounded set valued map with nonempty
convex and compact values and let t, € (0, T), xo € H(ty). Let h: (0, T) — R" be an
absolutely continwous function such that

Ve e S > Vt, TE (0, T) F G'H(,)(e) - O’H(,)(e) é Ih(t) b h(f)l .

Then there exists 8 > 0 and an absolutely continuous selection r: [1,, t; + 5)— R"
from H(+) such that

H1y) = xq .

To prove theorem 2 we will use the following definition and lemma.
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Definition 3. Let L, K be linear subspaces in R", Let IT () denote the projection
of the best approximation on the set L. We define

AL, K) :=sup {1 — |Hy(x)| | xeK, |x| =1} .

Lemma 5. Let H = B(0, R), (R > 0) be a convex compact set, L be a linear
subspace of R”, L c aff(H) — aff(H) (aff(H) denotes the affine hull of the set H,
see [4]) and there exists x, e R” and 8 > 0 such that

B(x, 8) n (L+ x¢) = H.

Let K be a linear subspace in R* such that K + L=TR" and K~ L= {0}. Let
Ly := N0) (Nx(0) denotes the normal cone to K at 0, see [1]) and ofL, Ly) < 1.
Then there exists a constant v > 0 such that

Tunxle) = inf {oy(e) + axle”) | ¢ + ¢" = ¢, || + |e”] < 7}, Vees,

where r depends only on n, a, R, §,
To prove lemma 5 we use the following two lemmas.

Lemma 6. Let L, L, be linear subspaces in R" and let dim (Lé) = dim (L),
«:= ofL, Ly) < L. Then the projection map IT,: Ly~ L has an inverse II™': L L,
and

W2 s= sop (IO |y e Lo o] = 1} S 1L — o).

Proof. Let @ be an subspace in R" orthogonal to Lsuch that ¢ + L= R". If
dim (L, n Q) = 1, then there exists g € @ n Ly, ||g| = 1. Since I (g) = 0 it follows
that o = 1. This contradicts with the assumption & < 1. We proved that Ly~ @ =
= {0}. For given y e L since dim L + dim @ = dim L, + dim Q = n there exists
exactly one xe€ L, such that I7;(x) = y. From the definition of « follows that
(x| = (1 — @) x| and therefore |22 £ 11 — o). N

Lemma 7. Let Ly:={xeR"|x; =..=x,=0}, K:={xeR'|x, = ..
... = %, = 0}, L be a linear subspace in R", dim (L) = dim (Lo} and & := o(L, Ly) <
<1, ¢ > 0. Let

k
Z:={xeR" |} xj <% |
=1

)| = ¢}
Then for every y € Z the following holds

< 3en+2—a) ‘
bl s 2tz

Proof. Let y & Z. Due to lemma 6 there exists only one x” € Ly such that
¢
I (x*) = I(y) and |#7 T
Let @ be an subspace in R* orthogonal to Lsuch that ¢ + L= R" Let a!, ..., a*
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be an orthonormat basis of the space Q such that
¥
al = = Y
Ix =~ ¥l
For every xe R"

M(x) = x — ;l {x,d% a°.

Let
5:2_____.:::——1 .
‘t—n—2

We prove
k

(a2 e

=1
Let us suppose that
k
(1) Y (al)y <o
i=1
Let
bii=aj, i=1, ..,k

b;:=0, i=k+1,...,n
and
Ri=a' —bel,.
It follows
Iol <o, |ef>1-3s,
k
Hy®)= ~b+ 3 (boada®.
s=1
Since
[EG EXEE
then
%] 1-39
Since
(n+1)6

we get the contradiction with the assumption (1). It follows

k
Y (alf 2 8.
i=1
Since
y=x"+ tal
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then
k
Y (x} +ta;)? < &
izt

and consequently

g Y& ) re 2
T VER@)) T (-

It follows
2 3 3e(n + 2 — a)
= [x* + £ — = - t
1= 1) (l—a)d (1 —a)d (1—a)?
Proof of lemma 5. By translation and unitary transformation, we can achieve
xg=0and K = {xeR"| x4y = ... = x, = 0} where n — k = dim (L). Let -
Ly:={xeR"]x; = ... =x,=0}.
From the assumptions we get o
oule) 2 ornnle) = ora(TTi(e)) Z 8 Tfe)] -
Moreover (see [4] and ee S) '
R 2 oyoxle) = inf {op(e) + oxfe) | + & =€} =
= inf {§|77(e)] | ¢ + & =¢, ¢ ELO} .
We get :
|17(e")| = R/6 whenever e— ¢ e Ly .
Since
k
Yet=0
=1
then
k
Yersl
i=1
From lemma 7 follows
ounxle) = inf {ou(e) + oe’) | e + e =e, || + [e"] s 7},
Vee S,
where _ .
pooSRnt+2-2) 0
8t — a)? .

Proof of theorem 2. A) Let dim (aff H(1o)) = 0, i.e. H(ty) = {xo}. Then for
" barycentric selection holds

b(H(to) + B) = Xp .
Therefore we may define due to theotem 1 an absolutely continuous selection
1) := b(H(f) + B).
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B) Let x, eri(H(1,)), dim aff H(t,) =n — k = 1 and K be a linear subspace
such that K = Nqon(Xo). By translation and unitary transformation we can
achieve x, = 0 and

K:={xeR" X, =...=x,=0}.

From Carathéodory theorem (see [1]) follows that there exist points a; e H{ty),
i=1,...,n — k + 1 such that
n—k+1 k41

Xg = ‘Zl }.‘-a[, E 2.;:1, /‘Li>0.

i=1

Let 7y, 5 > 0 be such that
B(xq, my ) aff(by, ..., by_yus) =

n—k+1 a—k+1

<f{xeRfx= % wb, 3 m=1 p20

forevery |b, —a;] <mi=1,..,n—k+ 1.
Since H(+) is a continuous map then for #, > 0 there exists §, > 0 such that

H(t) n Bla, 12/2) + 9 for |t — 1] < 5,.
Let bi(t) € H(t) N B(a,, 1,[2) and
Ly:=aff{a,, ..., qy_gs.} = {xeR"|x; = ... =x, =0},
L{t) 1= aff {b(t), ..., byyy s (1)) .
Let R > 0 be such that H(t) = B(0, R) for t € [t, t, + &) and
G(t):= H() n K.
We find 8, > 0 such that a(L{t), Lo) < 1/2 for te [to, t; + 8,), & := min (J,, 3,).

For €[ty ty + 6) are fulfilled the assumptions of lemma 5, where x, stands for
x(t) e L(t) n K, Lstands for L(t}. Therefore there exists r > 0 such that

aale) = inf{ongle) |e + e =¢ e ey, || + ] < r}.
We prove that
Tae) = Toee) < rlh(t) — K(z)|, Vi, te[tyt, +8), Vees.

Since og,(-) is lower semicontinuous function (see [4]) it follows that for every
t€[t,.t, + &) and every e € S there exists &€ R”, |éll € 7 such that e — e L,

o€} = 0ole) = inf {oy(e)| €+ ¢ = ¢, ¢ e Ly, lel+ el = r} .
It follows

“dawle) ~ oewle) < anwl@l]e) ] — oneele]) o] <
< r() = &(2)| -
From lemma 4 and the first part of this proof it follows that there exists an absolutely
continuous selection r(-): [to, o + ) > R” from the set valued map G(- ),

r(to) = xq .
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C) Let x, € bd(H(t,)). Let us suppose that dim aff H(to) = 1. Take y e ri( H(t;)) and
let 2, e R, n = 1, ... be a decreasing sequence such that 1 = A,, 4, - 0. Let

Vri=xo(l — A) + pi,.

Since y, € ri(H(t,)) there exists an absolutely continuous selection x,(+) defined on
the interval 1, £ t < t, + #, such that

xn(t()) = yn .
There exists 8, < min (1/n, 5,), n = 1, ... such that §,,; £ 3,,

var x, < 1/n?,
[fo,to+dn]

var - x,., < 1/n%.
[t to+ 84411

Let
A-2 g — A
x(t, ) 1= 2L () + 2 x L (F
N N B A ey ekt
for 4,41 2AZE2,, o <tSth+ 9,4,
X(IG,O) V= xU.

Since x,(+), n = 1, ... are absolutely continuous and H(*) has convex values there
exists an increasing continuously differentiable function 4 e C'[0, 1], 8(4,) < &4,,
8(2) > 0for 1 2 4 > 0, 8(0) = 0 such that

x(t,A)e H(t) for 1, St =ty + 8(%).

Let the function (1) be the inverse function for t, + 8(1). We prove that

(1) := x(1, ()

is absolutely continuous on the interval [, z, + 8(1)].
We prove that for every & > O there exists k € N such that £(+) has variation on
the imerval [#y, f, + 8(4)] less then &. Let ¢ > 0. We choose k € N such that

Mllxe — ¥ + 43 1/n? < gf2.
nzk
There exist points #; € (fg, to + 8(AJ], i = 1,..., M + L such that ; < t,,,

var 8 —i 1£(t125) — 2] | < o2

[to.to+3(Ax)]
We add the points t, + 6{(4,)for s = k if #; < 1, + §(A,}to the points ¢,. Let 4,,
< A1) £ Nty4y) £ A, Then

tign) — 2t) = =(Atiea) — Ht)) (xo — ») +

At) - A,
2 20 = 2en )~ i) +
lrl - 1
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j'rr _ I(li+1)
An - 'ln+1

+ l(rl'+1) - A(Il) (x
j-m - A'rl+1

+ (Xn+ 1(’:+;) = Xaea(tg) +

) = Yn = Xur1(t) + Vusr) -

It follows that
I_i”ﬁ(laﬂ) — 2(1)| 'éﬁlli(tiﬂ) — At |xo = ¥] +

+ 2 )} ) |xitiv 1) = x5 +

nzk (is(l,.. M} Aa+1 SARDZ A+ 1) S An)
+ Z Z "xn'+1(ti+1) - xn+1(ti)|| +
a2k fiefl,.., M} Ao+ 1 ZA0DS U+ IS A0} ‘

At ) — At
.y Moo= XD s
a2k (ia{l, ., M} dna1 SACDEMtea 1)E A} - Ay — Ant1  [losto+3(in)]

+ovar X)) £ A4 fxe—y| + 2( var  x, +
[to,to+ 8¢in)] nEk [fo,fo+3(40)]

+ovar X, + var X, 4+ VAT X)) S
[to.to+8(4)] t0,t0+8(40)] [to,to+3{in}]

él;c"v\'o "‘y" +421/n2 <ﬂ/2
nzk -
We proved that

var R <z&g.
[to,to+8(ik)]

We prove that £(+) is an absolutely continuous function on the interval [to + (4),
to + 8(1)]- Since x,(+} is an absolutely continuous function on the interval {0, 8,]
then for Ve > 0. 3y > 0 such that for every system of intervals

ool [tmtnd, (+8() s, S, =00
the following holds
.zl(ff — 1) <7 =>le [Ixat;) = x|l < £f(4k), n < k.
i= = .
It follows that for every system of intervals

nt ] tl s (o +8(A) €1, 210, £

A

n S T < 3,)

II/\

mE T = 5(1))
holds -

Zh—t<n=2 ) o)) = %z < ef4.

=k (iel) ,milin+ 1 SHE) A1) £ A}

We proved that 2(+) is an absolutely continuous on the interval [to + 8(4c), 1o + 8(1)]
and since varg, 45,03 — 0 for k — oo, then it is absolutely continuous on the
interval [ty. 1, + 8(1)]. _ 0
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