ABSOLUTELY CONTINUOUS SELECTIONS FROM ABSOLUTELY CONTINUOUS SET VALUED MAP

VLASTIMIL KŘÍVAN, České Budějovice and Ivo VRKOČ, Praha
(Received November 18, 1988)

INTRODUCTION

In this paper we prove that the barycentric selection from an absolutely continuous set valued map $F:(0,T) \sim \mathbb{R}^n$ with nonempty convex values is absolutely continuous. Moreover we prove using the barycentric selection that under certain conditions for every $x_0 \in F(t_0)$ there exists an absolutely continuous selection $f(\cdot)$ from a set valued map $F(\cdot)$ such that $f(t_0) = x_0$.

The existence of an absolutely continuous selection plays an important role in the viability theory (see [1]) if the viability map $K(\cdot)$ depends only measurably on time. Then the necessary condition for the existence of a viable solution is the existence of an absolutely continuous selection from $K(\cdot)$.

NOTATION

 \mathbf{R}^n is the Euclidian *n*-dimensional space; d(x, y) is the Euclidian distance from x to y. B(x, M) denotes the open ball of radius M about x and B := B(0, 1). S denotes the unit sphere. If A, B are subsets of \mathbf{R}^n , $d(x, A) := \inf \{d(x, y) \mid y \in A\}$, $\delta(A, B) := \sup \{d(x, B) \mid x \in A\}$ denotes the separation of A from B and $d^*(A, B) := \sup (\delta(A, B), \delta(B, A))$ is Hasudorff distance of the sets A and B. For $x, y \in \mathbf{R}^n$, $\langle x, y \rangle$ denotes the scalar product. Let $A \subset \mathbf{R}^n$, $A \neq \emptyset$, $e \in S$ then $\sigma_A(e) := \sup_{a \in A} \langle a, e \rangle$ is the support function of the set A. By $\operatorname{ri}(A)$ we denote the relative interior of the set A.

MAIN RESULTS

Definition 1. Let $F:(0,T) \sim \mathbb{R}^n$ be a set valued map with convex and compact values. We say that F is an absolutely continuous map if the following condition is fulfilled

 $\forall \varepsilon > 0$, $\exists \delta > 0$ such that for every system of intervals

$$[t_1, \tau_1], \ldots, [t_m, \tau_m], \quad (0 \le t_1 \le \tau_1 \le \ldots \le t_m \le \tau_m \le T)$$

the following holds

$$\sum_{j=1}^{m} (\tau_{j} - t_{j}) < \delta \Rightarrow \max \left(\sum_{j=1}^{m} \mu_{n} ((F(t_{j}) + B) \setminus (F(\tau_{j}) + B)) \right),$$

$$\sum_{j=1}^{m} \mu_{n} ((F(\tau_{j}) + B) \setminus (F(t_{j}) + B))) < \varepsilon,$$

where μ_n denotes n-dimensional Lebesgue measure.

Let $A \subset \mathbb{R}^n$ be a convex compact set with nonempty interior. Then we define (see [1]) $b(A) := \frac{1}{\mu(A)} \int_{\mathbb{R}^n} x \, d\mu_n$.

Theorem 1. Let $F: (0, T) \sim \mathbb{R}^n$ be an absolutely continuous set valued map with nonempty convex and compact values. Let $F(\cdot)$ be bounded, i.e. there exists M > 0 such that

$$\forall t \in (0, T), F(t) \subset M \cdot B$$
.

Then the map $f:(0,T)\mapsto \mathbb{R}^n$

$$f(t) := b(F(t) + B)$$

is an absolutely continuous selection from $F(\cdot)$.

To prove this theorem we use the following lemma.

Lemma 1 (see Aubin and Cellina, 1984, p. 78). Let $A \subset \mathbb{R}^n$ be a convex and compact set and $A_1 := A + B$. Then $b(A_1) \in A$.

Proof of theorem 1. Let

$$\Phi(t) := F(t) + B.$$

Let $\varepsilon > 0$. Since $F(\cdot)$ is an absolutely continuous set valued map there exists $\delta > 0$ such that for every system of intervals

$$[t_1, \tau_1], \ldots, [t_m, \tau_m], \quad (0 \le t_1 \le \tau_1 \le \ldots \le t_m \le \tau_m \le T)$$

holds

$$\sum_{j=1}^{m} (\tau_{j} - t_{j}) < \delta \Rightarrow \max \left(\sum_{j=1}^{m} \mu_{n}(\Phi(t_{j}) \setminus \Phi(\tau_{j})) \right),$$

$$\sum_{j=1}^{m} \mu_{n}(\Phi(\tau_{j}) \setminus \Phi(t_{j})) < \varepsilon \, \mu_{n}(B) \times (4(M+1)).$$

It follows that

$$\begin{split} &\sum_{i=1}^{m} \|f(t_{i}) - f(\tau_{i})\| = \sum_{i=1}^{m} \left\| \frac{1}{\mu_{n}(\Phi(t_{i}))} \int_{\Phi(t_{i})} x \, \mathrm{d}\mu_{n} - \frac{1}{\mu_{n}(\Phi(\tau_{i}))} \int_{\Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} \right\| \leq \\ &\leq \sum_{i=1}^{m} \left(\left\| \left(\frac{1}{\mu_{n}(\Phi(t_{i}))} - \frac{1}{\mu_{n}(\Phi(\tau_{i}))} \right) \int_{\Phi(t_{i}) \cap \Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} \right\| + \\ &+ \left\| \frac{1}{\mu_{n}(\Phi(t_{i}))} \int_{\Phi(t_{i}) \setminus \Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} - \frac{1}{\mu_{n}(\Phi(\tau_{i}))} \int_{\Phi(\tau_{i}) \setminus \Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} \right\| \right). \end{split}$$

Using lemma 1 and boundedness of the map $F(\cdot)$ we get

$$\begin{split} & \mu_{n}(\Phi(t_{i})) \geq \mu_{n}(B) , \quad \mu_{n}(\Phi(\tau_{i})) \geq \mu_{n}(B) , \quad i = 1, ..., m , \\ & \left\| \left(\frac{1}{\mu_{n}(\Phi(t_{i}))} - \frac{1}{\mu_{n}(\Phi(\tau_{i}))} \right) \int_{\Phi(t_{i}) \cap \Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} \right\| \leq \\ & \leq \left| \mu_{n}(\Phi(\tau_{i})) - \mu_{n}(\Phi(t_{i})) \right| (M+1)/\mu_{n}(B) , \\ & \left\| \frac{1}{\mu_{n}(\Phi(t_{i}))} \int_{\Phi(t_{i}) \setminus \Phi(\tau_{i})} x \, \mathrm{d}\mu_{n} - \frac{1}{\mu_{n}(\Phi(\tau_{i}))} \int_{\Phi(\tau_{i}) \setminus \Phi(t_{i})} x \, \mathrm{d}\mu_{n} \right\| \leq \\ & \leq \left(\mu_{n}(\Phi(t_{i}) \setminus \Phi(\tau_{i})) + \mu_{n}(\Phi(\tau_{i}) \setminus \Phi(t_{i})) \right) (M+1)^{2}/\mu_{n}(B) . \end{split}$$

Since $F(\cdot)$ is an absolutely continuous map

$$\begin{split} &\sum_{i=1}^{m} \left| \mu_{n}(\Phi(t_{i})) - \mu_{n}(\Phi(\tau_{i})) \right| = \\ &= \sum_{i=1}^{m} \left| \mu_{n}(\Phi(t_{i}) \setminus \Phi(\tau_{i})) - \mu_{n}(\Phi(\tau_{i}) \setminus \Phi(t_{i})) \right| < \mu_{n}(B) \, \varepsilon / (2(M+1)^{2}) \, . \end{split}$$

Using these estimates we get

$$\sum_{i=1}^m \|f(t_i) - f(\tau_i)\| < \varepsilon.$$

We proved that $f(\cdot)$ is absolutely continuous on the interval (0, T).

Lemma 2. Let M > 0. Then there exists k > 0 such that for every two nonempty convex and compact sets, $C, D \subset \mathbb{R}^n$ such that $C, D \subset M \cdot B$ holds

$$kd^*(C,D) \geq \max \left[\mu_n((C+B) \setminus (D+B)), \, \mu_n((D+B) \setminus (C+B)) \right].$$

Proof. We prove that there exists $k_1 > 0$ such that

$$k_1\delta(C,D)=k_1\delta(C+B,D+B)\geq \mu_n((C+B)\setminus (D+B)).$$

There exists $k_1 > 0$ (see [1], p. 80) such that

$$\mu_n((C+B)\setminus (D+B)) \leq \mu_n(B(D+B, \delta(C+B, D+B)) - \mu_n(D+B) \leq k_1\delta(C+B, D+B).$$

Similarly we prove that there exists $k_2 > 0$ such that

$$k_2\delta(D,C)=k_2\delta(D+B,C+B)\geq \mu_n((D+B)\wedge(C+B)).$$

Let

$$k := \max (k_1, k_2).$$

Then

$$kd^*(C, D) \ge \max \left[\mu_n((C+B) \setminus (D+B)), \mu_n((D+B) \setminus (C+B))\right].$$

The following definition was used by Kikuchi and Tomita, [3].

Definition 2. Let $F:(0,T) \rightarrow \mathbb{R}^n$ be a set valued map with nonempty compact

values. We say that F is d^* -absolutely continuous if for $\forall \varepsilon > 0$, $\exists \delta > 0$ such that for every system of intervals

$$[t_1, \tau_1], \ldots, [t_m, \tau_m], \quad (0 \le t_1 \le \tau_1 \le \ldots \le t_m \le \tau_m \le T)$$

the following holds

$$\sum_{j=1}^{m} (\tau_{j} - t_{j}) < \delta \Rightarrow \sum_{j=1}^{m} d^{*}(F(t_{j}), F(\tau_{j})) < \varepsilon.$$

From lemma 2 follows:

Lemma 3. Let $F:(0,T) \sim \mathbb{R}^n$ be a bounded, d^* -absolutely continuous set valued map with nonempty convex compact values. Then $F(\cdot)$ is an absolutely continuous map.

Lemma 4. Let $F: (0, T) \rightarrow \mathbb{R}^n$ be a set valued map with nonempty convex and compact values and $h: (0, T) \mapsto \mathbb{R}^n$ be an absolutely continuous function such that

$$\forall e \in S$$
, $\forall t, \tau \in (0, T)$, $\sigma_{F(t)}(e) - \sigma_{F(t)}(e) \leq |h(t) - h(\tau)|$.

Then $F(\cdot)$ is d^* -absolutely continuous set valued map.

Proof. Using the minimax theorem (see [2]) we get

$$\delta(F(t) + B, F(\tau) + B) = \sup_{e \in S} \sup_{y \in F(t) + B} \inf_{x \in F(\tau) + B} \langle e, y - x \rangle =$$

$$= \sup_{e \in S} (\sup_{y \in F(t) + B} \langle e, y \rangle - \sup_{x \in F(\tau) + B} \langle e, x \rangle) = \sup_{e \in S} (\sigma_{F(t) + B}(e) - \sigma_{F(\tau) + B}(e)) =$$

$$= \sup_{e \in S} (\sigma_{F(t)}(e) - \sigma_{F(\tau)}(e)) = \delta(F(t), F(\tau)).$$

It follows that

$$\delta(F(t), F(\tau)) \leq |h(t) - h(\tau)|, \quad \delta(F(\tau), F(t)) \leq |h(\tau) - h(t)|,$$

i.e.

$$d^*(F(t), F(\tau)) \leq |h(t) - h(\tau)|.$$

Since $h(\cdot)$ is an absolutely continuous function then $F(\cdot)$ is d^* -absolutely continuous set valued map. \square

Theorem 2. Let $H:(0,T) \sim \mathbf{R}^n$ be a bounded set valued map with nonempty convex and compact values and let $t_0 \in (0,T)$, $x_0 \in H(t_0)$. Let $h:(0,T) \mapsto \mathbf{R}^n$ be an absolutely continuous function such that

$$\forall e \in S$$
, $\forall t, \tau \in (0, T)$, $\sigma_{H(t)}(e) - \sigma_{H(\tau)}(e) \leq |h(t) - h(\tau)|$.

Then there exists $\delta > 0$ and an absolutely continuous selection $r: [t_0, t_0 + \delta) \mapsto \mathbb{R}^n$ from $H(\cdot)$ such that

$$r(t_0)=x_0.$$

To prove theorem 2 we will use the following definition and lemma.

Definition 3. Let L, K be linear subspaces in \mathbb{R}^n . Let $\Pi_L(\cdot)$ denote the projection of the best approximation on the set L. We define

$$\alpha(L, K) := \sup \{1 - \|\Pi_L(x)\| \mid x \in K, \|x\| = 1\}.$$

Lemma 5. Let $H \subset B(0, R)$, (R > 0) be a convex compact set, L be a linear subspace of \mathbb{R}^n , $L \subset \operatorname{aff}(H) - \operatorname{aff}(H)$ (aff(H) denotes the affine hull of the set H, see [4]) and there exists $x_0 \in \mathbb{R}^n$ and $\delta > 0$ such that

$$B(x_0, \delta) \cap (L + x_0) \subset H$$
.

Let K be a linear subspace in \mathbb{R}^n such that $K + L = \mathbb{R}^n$ and $K \cap L = \{0\}$. Let $L_0 := N_K(0)$ $(N_K(0)$ denotes the normal cone to K at 0, see [1]) and $\alpha(L, L_0) < 1$. Then there exists a constant r > 0 such that

$$\sigma_{H \cap K}(e) = \inf \{ \sigma_H(e') + \sigma_K(e'') \mid e' + e'' = e, \|e'\| + \|e''\| \le r \}, \forall e \in S,$$

where r depends only on n, α, R, δ .

To prove lemma 5 we use the following two lemmas.

Lemma 6. Let L, L_0 be linear subspaces in \mathbb{R}^n and let $\dim(L_0) = \dim(L)$, $\alpha := \alpha(L, L_0) < 1$. Then the projection map $\Pi_L: L_0 \mapsto L$ has an inverse $\Pi^{-1}: L \mapsto L_0$ and

$$||\Pi_L^{-1}|| := \sup \{||\Pi_L^{-1}(y)|| \mid y \in L, ||y|| = 1\} \le 1/(1 - \alpha).$$

Proof. Let Q be an subspace in \mathbb{R}^n orthogonal to L such that $Q + L = \mathbb{R}^n$. If $\dim (L_0 \cap Q) \geq 1$, then there exists $q \in Q \cap L_0$, $\|q\| = 1$. Since $H_L(q) = 0$ it follows that $\alpha = 1$. This contradicts with the assumption $\alpha < 1$. We proved that $L_0 \cap Q = \{0\}$. For given $y \in L$ since $\dim L + \dim Q = \dim L_0 + \dim Q = n$ there exists exactly one $x \in L_0$ such that $H_L(x) = y$. From the definition of α follows that $\|H_L(x)\| \geq (1-\alpha)\|x\|$ and therefore $\|H_L^{-1}\| \leq 1/(1-\alpha)$.

Lemma 7. Let $L_0 := \{x \in \mathbb{R}^n \mid x_1 = \ldots = x_k = 0\}, K := \{x \in \mathbb{R}^n \mid x_{k+1} = \ldots = x_n = 0\}, L \text{ be a linear subspace in } \mathbb{R}^n, \dim(L) = \dim(L_0) \text{ and } \alpha := \alpha(L, L_0) < 1, c > 0.$ Let

$$Z := \{x \in \mathbf{R}^n \mid \sum_{i=1}^k x_i^2 \le c^2, \|\Pi_L(x)\| \le c\}.$$

Then for every $y \in Z$ the following holds

$$||y|| \leq \frac{3c(n+2-\alpha)}{(1-\alpha)^2}.$$

Proof. Let $y \in Z$. Due to lemma 6 there exists only one $x^y \in L_0$ such that

$$\Pi_L(x^y) = \Pi_L(y) \text{ and } ||x^y|| \leq \frac{c}{1-\alpha}.$$

Let Q be an subspace in \mathbb{R}^n orthogonal to L such that $Q + L = \mathbb{R}^n$. Let $a^1, ..., a^k$

be an orthonormal basis of the space Q such that

$$a^1 = \frac{x^y - y}{\|x^y - y\|} \,.$$

For every $x \in \mathbb{R}^n$

$$\Pi_L(x) = x - \sum_{s=1}^k \langle x, a^s \rangle a^s$$
.

Let

$$\delta:=\frac{\alpha-1}{\alpha-n-2}.$$

We prove

$$\sum_{i=1}^k (a_i^1)^2 \ge \delta^2.$$

Let us suppose that

(1)
$$\sum_{i=1}^{k} (a_i^1)^2 < \delta^2.$$

Let

$$b_i := a_i^1, \quad i = 1, ..., k$$

$$b_i := 0, \quad i = k + 1, ..., n$$

and

$$\hat{x} := a^1 - b \in L_0.$$

It follows

$$||b|| < \delta, \quad ||\hat{x}|| > 1 - \delta,$$

$$H_L(\hat{x}) = -b + \sum_{s=1}^k \langle b, a^s \rangle a^s.$$

Since

$$\|\Pi_L(\hat{x})\| \leq (n+1) \,\delta$$

then

$$\alpha \geq 1 - \frac{\left\| H_L(\hat{\mathbf{x}}) \right\|}{\left\| \hat{\mathbf{x}} \right\|} > 1 - \frac{(n+1)\,\delta}{1-\delta} \,.$$

Since

$$1 - \frac{(n+1)\,\delta}{1-\delta} = \alpha$$

we get the contradiction with the assumption (1). It follows

$$\sum_{i=1}^k (a_i^1)^2 \ge \delta^2.$$

Since

$$y = x^y + ta^1$$

then

$$\sum_{i=1}^k (x_i^y + ta_i^1)^2 \le c^2$$

and consequently

$$|t| \le \frac{\sqrt{(\sum_{i=1}^{k} (x_i^y)^2) + c}}{\sqrt{(\sum_{i=1}^{k} (a_i^1)^2)}} \le \frac{2c}{(1-\alpha)\delta}.$$

It follows

$$||y|| \le ||x^y|| + \frac{2c}{(1-\alpha)\delta} \le \frac{3c}{(1-\alpha)\delta} = \frac{3c(n+2-\alpha)}{(1-\alpha)^2}$$

Proof of lemma 5. By translation and unitary transformation, we can achieve $x_0 = 0$ and $K = \{x \in \mathbb{R}^n \mid x_{k+1} = \dots = x_n = 0\}$ where $n - k = \dim(L)$. Let

$$L_0 := \{ x \in \mathbb{R}^n \mid x_1 = \dots = x_k = 0 \} .$$

From the assumptions we get

$$\sigma_H(e) \geq \sigma_{L \cap H}(e) = \sigma_{L \cap H}(\Pi_L(e)) \geq \delta \|\Pi_L(e)\|.$$

Moreover (see [4] and $e \in S$)

$$R \ge \sigma_{H \cap K}(e) = \inf \{ \sigma_H(e') + \sigma_K(e'') \mid e' + e'' = e \} \ge$$

$$\ge \inf \{ \delta \| \Pi_L(e') \| \mid e' + e'' = e, \ e'' \in L_0 \}.$$

We get

$$||\Pi_L(e')|| \le R/\delta$$
 whenever $e - e' \in L_0$.

Since

$$\sum_{i=1}^k e_i^{\prime\prime 2} = 0$$

then

$$\sum_{i=1}^k e_i^{\prime 2} \leq 1.$$

From lemma 7 follows

$$\sigma_{H \cap K}(e) = \inf \left\{ \sigma_H(e') + \sigma_K(e'') \mid e' + e'' = e, \|e'\| + \|e''\| \le r \right\},$$

$$\forall e \in S.$$

where

$$r:=\frac{6R(n+2-\alpha)}{\delta(1-\alpha)^2}+1.$$

Proof of theorem 2. A) Let dim (aff $H(t_0)$) = 0, i.e., $H(t_0) = \{x_0\}$. Then for barycentric selection holds

$$b(H(t_0) + B) = x_0.$$

Therefore we may define due to theorem 1 an absolutely continuous selection

$$r(t) := b(H(t) + B).$$

B) Let $x_0 \in \text{ri}(H(t_0))$, dim aff $H(t_0) = n - k \ge 1$ and K be a linear subspace such that $K = N_{\text{aff}(H(t_0))}(x_0)$. By translation and unitary transformation we can achieve $x_0 = 0$ and

$$K := \{ x \in \mathbb{R}^n | x_{k+1} = \ldots = x_n = 0 \}.$$

From Carathéodory theorem (see [1]) follows that there exist points $a_i \in H(t_0)$, i = 1, ..., n - k + 1 such that

$$x_0 = \sum_{i=1}^{n-k+1} \lambda_i a_i$$
, $\sum_{i=1}^{n-k+1} \lambda_i = 1$, $\lambda_i > 0$.

Let $\eta_1, \eta_2 > 0$ be such that

$$B(x_0, \eta_1) \cap \operatorname{aff}(b_1, ..., b_{n-k+1}) \subset \{x \in \mathbb{R}^n | x = \sum_{i=1}^{n-k+1} \mu_i b_i, \sum_{i=1}^{n-k+1} \mu_i = 1, \ \mu_i \ge 0\}$$

for every $||b_i - a_i|| < \eta_2, i = 1, ..., n - k + 1.$

Since $H(\cdot)$ is a continuous map then for $\eta_2 > 0$ there exists $\delta_1 > 0$ such that

$$H(t) \cap B(a_i, \eta_2/2) \neq \emptyset$$
 for $|t - t_0| < \delta_1$.

Let $b_i(t) \in H(t) \cap B(a_i, \eta_2/2)$ and

$$L_0 := \operatorname{aff}\{a_1, \ldots, a_{n-k+1}\} = \{x \in \mathbb{R}^n | x_1 = \ldots = x_k = 0\},$$

$$L(t) := \operatorname{aff}\{b_1(t), \ldots, b_{n-k+1}(t)\}.$$

Let R > 0 be such that $H(t) \subset B(0, R)$ for $t \in [t_0, t_0 + \delta)$ and

$$G(t) := H(t) \cap K$$
.

We find $\delta_2 > 0$ such that $\alpha(L(t), L_0) < 1/2$ for $t \in [t_0, t_0 + \delta_2)$, $\delta := \min(\delta_1, \delta_2)$. For $t \in [t_0, t_0 + \delta)$ are fulfilled the assumptions of lemma 5, where x_0 stands for $x(t) \in L(t) \cap K$, L stands for L(t). Therefore there exists t > 0 such that

$$\sigma_{G(t)}(e) = \inf \left\{ \sigma_{H(t)}(e') \mid e' + e'' = e, \ e'' \in L_0, \ \|e'\| + \|e''\| \le r \right\}.$$

We prove that

$$\sigma_{G(t)}(e) - \sigma_{G(\tau)}(e) \leq r |h(t) - h(\tau)|, \quad \forall t, \ \tau \in [t_0, t_0 + \delta), \quad \forall e \in S.$$

Since $\sigma_{K(t)}(\cdot)$ is lower semicontinuous function (see [4]) it follows that for every $\tau \in [t_0, t_0 + \delta)$ and every $e \in S$ there exists $\tilde{e} \in \mathbb{R}^n$, $\|\tilde{e}\| \le r$ such that $e - \tilde{e} \in L_0$

$$\sigma_{H(\mathfrak{r})}\!\!\left(\tilde{e}\right) = \sigma_{G(\mathfrak{r})}\!\!\left(e\right) = \inf\left\{\sigma_{H(\mathfrak{r})}\!\!\left(e'\right) \middle| \; e' + e'' = e, \; e'' \in L_0, \; \left\|e'\right\| + \left\|e''\right\| \leq r\right\}.$$

It follows

$$\sigma_{G(t)}(e) - \sigma_{G(\mathbf{e})}(e) \leq \sigma_{H(t)}(\tilde{e}/\|\tilde{e}\|) \|\tilde{e}\| - \sigma_{H(\tau)}(\tilde{e}/\|\tilde{e}\|) \|\tilde{e}\| \leq r |h(t) - h(\tau)|.$$

From lemma 4 and the first part of this proof it follows that there exists an absolutely continuous selection $r(\cdot)$: $[t_0, t_0 + \delta) \mapsto \mathbb{R}^n$ from the set valued map $G(\cdot)$,

$$r(t_0)=x_0.$$

C) Let $x_0 \in \mathrm{bd}(H(t_0))$. Let us suppose that dim aff $H(t_0) \ge 1$. Take $y \in \mathrm{ri}(H(t_0))$ and let $\lambda_n \in \mathbb{R}$, $n = 1, \ldots$ be a decreasing sequence such that $1 \ge \lambda_1, \lambda_n \to 0$. Let

$$y_n := x_0(1 - \lambda_n) + y\lambda_n.$$

Since $y_n \in ri(H(t_0))$ there exists an absolutely continuous selection $x_n(\cdot)$ defined on the interval $t_0 \le t < t_0 + \eta_n$ such that

$$x_n(t_0) = y_n.$$

There exists $\delta_n < \min(1/n, \eta_n)$, $n = 1, \dots$ such that $\delta_{n+1} \leq \delta_n$,

$$\begin{aligned} & \underset{[t_0,t_0+\delta_{n+1}]}{\text{var}} x_n < 1/n^2 , \\ & \underset{[t_0,t_0+\delta_{n+1}]}{\text{var}} x_{n+1} < 1/n^2 . \end{aligned}$$

Let

$$x(t,\lambda):=\frac{\lambda-\lambda_{n+1}}{\lambda_n-\lambda_{n+1}}x_n(t)+\frac{\lambda_n-\lambda}{\lambda_n-\lambda_{n+1}}x_{n+1}(t)$$

$$\text{for } \lambda_{n+1} \leqq \lambda \leqq \lambda_n \,, \quad t_0 < t \leqq t_0 \,+\, \delta_{n+1}$$

$$x(t_0,0) := x_0$$
.

Since $x_n(\cdot)$, $n=1,\ldots$ are absolutely continuous and $H(\cdot)$ has convex values there exists an increasing continuously differentiable function $\hat{\delta} \in C^1[0,1]$, $\hat{\delta}(\lambda_k) \leq \delta_{k+1}$, $\hat{\delta}(\lambda) > 0$ for $1 \geq \lambda > 0$, $\hat{\delta}(0) = 0$ such that

$$x(t, \lambda) \in H(t)$$
 for $t_0 \le t \le t_0 + \hat{\delta}(\lambda)$.

Let the function $\hat{\lambda}(t)$ be the inverse function for $t_0 + \hat{\delta}(\lambda)$. We prove that

$$\hat{x}(t) := x(t, \hat{\lambda}(t))$$

is absolutely continuous on the interval $[t_0, t_0 + \hat{\delta}(1)]$.

We prove that for every $\varepsilon > 0$ there exists $k \in N$ such that $\hat{x}(\cdot)$ has variation on the interval $[t_0, t_0 + \hat{\delta}(\lambda_k)]$ less then ε . Let $\varepsilon > 0$. We choose $k \in N$ such that

$$\lambda_k ||x_0 - y|| + 4 \sum_{n \geq k} 1/n^2 < \varepsilon/2.$$

There exist points $t_i \in (t_0, t_0 + \hat{\delta}(\lambda_k)], i = 1, ..., M + 1$ such that $t_i < t_{i+1}$

$$\left| \underset{(t_0,t_0+\delta(\lambda_t))}{\operatorname{var}} \hat{x} - \sum_{i=1}^{M} \|\hat{x}(t_{i+1}) - \hat{x}(t_i)\| \right| < \varepsilon/2.$$

We add the points $t_0 + \hat{\delta}(\lambda_s)$ for $s \ge k$ if $t_1 < t_0 + \hat{\delta}(\lambda_s)$ to the points t_i . Let $\lambda_{n+1} \le \hat{\lambda}(t_i) \le \hat{\lambda}(t_{i+1}) \le \lambda_n$. Then

$$\hat{x}(t_{i+1}) - \hat{x}(t_i) = -(\hat{\lambda}(t_{i+1}) - \hat{\lambda}(t_i))(x_0 - y) + \frac{\hat{\lambda}(t_i) - \lambda_{n+1}}{\lambda_n - \lambda_{n+1}}(x_n(t_{i+1}) - x_n(t_i)) +$$

$$+ \frac{\lambda_{n} - \hat{\lambda}(t_{i+1})}{\lambda_{n} - \lambda_{n+1}} (x_{n+1}(t_{i+1}) - x_{n+1}(t_{i})) +$$

$$+ \frac{\hat{\lambda}(t_{i+1}) - \hat{\lambda}(t_{i})}{\lambda_{n} - \lambda_{n+1}} (x_{n}(t_{i}) - y_{n} - x_{n+1}(t_{i}) + y_{n+1}).$$

It follows that

$$\sum_{i=1}^{M} \|\hat{x}(t_{i+1}) - \hat{x}(t_{i})\| \leq \sum_{i=1}^{M} |\hat{\lambda}(t_{i+1}) - \hat{\lambda}(t_{i})| \|x_{0} - y\| + \\
+ \sum_{n \geq k} \sum_{\{i \in \{1, \dots, M\} | \lambda_{n+1} \leq \hat{\lambda}(t_{i}) \leq \hat{\lambda}(t_{i+1}) \leq \lambda_{n}\}} \|x_{n}(t_{i+1}) - x_{n}(t_{i})\| + \\
+ \sum_{n \geq k} \sum_{\{i \in \{1, \dots, M\} | \lambda_{n+1} \leq \hat{\lambda}(t_{i}) \leq \hat{\lambda}(t_{i+1}) \leq \lambda_{n}\}} \|x_{n+1}(t_{i+1}) - x_{n+1}(t_{i})\| + \\
+ \sum_{n \geq k} \sum_{\{i \in \{1, \dots, M\} | \lambda_{n+1} \leq \hat{\lambda}(t_{i}) \leq \hat{\lambda}(t_{i+1}) \leq \lambda_{n}\}} \frac{\hat{\lambda}(t_{i+1}) - \hat{\lambda}(t_{i})}{\lambda_{n} - \lambda_{n+1}} \left(\underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n} + \\
+ \underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n+1} \right) \leq \lambda_{k} \|x_{0} - y\| + \sum_{n \geq k} (\underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n} + \\
+ \underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n+1} + \underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n} + \underset{[t_{0}, t_{0} + \delta(\lambda_{n})]}{\text{var}} x_{n+1} \right) \leq \\
\leq \lambda_{k} \|x_{0} - y\| + 4 \sum_{n \geq k} 1/n^{2} < \epsilon/2 .$$

We proved that

$$\text{var} \quad \hat{x} < \varepsilon$$

$$[t_0, t_0 + \delta(\lambda_k)]$$

We prove that $\hat{x}(\cdot)$ is an absolutely continuous function on the interval $[t_0 + \hat{\delta}(\lambda_k), t_0 + \hat{\delta}(1)]$. Since $x_n(\cdot)$ is an absolutely continuous function on the interval $[0, \delta_n]$ then for $\forall \epsilon > 0$. $\exists \eta > 0$ such that for every system of intervals

$$[t_1, \tau_1], \ldots, [t_m, \tau_m], \quad (t_0 + \hat{\delta}(\lambda_k) \leq t_1 \leq \tau_1 \leq \ldots \leq t_m \leq \tau_m \leq \delta_n)$$

the following holds

$$\sum_{j=1}^{m} (\tau_j - t_j) < \eta \Rightarrow \sum_{j=1}^{m} ||x_n(t_j) - x_n(\tau_j)|| < \varepsilon / (4k), \ n \le k.$$

It follows that for every system of intervals

$$[t_1, \tau_1], \ldots, [t_m, \tau_m], \quad (t_0 + \hat{\delta}(\lambda_k) \le t_1 \le \tau_1 \le \ldots \le t_m \le \tau_m \le \hat{\delta}(1))$$

holds

$$\sum_{j=1}^{m} \left(\tau_{j} - t_{j}\right) < \eta \Rightarrow \sum_{n \leq k} \sum_{\{i \in \{1, \dots, m\} \mid \lambda_{n+1} \leq \lambda(\tau_{i}) \leq \lambda_{i}\}} \left\| x_{n}(t_{i}) - x_{n}(\tau_{i}) \right\| < \varepsilon/4.$$

We proved that $\hat{x}(\cdot)$ is an absolutely continuous on the interval $[t_0 + \hat{\delta}(\lambda_k), t_0 + \hat{\delta}(1)]$ and since $\text{var}_{[t_0, t_0 + \delta(\lambda_k)]} \to 0$ for $k \to \infty$, then it is absolutely continuous on the interval $[t_0, t_0 + \hat{\delta}(1)]$.

References

- [1] J. P. Aubin, A. Cellina: Differential inclusions. Springer 1984.
- [2] J. P. Aubin, I. Ekeland: Applied nonlinear analysis. John Wiley & Sons, 1984.
- [3] N. Kikuchi, Y. Tomita: On the absolute continuity of multi-functions and orientor fields. Funkcialaj Ekvacioj, 14, 1971, 161-170.
- [4] R. T. Rockafellar: Convex analysis. Princeton University Press, 1970.

Authors' addresses: I. Vrkoč, 115 67 Praha, Žitná 25, Czechoslovakia (Matematický ústav ČSAV), V. Křivan, 370 05 Č. Budějovice, Branišovská 31, Czechoslovakia (Jihočeské biologické centrum ČSAV).