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A host�parasitoid system with overlapping generations is considered. The dynamics of the
system is described by differential equations with a control parameter describing the behavior
of the parasitoids. The control parameter models how the parasitoids split their time between
searching for hosts and searching for non-host food. The choice of the control parameter is
based on the assumption that each parasitoid maximizes the instantaneous growth rate of the
number of copies of its genotype. It is shown that optimal individual behavior of parasitoids,
with respect to time sharing between hosts and food searching, may have a stabilizing effect
on the host�parasitoid dynamics. ] 1997 Academic Press

INTRODUCTION

Most studies of host�parasitoid interactions at the
population level assume that the number of hosts para-
sitized per unit of time depends on host and parasitoid
densities and on a species specific searching efficiency
(Hassell and May, 1973). It is often assumed that the
time a parasitoid devotes to host searching during its life
is fixed, whereas in reality animals have to share their
time between different activities. One of these activities
which is important in most parasitoids species is feeding.
Many species of parasitoids need food resources other
than host tissues: mainly plant materials (Jervis et al.,
1993). Whether they encounter these non-host food sources
within their host habitat (van Emden, 1990), or in plants
which grow outside this habitat (Powell, 1986), the adult

parasitoids must share their time between consumption
of these resources, and eventual searching for them, and
activities linked to parasitism. The problem of time
allocation between these two kinds of activities is very
important for two reasons. First, several biological
control studies (Leius, 1960; Leius, 1967; Powell, 1986;
van Emden, 1990; Jervis et al., 1993) revealed that the
presence of non-host food is necessary to the main-
tenance of parasitoid populations. Second, experiments
conducted at the individual level (Takasu and Hirose,
1991; Takasu and Lewis, 1995) clearly showed that
parasitoids share their time between searching for non-
host food and searching for hosts. The importance of
non-host food sources in host�parasitoid models was
stressed by Jervis and Kidd (1995): ``...A valuable step in
the development of foraging models and of population
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models would be also to take account of the quality and
spatial distribution of non-host food sources. There will,
of course, be the added complication of incorporating
the relative costs and benefits of searching for host and
non-host food sources, but at least models explicitly
incorporating non-host foods are likely to approximate
more closely the natural situation in which parasitoids
live....''

The choice between searching for hosts and searching
for, and consuming, non-host food will influence the
reproductive success of each parasitoid in two ways.
First, it will affect the instantaneous reproductive rate of
the parasitoid, because the effective time spent searching
for hosts will be reduced if the parasitoid spends some
time searching for food and feeding. Second, it will deter-
mine the lifespan of the parasitoid, which depends
strongly on the consumption of non-host food (Jervis
and Kidd, 1986; Jervis et al., 1993). Therefore, the
choice between searching for hosts and searching for
food represents a trade-off: parasitoids that spend most
of their time searching for hosts will have a high instan-
taneous reproductive rate, but also suffer a high mor-
tality risk, caused by starvation. Parasitoids that invest in
feeding will live and reproduce longer, but will have a
lower instantaneous reproductive rate. As it influences
the reproductive success of each parasitoid, the decision
to search for hosts or for food will influence parasitoid-
host dynamics.

A recent paper (Sirot and Bernstein, 1996) addresses
the question of the optimal strategy with respect to that
trade-off from the individual point of view. In the present
paper we will incorporate the optimal strategy into a
population dynamical model, to investigate how the
host�parasitoid dynamics is influenced by the adaptive
decision-making.

The host�parasitoid dynamics will be described by a
controlled system of differential equations where the
control parameter models the behavior of parasitoids
with respect to searching for food and searching for
hosts. With this dynamics we consider an optimality
criterion, expressed through the maximization of a
measure of fitness for each parasitoid. The fitness
measure we use is the instantaneous rate of increase of
the number of genotype copies, which is commonly used
to measure the advantages of life history traits (Stearns,
1992). Assuming that each parasitoid is instantaneously
maximizing its fitness allows us to determine the optimal
strategy among all possible values for the control
parameter.

Following Colombo and Kr� ivan (1993), Kr� ivan
(1995), Kr� ivan (1996) we show that this model is well
defined, i.e., for each initial density of parasitoids and

hosts there exists exactly one solution starting from these
initial densities, and we analyze the model. We will be
mainly interested in the effect of the optimal choice between
searching for hosts and for food on the persistence of the
model. In Sirot and Bernstein (1996) it was suggested
that optimal behavior of parasitoids may have a stabilizing
effect on the population dynamics. In the present paper
we show that the individual behavior of parasitoids on its
own leads to persistence of the otherwise non-persistent
host�parasitoid population dynamics.

POPULATION DYNAMICS

Here we derive the host�parasitoid model. Let us
consider a parasitoid during T units of time. We assume
that the parasitoid is only concerned with searching for
food and feeding, and searching for and handling hosts
during this time interval. We consider these two activities
to be distinct, i.e.,

T=Tf+Tp ,

where Tf is the time devoted to activities connected with
feeding and Tp with parasitizing. Each of these two
activities consists of searching and handling respectively
food sources and hosts. We set

u=
Tf

T
,

which means that u is the proportion of the time T that
is devoted to feeding activities (0�u�1). In what
follows we will consider u as a control parameter that
represents the strategy of the parasitoid. We have

Tf=uT,

Tp=(1&u) T.
(1)

Tp splits into two parts

Tp=T s
p+T h

p

where T s
p is time devoted to searching for hosts and T h

p is
time devoted to ``handling'' hosts, i.e., to lay eggs. If *
denotes the search rate of a parasitoid, h the time to lay
one egg once a host is found, and x the host density, we
get

T h
p=h*xT s

p .
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Thus

Tp=T s
p(1+h*x)

and

T s
p=

Tp

1+h*x
. (2)

To derive the dynamics of the host�parasitoid system we
make two assumptions. First, we assume that the popula-
tion of hosts grows exponentially in the absence of para-
sitoids, with the rate of increase r. Second, it is assumed
that the instantaneous mortality rate of parasitoids
depends linearly on the proportion of time devoted to
feeding activities. We will assume that the mortality rate
is m if the parasitoid devotes all the time T to feeding
activities (u=1) while it is M+m if it devotes all the time
T to reproduction (u=0). For intermediate values of u,
the mortality rate is m+M(1&u). This mortality is inde-
pendent of time, so we assume that food abundance is
constant. With the above stated assumptions we may
write the difference equations describing the dynamics of
the host�parasitoid system. By y we denote the para-
sitoid density. Then we have

x(t+T )&x(t)=rx(t) T&*x(t) y(t) T s
p ,

y(t+T )& y(t)=*x(t) y(t) Ts
p&(m+M(1&u)) y(t)T.

Using (1) and (2) we get

x(t+T )&x(t)=rx(t) T&
*x(t) y(t)(1&u(t))T

1+h*x(t)
,

y(t+T )& y(t)=
*x(t) y(t)(1&u(t))T

1+h*x(t)

&(m+M(1&u(t))) y(t)T.

Assuming T to be infinitesimally small, we get a continuous
approximation of the above discrete system:

x$(t)=rx(t)&
*x(t) y(t)
1+*hx(t)

(1&u(t)),

y$(t)=
*x(t) y(t)
1+*hx(t)

(1&u(t))&(m+M(1&u(t))) y(t).

(3)

OPTIMALITY RULES

It is assumed that the fitness of each parasitoid is maxi-
mized when the rate of increase of the number of copies

of its genotype is maximum (Sibly, 1991; Stearns, 1992).
This leads to the maximization of the instantaneous
growth rate of the parasitoid population, represented by

R(u)=
1
y

dy
dt

=\ *x
1+*hx

&M+ (1&u)&m.

For each host density x we define the strategy map S(x)
for every parasitoid as the set of those u's that maximize
R(u), i.e., the set of optimal strategies when host density
is x. We note that the basic mortality rate m has no
influence on the optimal strategy, because it represents
the part of mortality which does not depend on the
parasitoid behavior. From Appendix A it follows that the
strategy map S has following values:

(a) If Mh>1 then S(x)=[1] for any x>0. Here the
optimal strategy is to search for food exclusively since
under this condition, the per capita growth rate of
parasitoids is negative for any density of x. Thus, the
population of parasitoids will always decline and if para-
sitoids devote some time to reproduction the rate of
decrease will increase. Thus Mh>1 is a biologically
unrealistic assumption since parasitoids do not repro-
duce under this condition. There is also experimental
evidence that MhR1, see Hassell and May (1973).

(b) If Mh<1 then

[0] if x>x*,

S(x)={[1] if x<x*, (4)

[0�u�1] if x=x*,

where

x*=
M

*(1&Mh)
.

Thus the optimal control u is uniquely defined if
x{x*. If x=x* then R(u) has a zero slope and any value
of u between 0 and 1 leads to maximization of fitness.

If hosts are abundant, i.e., x>x*, the optimal strategy
is to search for hosts only, since the reproductive rate will
be high with respect to the mortality rate. If x<x* then
the optimal behavior is to search for food only. If x=x*
then the strategy cannot be uniquely derived from maxi-
mization of the fitness function. Nevertheless, we want to
stress here that this does not mean that the strategy
cannot be uniquely derived at all, since when deriving the
optimal strategy we did not consider the dynamics of (3).
In fact, as we will see later, the control parameter is also
uniquely derived for x=x*.
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The dynamics is described by (3) with u belonging to
the strategy map, i.e.,

x$=rx&
*xy

1+*hx
(1&u),

y$=
*xy

1+*hx
(1&u)&(m+M(1&u)) y, (5)

u # S(x).

Despite the non-uniqueness in dynamics (5) it is proved
in Appendix B that the above system has for every initial
condition a solution that is uniquely defined. Thus, our
model is well posed.

QUALITATIVE BEHAVIOR OF THE
SYSTEM

First we consider the case when Mh>1. The optimal
control u=1 does not depend on the density of the host
population and (5) reduces to the differential equation

x$=rx,

y$=&my.
(6)

The trajectory of this system that corresponds to the
initial condition (x0 , y0) is

(x(t), y(t))=(ertx0 , e&mty0).

Thus, we see that the population of parasitoids will go
extinct, since they never parasitize, while the host
population is growing exponentially. This is another
reason why this combination of parameters cannot be
considered as a reasonable representation of reality.

For the second case (Mh<1) the qualitative behavior
is more complex. This is because (5) depends now on the
control, which in turn, depends on the state of the system.
Thus, the system is now governed by (6) only if x<x*.
If x>x* we have to set according to (4) the optimal
control u=0 and the resulting differential equation is

x$=rx&
*xy

1+*hx
,

(7)

y$=
*xy

1+*hx
&(M+m) y.

System (7) is a predator-prey model with Holling type II
response function. It has one non-trivial equilibrium E
which is positive provided

m<
1
h

&M,

see Appendix C. Trajectories spiral away from this equi-
librium with increasing amplitude and, consequently, the
dynamics is not persistent. If E is positive then it is in the
part of the space where x>x*.

Consider a trajectory which starts in the part of the
space where x<x*. This trajectory is governed by (6)
and it reaches in a finite time the line x=x*. When it
reaches the line x=x* it may either cross this line and
continue in the part of the space where x>x* or it may
start to move along the line x=x*. In Appendix C it is
shown that if the trajectory approaches the line x=x*
from the right, it cannot cross this line. Thus it can either
move along this line or leave the line and move back to
the part of the space where x>x*. This means that a
parasitoid can switch from pure feeding to pure parasitiz-
ing, but not from pure parasitizing to pure feeding.

Let us denote

y*=
r

*(1&Mh)
.

In Appendix C it is shown that trajectories that reach the
line x=x* will move along this line provided

y(t)> y*. (8)

Moreover, under this condition the u-value governing
such a trajectory is uniquely given by

u(x*, y)=
r+*y(hM&1)

*y(hM&1)
.

If a trajectory moves along the line x=x* the optimal
control is strictly between zero and one which leads to
the emergence of partial preferences for food in the
behavior of the parasitoids. We note that this formula
specifies explicitly the optimal control u also for the case
when the direct maximization of the function R(u) did
not give a unique value of the optimal control. Thus,
provided condition (8) holds, the dynamics along the line
x=x* is described by

x$=0,

y$=&my.
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This shows that the movement along the line x=x* can
only be downward.

To understand the behavior of (5) we start with a
particularly simple case when the handling time is set to
zero (h=0). Under this assumption (7) becomes the
Lotka�Volterra equation. Let us consider a trajectory
that starts at a point to the right of the line x=x* (see
Fig. 1). This trajectory follows a Lotka�Volterra cycle
given by (7). There are two possibilities. Either the whole
cycle is in the part of the space where x>x*, or it reaches
at certain time the line x=x*. In this case it moves
further on along this line until the point y* is reached. At
the moment of reaching y* it leaves the line x=x* and
starts to move along the Lotka�Volterra cycle of (7)
which passes through the point (x*, y*). If the trajectory
starts to the left of the line x=x* then the dynamics is
governed by (6) and the trajectory must necessarily reach
the line x=x*. There are two possibilities. Either it
reaches this line at a point above y* (see Fig. 1) and then
it moves down to the point y* where it starts to move
along the Lotka�Volterra cycle that passes through the
point (x*, y*), or it reaches the line x=x* below the
point y*. In this case it crosses this line and starts to
follow a Lotka�Volterra cycle, which at a certain
moment reaches the line x=x*. In this way this trajec-
tory reaches after a finite time again the Lotka�Volterra
cycle that passes through the point (x*, y*). Thus, all
trajectories of (5) do converge to the set bounded by the
Lotka�Volterra cycle which passes through the point
(x*, y*). This set is called global attractor. We note that
for zero handling time no partial preferences do appear
on the attractor, see Fig. 1.

FIG. 1. A solution of (5) plotted in space domain. For x>x*,
trajectories follow Lotka�Volterra cycles since the handling time was
set to zero. All trajectories of (5) which start outside the interior of the
large Lotka�Volterra cycle do converge to this cycle in a finite time.
Trajectories starting inside follow a Lotka�Volterra cycle given by (7).
Parameters: r=1, h=0, *=0.1, m=0.3, M=1.

FIG. 2. A solution of (5) plotted in space domain. Handling time
is non-zero. In this case the optimal behavior of parasitoids leads to the
persistence of the host�parasitoid dynamics. Parameters: r=1, h=0.1,
*=0.1, m=0.3, M=1.

The behavior of trajectories for the case h>0 is
similar, see Fig. 2. We will assume that the equilibrium E
is positive. Then for small h the trajectories are spiraling
outwards around the unstable equilibrium E and they
reach the line x=x* (see Fig. 2). When a trajectory
reaches this line it will move downward along it till it
reaches the point y*. At the moment of reaching y* it will
leave the line x=x* and it will move along another orbit
of (7) which reaches again the line x=x*. Thus, a limit
cycle appears. We note that for h>0 partial preferences
do appear, see Fig. 2.

We may compare the case when parasitoids behave
optimally with the case when they behave at random.
This would correspond to fixed value of the control u in
(3). It is well known that Holling second type functional
response has a destabilizing effect on population
dynamics. Solutions are unbounded and, consequently,
the system where parasitoids behave at random is not
persistent, see Appendix C.

DISCUSSION

In this paper, we explored how optimal time sharing
between searching for hosts and searching for food in
parasitoids affects the dynamics of the host�parasitoid
system. We chose to focus our study on the consumption
of non-host food, thus addressing the necessity to
incorporate an important part of parasitoid behavior in
a population model (Jervis and Kidd, 1995). The
behavioral choice we study is clearly different from the
choice that face parasitoids that choose between
host�feeding and egg-laying when they encounter a host
(Jervis and Kidd, 1986; Heimpel and Rosenheim, 1995).
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Indeed, the problem we studied concerns time allocation
between nutrition and reproduction, whereas host�feeding
parasitoids encounter a problem of resource allocation,
the resource being the host (Houston et al., 1992).
Furthermore, as hosts play a different role in the two
kinds of problems, the effect of these two behavioral
choices on population dynamics is of a different nature
(see Yamamura and Yano (1988), Kidd and Jervis
(1991) and Briggs et al., 1995 for studies on the influence
of host�feeding strategies on population dynamics).

In classical theory, dynamics of host�parasitoid
systems are represented by difference equations models
(Hassell and May, 1973). This theory concerns hosts and
parasitoids with discrete generations. Here we chose a
continuous time approach that allows us to derive
explicitly the control parameter corresponding to a
mixed strategy when parasitoids both parasitize and feed.
Therefore, our model addresses populations with over-
lapping generations. This situation, however, is widely
spread in nature for hosts and parasitoids (Murdoch et
al., 1987).

When generations overlap, it pays not only to have
many offspring, but also to have them early, because the
sooner they hatch, the sooner they may reproduce and
contribute to the spreading of their genotype (Giske et
al., 1993). Consequently, the instantaneous growth rate
of the number of genotype copies is an appropriate
measure of fitness (Sibly, 1991; Stearns, 1992).

We want to stress that the reason why maximization of
the fitness function R(u) does not give a unique control
is due the fact that the function R(u) is linear. This is the
result of the linearity of the mortality rate of parasitoids.
If we take another, nonlinear mortality rate we would get
an optimal strategy that might be uniquely determined.
However, our choice leads to a model that can be easily
studied from the qualitative point of view, while another
choice for the mortality rate could lead to a model that
would be difficult, if possible, to analyze.

The optimal strategy described here refers to the well-
known trade-off between survival and reproduction
(Sibly and Calow, 1983), which are the basic components
of fitness (Stearns, 1992). Here the trade-off is expressed
through the need for the animals to share their time
between feeding and searching for hosts. We represented
the trade-off by assuming that the mortality of the
parasitoids is low when they devote a large proportion of
their time to feeding. This assumption represents the fact
that animals that feed a lot, maintain a high level of
energy reserves and are healthier than animals that feed
less (Sirot and Bernstein, 1996). Other work addresses
this trade-off from the point of view of allocation of
physiological resources between reproductive effort and

survivorship of an individual (Horn and Rubenstein,
1984).

The main result of this study is that introducing a rule
of optimal behavior in the choice between host and food
searching leads to persistence for a system which
otherwise is non-persistent. The mechanism through
which this is achieved is that the host depletion rate is
maximum if hosts are abundant (when x>x* then the
parasitoids spend all their time searching for hosts), and
it is zero if hosts are scarce (when x<x* then the
parasitoids search only for food). This avoids the collaps-
ing of the host population. This effect is qualitatively
similar to that of other equilibrating factors, such as
parasitoids being less efficient as their density increases
(interference, Hassell and Varley, 1969, Hassell and May,
1973), or parasitoids reacting optimally to the charac-
teristics of the host population: parasitoids aggregating
on rich patches (Comins and Hassell, 1979), super-
parasitizing more in the presence of conspecifics
(Driessen and Visser, 1993), or neglecting low ranking
hosts when these are scarce (Mangel and Roitberg,
1992). The present work emphasizes the need to intro-
duce in population models all aspects of animal behavior
that can affect reproductive success, even if these
activities do not interact directly with reproduction.

APPENDIX A: OPTIMAL STRATEGY

We want to maximize

R(u)=\ *x
1+*hx

&M+ (1&u)&m

over the interval [0, 1]. Since R is a linear function in u
it achieves its maximum at the point 1 if it has a positive
slope or at the point 0 if it has a negative slope. If the
slope is zero, which happens when

x=x*=
M

*(1&Mh)
,

then R is a constant function and the optimal strategy is
not uniquely given. We note that for Mh>1, x* is
negative and R is increasing for every density of hosts x.
Thus, in this case the optimal strategy is always u=1. If
Mh<1 then, for x>x*, the function R is decreasing and
the optimal strategy is given by u=0 while for x<x* the
optimal strategy is u=1. Thus we get the optimal
strategy S(x).
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APPENDIX B: EXISTENCE AND
UNIQUENESS OF SOLUTIONS OF (5)

Existence of trajectories of (5) follows from Colombo
and Kr� ivan (1993). Let us denote

G1=[(x, y) # R2
+ | x<x*],

G 2=[(x, y) # R2
+ | x>x*],

G 0=[(x, y) # R2
+ | x=x*].

Let n=(1, 0) denote the normal vector to G 0, oriented
from G1 towards G 2. We denote by f 1(x, y) the right
handside of (5) in G 1 and by f 2(x, y) in G2. We note that
since f i, (i=1, 2) are smooth functions, uniqueness of
trajectories in G 1 and G2 follows from standard theorems
for differential equations. However, we have to prove
uniqueness of trajectories when they fall on G0. Denoting
by ( } , } ) the scalar product in R2 we get

(n, f 1(x*, y))=(n, f 2(x*, y))+
*x*y

1+x**h
.

Thus, at every point (x*, y) either

(n, f 2)�0

and consequently (n, f 1)>0 or

(n, f 2)<0.

We see that at each point of G0 at least one of the
inequalities (n, f 1) >0 or (n, f 2)<0 holds. These are
the conditions that ensure uniqueness of trajectories of
(5), see Theorem 2, p. 110 in Filippov (1988) (see also
Colombo and Kr� ivan, 1993).

Moreover, we see that (n, f 1) <0 and (n, f 2)
>0 cannot hold simultaneously. We use this result in
Appendix C.

APPENDIX C: QUALITATIVE
BEHAVIOR OF THE
HOST�PARASITOID SYSTEM

We use the notation introduced in Appendix B. We
will study the behavior of a solution of (5) when it falls
on G0. This behavior is given by projections of vector

fields f 1 and f 2 on the normal vector n. We have to
distinguish four possible cases:

(i) (n, f 1) >0, (n, f 2) <0 which means that
trajectories of (5) will stay in G0

(ii) (n, f 1) >0, (n, f 2) >0 which means that
trajectories of (5) will pass through G0 from G1 to G2

(iii) (n, f 1) <0, (n, f 2) <0 which means that
trajectories of (5) will pass through G0 from G2 to G1

(iv) (n, f 1) <0, (n, f 2) >0 which means that
trajectories of (5) which start on G0 will move either to
G1 or to G2,

see Kr� ivan (1996). From Appendix B it follows that the
case (iv) cannot happen. Under the condition (i) a trajec-
tory which hits G0 stays there as long as (i) holds. If
condition (i) holds we may compute directly the value
of u. In what follows we will assume Mh<1. Let us
assume that a solution of (5) is in the part of G0 where (i)
holds. Since in this case it cannot leave G0 it must hold

x$(t)=0.

This allows to compute explicitly u. We get

u(x*, y)=
r+*y(hM&1)

*y(hM&1)
.

For our model (5) we get on G0

(n, f 1) >0 always

(n, f 2) >0 if y<
r

*(1&Mh)
= y*.

(9)

We may describe the movement of trajectories of (5)
when they fall on G0 with respect to the y coordinate.
Due to (9) we see that cases (iii) and (iv) cannot hold.
Thus there are only two possibilities:

(i) if y*< y then trajectories of (5) stay on G0

(ii) if y< y* then trajectories of (5) cross G0 from G1

towards G2.

In G2 the dynamics of (5) is given by (7). This system
has the trivial equilibrium and one non-zero equilibrium

E=(E1 , E2)=\ M+m
*&h*(M+m)

,
r

*&h*(M+m)+ .
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The eigenvalues corresponding to the trivial equilibrium
are (&(m+M), r) and the eigenvalues corresponding to
the non-trivial equilibrium are

1�2(hr(M+m)

+- &4r(m+M)(1&h(m+M))+h2(m+M)2 r2),

1�2(hr(M+m)

&- &4r(m+M)(1&h(m+M))+h2(m+M)2 r2).

Thus we see that none of these two equilibria is locally
stable.

The equilibrium E is positive if

m<
1
h

&M.

Using Bendixon�Dulac criterion, see (Hofbauer and
Sigmund, 1984), it is possible to see that there are no
limit cycles in dynamics of (7). Let

B(x, y)=
1

xy
.

Then we get

�
�x

(B(x, y) x$)+
�
�y

(B(x, y) y$)=
h*2

(1+h*x)2>0.

It follows that (7) does not have a limit cycle, see
Hofbauer and Sigmund (1984). Thus the |-limit sets are
unbounded and consequently trajectories of (7) are not
bounded. Moreover, we note that E1>x* if E is positive.
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