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ABSTRACT

We present a theoretical study of individual response to the feeding efficiency—predation risk
trade-off in tri-trophic food chains where consumers (the species at the intermediate trophic
level) choose their activity level to maximize their fitness. We derive the optimal level of foraging
activity as a function of resource abundance and predation risk, and we study the long-term
effects of these behavioural traits on population dynamics. We compare different models
of population dynamics and we show that long-term predictions depend heavily on the model
description. In particular, linear functional responses lead to maximal foraging activity
of consumers at the population equilibrium, while Holling type IT functional responses can lead
to moderate or low levels of consumer activity at the population equilibrium.

Keywords: adaptive foraging, anti-predator behaviour, feeding efficiency—predation risk

trade-off, food chain, population dynamics, trait-mediated indirect interactions,
trophic cascade.

INTRODUCTION

It has been observed that in tri-trophic food chains consisting of resources, consumers and
predators, consumers often adjust their activity level (e.g. the speed of movement, use of
safe habitats, level of vigilance) in response to the density of predators and/or the density
of resources (for reviews, see Lima, 1998a,b; Bolker et al., 2003; Werner and Peacor, 2003;
Schmitz et al., 2004). For example, it is well documented that consumers respond to
predator presence by reducing their foraging activity (e.g. Milinski and Heller, 1978; Sih,
1980, 1986, 1987; Cerri and Fraser, 1983; Lima and Dill, 1990; Werner, 1992; Werner and
Anholt, 1993; Beckerman et al., 1997; Schmitz, 1998; Lima and Bednekoff, 1999; Peacor
and Werner, 2001; Bolker et al., 2003; Werner and Peacor, 2003). The effect of resources on
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consumer foraging activity is less clear. In the majority of experiments (reviewed in Werner
and Anholt, 1993), consumer activity decreased with increased resources. However, some
research has suggested the opposite pattern (Gilliam and Fraser, 1987; Holbrook and
Schmitt, 1988).

As behavioural traits are observed on a short-term time-scale, the question arises as
to whether they persist on a longer population time-scale, or if they attenuate without
influencing population dynamics and food web structure. Many recent theoretical studies
have predicted that adaptive behavioural traits influence population dynamics (reviewed
in Bolker et al., 2003). However, most of these studies have focused mainly on the effects
of adaptive diet selection in food webs comprising one-predator/two-prey and/or two-
predators/one-prey community module(s) (Tansky, 1978; Teramoto et al., 1979; Holt, 1984;
Gleeson and Wilson, 1986; Abrams and Matsuda, 1993; Fryxell and Lundberg, 1994, 1997;
Kiivan, 1996, 1997, 1998, 2003; Ktivan and Sikder, 1999; van Baalen et al., 2001; Grand,
2002; Krivan and Eisner, 2003; Kfivan and Schmitz, 2003). A general conclusion from these
studies is that adaptive foraging weakens exploitative and/or apparent competition (Holt,
1977), which allows for species survival when compared with a similar food web without
adaptive behaviour. These studies support the idea that animal behaviour has a strong
influence on food web dynamics and food web structure — that is, it does not attenuate at the
longer population time-scales.

Abrams (1984) considered a linear food chain where the intermediate species (consumers)
optimizes the amount of time spent foraging. He explored two particular cases: Case |
considers the Lotka-Volterra model in which the cost of foraging increases quadratically
with time, while the resource intake rate increases linearly. Case IT assumes that the resource
intake rate levels off as consumer foraging time continues to increase, while the cost of
foraging increases linearly with time. Based on these assumptions, Abrams showed that at
the population equilibrium there exists an optimal intermediate foraging time that
maximizes consumer fitness. Once again, this result supports the idea that short-term
behavioural traits persist at the longer population time-scales. However, two points should
be clarified: What is the mechanism that promotes these behavioural effects to influence
population dynamics, as there is no apparent competition in food chains? Second, does
Abrams’ conclusions also hold for models where costs and benefits scale at the same order
(e.g. linearly), or are derived from more mechanistic principles?

MODELS

We consider a tri-trophic food chain consisting of resources R, consumers C and predators
P. Population dynamics are described by the following general model

d—R— R|(1 R R)C
Tl U
C : .
S =i RO 1w, COP=meC (n

9P _ et P
dr (epfe(u, C)—my)
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where r and K are classical demographic parameters for the resource, f; and f are func-
tional responses, e and e, are the efficiency constants that describe how food is transformed
into new individuals, and m. and m, are per capita mortality rates of consumers and
predators, respectively. Parameter u represents the consumer activity level, which can have
several meanings depending on the particular system under study. For example, it can be the
proportion of time devoted to foraging, or the proportion of time an animal spends in the
food patch. Throughout the rest of the article, we will assume that the consumer activity
level is normalized between 0 and 1, and both functional responses are an increasing
function of the consumer activity level. This is because very active foragers find more prey,
but are also more exposed to predators.

Together with model (1) we assume that consumers choose their activity level so as to
maximize fitness. In this article, we assume that consumer fitness (1) is measured as the per
capita population growth rate:

1dC
_Ed_ ecfr(u, R) = fc(u, C) —mC—>m51x

Thus, for each fixed set of population densities we can compute the optimal consumer
strategy:

(i) If consumer fitness W is an increasing (decreasing) function of the consumer activity
level, then consumer activity should be at its maximal [u = 1 (minimal; u = 0)] level.

(i1) If consumer fitness W has a maximum at some intermediate consumer activity level
u* (0 £u* <1), then the consumer level of activity should be intermediate and given
by u*.

The necessary (derivative of the fitness function equals to zero) and sufficient (second
derivative of the fitness function is negative) conditions for this to happen are:

ﬁ(u* R) - fc( * C)——O and e, fﬁ(u* R) - ff( * C)—<O

Providing that population dynamics settle at an equilibrium, we can compute the
consumer activity level at this population equilibrium. This approach allows us to
determine the long-term effects of adaptive consumer behaviour on population dynamics.
The population equilibrium is located on the consumer isocline, which is given by the
following equation (W =0):

I =ecf)a_mc

¢ Je
By substituting this expression in conditions (i)-(i) above, we obtain the following
possibilities for the foragers’ activity level at the population equilibrium:

(A) If

ech me % a_fc
ecfe E)u Jdu
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for all «’s between 0 and 1, then at the equilibrium consumer activity will be at its maximum
(u=1). If the opposite inequality holds, then at the population equilibrium consumer
activity will be at its minimum (u = 0).

(B) If

ecfr— m(;:% %
ecfe ou/ du

for some u = u* (0 < u* < 1), then at the population equilibrium consumer activity will be at
an optimal intermediate level (u = u*).

In what follows, we use the above conditions to study the long-term evolution of the
consumer activity level at population equilibrium for some population models widely used
in the ecological literature.

The Lotka-Volterra model

Here we assume that functional responses in model (1) are linear with respect to densities,
which corresponds to the following Lotka-Volterra model:

dR R

—=rR (1 -— ) — Ax()CR

dt K

dC

E = (ecAr(W)R = A(u)P —mc)C 2

dpP
E = (epAduw)C—mp)P

where the consumer activity level u influences the encounter rate of consumers with
resources (1) and the encounter rate of predators with consumers (4.). Several functional
dependencies of the encounter rate on the activity level have been considered in the
literature (Yapp, 1955; Skellam, 1958; Werner and Anholt, 1993). In what follows, we will
consider two particular dependencies.

The linear case

Here we assume that the encounter rate of consumers with resources is a linear function of
consumer activity:

A1) = Ul ge 3)

Control parameter u# can be the proportion of time the consumer is actively searching
for resources in a homogeneous environment, or it can be the proportion of time the
consumer spends in the feeding patch if food is spatially distributed (in which case 1 —u
is the proportion of time the consumer spends in a refuge).

Equation (3) implies that consumers do not feed while they are inactive (one-patch
model) or when they are in the refuge (two-patch model). Similarly, we assume that
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consumers suffer a basic encounter rate with predators while inactive (or while in the
refuge), denoted by 4,.. While active (or while outside the refuge), the encounter rate with
predators increases linearly:

2 U) = thep + Ape “)
Because

ecfr—Mc _ ectidpcR —mc < ArcR _ % a_fc
ecfe ec(Apc+udep)C  AcpC Ou/ du

for every consumer activity level 0 < u < 1, then condition (A) holds. This implies that at
the population equilibrium, the consumer activity level will be maximal (i.e. u=1). To
understand this somewhat paradoxical result, we follow the dynamics of the system in
the resource—predator phase space (see Fig. 1). There are two lines in Fig. 1. The first line
(‘equal fitness’ line; dashed line) is the line along which the derivative of consumer fitness is
equal to zero:
p— eclre R
Acr
Above this line it is more profitable for consumers to be inactive because predation risk is
high when compared with resource level, while below this line it is better to be maximally
active.
The second line is the consumer isocline (dotted line in Fig. 1). It is given by:

__eclpe __me
Aep+ Ape dep + Apc

(®)

This line clearly describes the cascading effect because equilibrial resource and predator
densities are linearly proportional. An increase in predator equilibrial density is followed

2 4 6 8 10
R

Fig. 1. Population dynamics of model (2) with linear dependencies of encounter rates (3) and (4) on
the consumer activity level. The equal fitness line (dashed line) separates the part of the phase space
where consumers feed at the maximal speed (u = 1; lower triangular region) from the part of the phase
space where they are inactive (u=0; upper triangular region). Parameters: K=10, r=1, Azc=1,
Acp=1,2pc=1,ec=0.1,e,=0.05, m-=0.1, mp=0.02.
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by an increase in the resource equilibrial density. Note that this isocline lies in the lower
triangular part of the resource—predator phase space where consumer activity is maximal.
Thus, along the isocline we cannot simultaneously have rare prey and abundant predators.
This is why consumers are predicted to display maximal activity at equilibrium.

Figure 1 shows a typical trajectory of model (2). Above the equal fitness line, consumers
do not feed at all and resource density increases. The trajectory enters the region where it
pays consumers to feed on resources and the trajectory converges to the corresponding
equilibrium of the food chain.

Thus, the model predicts that although consumers switch their activity level between 0
and 1 as resource and predator densities change, these behavioural effects attenuate on the
population time-scale, and at the population equilibrium consumers will maximize their
activity level. In what follows, we explore the consequences of a non-linear dependency of
encounter rates on consumer activity levels.

The Yapp model

Yapp (1955; see also Skellam, 1958; Werner and Anholt, 1993) derived mechanistically a
formula for the encounter rate of a searching predator with a moving consumer. This
formula assumes that individuals move on a two-dimensional plane and the direction of
predator movement is randomly and uniformly distributed with respect to prey movement
direction:

Z=2rN\v* +

Here Z is the encounter rate of a prey individual with the predator, r is the perceptual radius
of the predator, N is the predator density, and v and u are average foraging speeds of the
predator and prey, respectively. In what follows, we re-scale this formula as

Z R,
Ac(u) = N: \//lcpuz + )»,,Cvz

where u and v are the activity levels of consumers and predators, respectively. Once again,
for simplicity we set v =1 as our analysis focuses on the consumer activity level rather than
on the predator activity level. We assume that resources are immobile, which implies that the
search rate of consumers for resources is given by formula (3).

Because

ecfr—me _ eclidgcR —me¢ - JreR N pe + Agpit® _ I /9fc
ecfe ecCNApe+ Aepit’ udcpC du/ du

for every consumer activity level (0 <u < 1), condition (A) holds. This implies that at the
population equilibrium, the consumer activity level is again maximal (u = 1).

We now show why this is so. The optimal consumer activity level as a function of resource
and predator densities (Appendix 1) is:

eclreRN Apc P> ec/pcR W
—/1 tpc t Acp

u*(R, P)= \/iCP(P *ep— € ArcR’) cp (6)

ecArcR -
1 it P <~ ~Nlpe+ Aep

”

Acp
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Fig. 2. Population dynamics of model (2) with the optimal consumer behaviour (6) (Yapp model).
Below the dashed line the consumer optimal activity level is maximal (= 1), while above this line
it is intermediate. Parameters: K=10, r=1, Age=1, Aep=1, Apc=1, ec=0.1, ¢, =0.05, m-=0.1,
mp=0.02.

Thus, if predator densities are low (below the dashed line in Fig. 2), it pays for consumers to
forage at maximum speed (# = 1) because their fitness increases with activity level. Similar to
the linear case, we observe that the consumer isocline (dotted line in Fig. 2) is always in
the lower triangular part of the resource—predator phase space. Thus, once again, at the
population equilibrium we observe a cascading effect (i.e. the linear relation between
predator and resource densities) expressed as

_ echre _ mc
Viep+2pe Ndgp+ Ape

()

which causes the population equilibrium to be in that part of the phase space where
consumer activity level is maximal.

Abrams model

Abrams (1984) considered a model where the encounter rate of consumers with resources
is a linear function of the consumer activity level, while the encounter rate of predators
with consumers increases quadratically with consumer activity. Thus, Ag(u) is given by
formula (3) and A(u) = Jpi’. Because

ecfr— Me _ echrcRu—me _ ArcR _ % a_fc
ecfe echepCii’ 2uChep Ou/ du

holds for

uk = ﬂ
ecRIgc
it follows that at the population equilibrium the consumer activity will be intermediate
(provided 0 < u* < 1). This is in agreement with Abrams’ conclusion but it does not agree
with our previous model, despite the fact that the encounter rate of consumers with
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predators increases with consumer activity in an accelerating manner in both cases. In
Abrams’ model, the consumer isocline intersects with the line (in the resource—predator
phase space) along which the derivative of consumer fitness (d W/du) equals zero, which is
the necessary condition for optimality. For Yapp’s model these two lines never intersect,
which excludes the possibility of an intermediate consumer activity level at the population
equilibrium.

The optimal consumer activity level as a function of resource and predator densities is
given by:

echrcR . echArcR
—— fP>——
w (R, P)=1 HerP Jer ®)
1 if P<—7—
2Acp

In contrast to the previous two models, the linear relation between the equilibrium resource
and predator density (i.e. the linear cascading effect) is lost because in the present case this
relation is curvilinear and is given by

ecireR
2AcpP

eclrcR
2AcpP

2
echre R—ACP< )P—mczo

for P> (eArcR)/(22¢p) (dotted line in Fig. 3). Thus, for this model we still observe a cascading
effect, but the relation between predators and resources is non-linear. Because of this
non-linearity, the equal fitness line intersects with the consumer isocline, which leads to the
intermediate consumer activity level at the population equilibrium.

10

Fig. 3. Population dynamics of model (2) with the optimal consumer behaviour (8) (Abrams’ model).
Below the dashed line the consumer optimal activity level is maximal (u = 1), while above this line
it is intermediate. Parameters: K=10, r=1, Age=1, Acp=1, dpc=1, ec=0.1, €,=0.05, m-=0.1,
mp=0.02.



Adaptive consumers in tri-trophic food chains 1071

Holling type Il functional response

Here we consider a food chain with the Holling type II functional response and linear
dependency of encounter rates on the consumer activity level. We will consider two types of
environment: patchy environments and homogeneous environments. We remark that such a
distinction does not make sense in the case of the Lotka-Volterra population dynamics
because both situations lead to the same model (2). However, when handling times are
positive, the two types of environments lead to different models.

Patchy environment

Here we assume that besides the foraging patch with resources there exists a refuge without
resources where consumers are protected from predation. In this setting, the parameter
u represents the proportion of time an average consumer spends in the foraging patch.
On average, the consumer density in the foraging patch is uC. Then, the corresponding
population dynamics in the food patch is described by the following model:

dR AgRuC
—=rR(1-RIK)—-———
dt 1+ AghgR
dc AgRu AcuP
——— eC - - mC C (9)
dr 1+ AghgR 1+ ichcuC
dpP AcuC
—=lep————————mp| P
dr ( 1+ AcuhC )
Because
ec/x—mc (1 + Cheul)ecArRu—mc(1 + hpdgR)) - JxR(1 + Cheud o) _9Ifr /9fc
ecfe echeCu(l + hxRAR) CAl +hgRlg)  Ou/ ou

for every consumer activity level, it follows from (A) that at the population equilibrium
consumers should spend all their time in the foraging patch.
The optimal consumer strategy is (Appendix 2):

ecAgR(1 + heAcC)

1 ifP<
e S+ hudelpR 10)
o it ps CheRULE heicO)
Je+ hudednR

Once again we see that for low predator densities the consumer should be maximally active,
while they should be inactive for high predator densities. However, the consumer optimal
strategy also depends on the consumer density due to positive handling times. It is a
straightforward exercise to show that the consumer isocline is always in the part of the
resource—consumer—predator three-dimensional phase space where consumer activity is at
its maximum. This is shown in Fig. 4 for a fixed equilibrial consumer density. Figure 4
shows that, despite the fact that the cascading effect is partly lost, because at the population
equilibrium the consumer isocline depends not only on resource and predator density but
also on the consumer density, the consumer isocline (computed at the predator equilibrium
density) is below the dashed line. It is thus again in the part of the resource—predator phase
space where consumer activity should be at its maximum.
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0 2 4 6 8 10

Fig. 4. Population dynamics of model (9) with the optimal consumer behaviour (10) (patchy
environment). Below the dashed line the consumer optimal activity level is maximal (u = 1), while
above this line it is intermediate. Parameters: K=10,r=1, Agc=1, Ap=1, Apc=1,e,=0.1, e, = 0.05,
me=0.1, mp=0.02.

Homogeneous environment

Here we assume a homogeneous environment where consumers are always exposed to
predation. At any moment, they may reduce their activity level, which will lower both their
feeding efficiency and the probability of being spotted by a predator. The population
dynamics is now described by the following model:

dR JxW)RC
—=rR(1 - RIK) - —2=—~_
dr 1+ Zx(u)hgR
dc J(u)R 2c(u)P
9C€_ (. r(u) A —m,) C (11
dr 1+ AghgR 1+ Ac(u)hC
dp e(u)C
—=lep————7—=-—mp| P
dr ( 1+ Aw)h C )

We assume that encounter rates are linear functions of the consumer activity level and they
are given by formulas (3) and (4).
Because condition (B) holds for

\/ec(mcﬂvcp + Ripcirdec = hpme))(heR(1 + Chedpc)dre = Chedep)
VR cplne
hp(ec = hgmc)Rage = Cechchep (12)

heme+ Cechedpe +

u* =

it follows that at the population equilibrium, the consumer activity can be intermediate
(provided 0 < u* < 1).

To study population dynamics, the optimal consumer strategy is computed explicitly in
Appendix 3 as a function of population densities. The optimal consumer strategy depends
not only on resource and predator densities, but also on its own density. In fact, because of
this dependence on its own density, the classical linear cascading effect (5) is partly lost.
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Fig. 5. Population dynamics of model (11) with the optimal consumer behaviour. Between the two
dashed lines the consumer optimal activity level is intermediate and given by (12). Below the lower
dashed line consumer activity is maximal (z = 1), while above the upper dashed line consumers are
inactive (u =0). Parameters: K=200, r=2, Agc=1, Acp=0.5, 1pc=0.5, e-=0.1, ¢,=0.6, h,=0.01,
he=0.01,m-=0.1mp=1.

In the region in Fig. 5 between the two dashed lines, consumer activity level is inter-
mediate. Because the population equilibrium which is located on the consumer isocline is in
this part of the phase space, the consumer activity level at this equilibrium is intermediate
too.

Figure 6 shows dependency of the stable interior equilibrium on the resource carrying
capacity. The left-hand panels assume that consumers are non-adaptive and their activity is
at maximum (u# = 1). We observe the classical increase in the abundance of trophic levels
across a resource productivity gradient (Oksanen et al, 1981). When all three species
co-exist, higher resource productivity leads to higher resource and predator densities
without influencing consumer densities. This is the classical trophical cascading effect. The
right-hand panels show the same model providing that consumers are adaptive. For low
resource carrying capacities, it pays for consumers to forage with maximum activity. As
predator density increases, foragers start to decrease their foraging activity, which results in
an increase in consumer abundance. In fact, decreased resource intake by consumers is
overcompensated for by decreased predation mortality due to the non-linear effects. Thus,
for high carrying capacities for resources, intermediate or even low levels of foraging
activity are predicted at population equilibrium. We note that the resulting population
dynamics may converge to a stable equilibrium level (as shown in Fig. 6), or that they may
fluctuate either regularly or irregularly due to the paradox of enrichment (Hastings and
Powell, 1991).

DISCUSSION

Recent empirical work (for reviews, see Lima, 1998a,b; Werner and Peacor, 2003) has
shown that consumers adjust their feeding effort adaptively to changing predation risk and
resource levels. However, most of these empirical studies are short-term experiments that do
not allow us to predict the effect of such behavioural traits on population dynamics and
food web topology. There are two possibilities: either these behavioural traits attenuate in
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Fig. 6. The dependence of population equilibrium densities of model (11) on the resource carrying
capacity. The left-hand panels assume inflexible consumers that forage at maximum speed (u=1).
The right-hand panels assume adaptive foragers that follow a strategy that maximizes their fitness.
Parameters: r =2, ho=0.01, 1z =0.01, Agc=1, A, =0.5, 1pc=0.5,e,=0.1, ¢, =0.6, m-=0.1, mp=1.
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time and produce little or no effect on longer time-scales (population, evolutionary), or they
are preserved on longer time-scales and influence food web dynamics. At present, this issue
is not resolved satisfactorily, because there is no empirical evidence.

Recent theoretical work (for a review, see Bolker ez al., 2003) on the effect of adaptive
foraging on predator—prey population dynamics showed that adaptivity makes apparent
competition (Holt, 1977) weaker, which leads to higher species persistence. Most of the food
webs considered in these studies comprised a two-resource/one-consumer community
module (Holt, 1995), where apparent competition is a strong driving force. Thus, the
general prediction from these studies is that animal behaviour has important population
dynamical consequences. In other words, short-term animal behaviour does not attenuate
at a longer, population dynamical time-scale. Similarly, Abrams (1984) showed that in
food chains where consumers trade-off foraging risk with resource intake, the consumer
activity level at the population equilibrium is intermediate. Once again, this suggests
that short-term animal behaviour has important consequences for population dynamics.
However, Abrams assumed that the predation risk and foraging benefits scale differently. In
particular, he assumed that either predation risk increases quadratically as a function of
foraging activity while the resource consumption rate increases linearly, or the resource
consumption rate levels off while the predation risk increases linearly. Thus, it is unclear if
Abrams’ conclusion holds also in cases where both predation risk and foraging rate scale
the same with consumer activity level, or when these functions are more mechanistically
derived.

A general condition for consumer activity to be intermediate at the population
equilibrium is that the consumer isocline intersects with that part of the species density
phase space where the short-term optimal consumer activity level (i.e. the activity level
predicted for a fixed population density) is intermediate. To investigate the likelihood of this
situation, we considered a series of models with increasing complexity.

For the Lotka-Volterra type model we considered two possibilities. The first model
assumed that predation risk and foraging rate increase linearly with increased consumer
activity. The second model used a more mechanistically derived relation between
consumer activity and predation risk (Yapp, 1955; Skellam, 1958), which implies that the
consumer foraging rate will increase linearly with increasing consumer activity, but the
predation risk increases with predation risk in an accelerating way. Both these models
predict that at the population equilibrium, consumer activity should be at its maximum.

The first model considers type I functional responses and assumes that the encounter rate
between consumers and predators increases linearly with consumer activity. It predicts
that consumers will switch from maximum activity to total inactivity, depending on the
resource—predator balance. Consumers will be inactive when predators are abundant and
resources are scarce. Otherwise, they will accept that foraging represents a certain risk of
predation, which increases with resource density. In accordance with this prediction,
experimental work shows that one can increase foragers’ tolerance to predation risk by
increasing food abundance (Abrahams and Dill, 1989). However, these behavioural effects
attenuate at a longer population time-scale because at the population equilibrium consumer
activity is at its maximum.

Qualitatively similar results hold for the second model, where we introduce a more
realistic link between consumer activity and exposure to predators. The only difference is
that, for intermediate predator and resource abundance, consumers will display inter-
mediate activity. However, at the population equilibrium, we will again observe maximal
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activity for consumers. Thus, our models predict that if consumers modulate their activity
as a response to resource availability and predation threat, this is unlikely to have an
influence on the equilibrium population densities in food chains.

We next considered two models with the Holling type II functional response, which gives
a more realistic measure of foraging success. This led to separate models for the case where
consumers can lower predation risk by reducing their foraging activity on the food patch
(homogeneous environment), and the case where consumers avoid predators by occupying
a refuge (heterogeneous environment). In the case of heterogeneous environments,
predictions agree with those of the first models. For fixed population densities, consumers
will use the refuge when prey are scarce and predators are numerous. These results support
the conclusions of many experimental studies (Werner et al., 1983; Kotler et al., 1993; Lagos
et al., 1995; Abramsky et al., 1996; Downes and Shine, 1998). However, at the population
equilibrium consumers spend all their time in the feeding area, which corresponds to
maximal consumer activity.

In the case of homogeneous environments, predictions are different from the previous
three models because at the population equilibrium consumer activity can be intermediate
(Fig. 6). This particular conclusion comes from the non-linearities in the Holling type 11
functional response. At very high resource levels, decreasing the level of activity has very
little effect on feeding rate, but significantly decreases predation risk. Thus, animals prefer
to be less active. Since this effect only appears for high densities of resources, it will be
observed at the population equilibrium when resource carrying capacity is high (see Fig. 6).
Thus, if the environment is very productive, consumers are expected to display only
moderate activity at the population equilibrium. This is a major difference from the
previous models, which may also explain some contradictory results with respect to
consumer behaviour under predation risk (Lima and Dill, 1990).

In general, our models predict that for fixed population densities, consumer activity
should be high when resource density is high when compared with predator density, while
consumers should be inactive when predator density is high when compared with
resource density. For some intermediate predator and resource densities, consumer
activity can be intermediate, which depends on the particular model. The trophic cascading
effect in food chains with linear functional responses predicts that predator and consumer
equilibrial densities are positively correlated (Oksanen ez al., 1981). Thus, it is impossible in
a food chain to have a high equilibrial predator density and low equilibrial resource density,
or vice versa. An increase in resources due to enrichment leads directly to a proportional
increase in predator density. Thus, the cascading effect predicts that at the population
equilibrium, resources will always be high when compared with predator equilibrium
density, which is the condition under which consumer activity should be maximal. Thus it is
the cascading effect which diminishes the short-term behavioural effects at the population
time-scale. However, the linear relation (cascading effect) between resources and predators
can be weakened by various non-linearities. This happens in our model with the Holling
type II functional response, where at the population equilibrium we do not observe the
classical trophic cascade, because the relation between predator and resource densities is
non-linear. Similarly, in Abrams’ (1984) model, the relation between resources and predator
densities is also non-linear, which is the cause of the observed intermediate consumer
activity at the population equilibrium.

We have shown that indirect interactions in food webs may either promote or dilute the
effect of observed short-term foraging behaviours on a longer, population time-scale. While
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apparent competition in community modules with more resources is an important driving
force promoting a short-term effect on the population time-scale, the linear relation between
predator and resource population densities (cascading effect) seems to dilute short-term
behavioural effects on a longer, population time-scale. Thus, experimental ecologists should
consider these indirect effects carefully, to predict population dynamical consequences of
short-term experiments.
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APPENDIX 1: THE OPTIMAL CONSUMER STRATEGY FOR THE LOTKA-VOLTERRA
MODEL WHEN THE ENCOUNTER RATE WITH RESOURCES IS A NON-LINEAR
FUNCTION OF ACTIVITY

The derivative of the fitness function 1/CdC/d¢ is:

uicpP

ecRIpc— 7\/27
Aep + Ape

At the point of local maxima, the derivative equals 0, which gives

eC},RcR\/Z
u:\/ 2 2.2 p2
Acp(P Acp— €clpcR)

The second derivative of the fitness function is:

s
Pleplpc

) 1 \32
(U Acp+ Apc)

Thus, provided u is between 0 and 1, it is the point where the fitness function maximizes. This is

so, provided predation risk is high enough, i.e. P>ecArcRIAcsN ), + Agp. For smaller predator
densities, the fitness function is maximized when u = 1.

APPENDIX 2: THE OPTIMAL CONSUMER STRATEGY FOR THE PATCH MODEL (9)

The derivative of the consumer fitness with respect to consumer activity is:

ecR(1 + Chetid )’ Ag — P(Ac+ heRAAR)
(1 + Cheud o)’ (1 + hpRAR)
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Solving for a local extremum on the interval [0, 1] gives one candidate solution:

NP1 +heRip) 1
VecRiRChNie — Chele

u=

However, the second derivative at this point is positive, which implies that the fitness function
attains its local minimum. Consequently, on the interval [0, 1] the consumer fitness function
achieves its maximum either at O or at 1. Trivial algebra shows that the maximum is given by formula

(10).

APPENDIX 3: THE OPTIMAL CONSUMER STRATEGY FOR MODEL (11)

The derivative of the consumer fitness with respect to consumer activity is:

ecR(1 + Cho(uhcp+ 2pe)) Ane — Prep(1 + hpRutd o)
(1 + Che(hep + Acp)’(1 + hgRud o)

Solving for a local extremum on the interval [0, 1] gives one candidate solution:

 VPigp—NecRigc(l + Chedpe)
ChedepNeeRige — hidae RN Picp

u

The second derivative at this point is:

2RIE(ChNeddn = hl PRI 2¢
\/e(TP(hRR(l + Ch(,‘)"P(‘)ARC - th(,'/l(,'l’)3

Provided
heR(1 + Chelp)dge — Chedep <0

then the consumer fitness achieves its local minimum at the above point and it maximizes either at 0 or
at 1, which gives

ecR(1 + Cheldpc)(1 + Chc(hep+ Apc))ire

1 ifP<
u*(R, C, P) = Jep+ hpRocpine
. ecR(1 + Cheldpc)(1 + Che(Aep+ Ape))Are
0 ifP>
j'CP + hRRj'CPj'RC

If

haR(1 + Chedpe)ige —=Chedep > 0
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then the consumer fitness achieves at the candidate point its maxima, provided the point is between
0 and 1. This leads to

VPicy ~NeRind1 + Chichne) - ecR(1L+ Cheliey + 20) hnc _
ChedepNecRire — hdae RNPAcp Ael(1 + hpRige)’
ecR(1 + Ch(?APC)z/{RC
u*R, C, P)= -
Acp
0 £ ps ecR(1 + Chedpe) e
;“CP
1 FP< ecR(1 + ChlAep+ /A“PC))Z/{RC

A1+ hgRige)’






