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ABSTRACT: We present a theoretical study of habitat selection strat-
egies for two species that compete in an environment consisting of
two different habitats. Our fitness functions are derived from the
Lotka-Volterra competition equations, and we assume that individ-
uals settle in the habitat in which their fitness is maximized. We
derive an ideal free distribution across the habitats for both species.
Our model provides analytical and graphical descriptions of indi-
vidual habitat selection behavior, isolegs (the boundary lines sepa-
rating regions where qualitatively different habitat preferences are
predicted), and spatial population distributions. Our analysis reveals
complex isolegs, several novel patterns of habitat distribution, and
even situations where spatial strategies, as well as the relative abun-
dances of coexisting species, exhibit only local stability. Hence, dis-
tributions of competing species may be determined not solely by
their respective densities but also by the order of colonization. This
happens, however, only for extreme levels of interspecific competi-
tion. In the situation where one competitor species is dominant over
the other, our model predicts isolegs that qualitatively agree with
observed behavioral patterns. However, our model predicts a greater
variety of possible situations than has been previously described.
Finally, we analyze the influence of habitat selection behavior on
species isoclines and verify that increasing interspecific competition
leads to habitat segregation.
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Strategies for habitat selection have a strong influence on
individual success because abundance and accessibility of
resources are discontinuous in natural environments. In
addition, variations in habitat quality influence local ag-
gregations and dispersal of both intraspecific and inter-
specific competitors (Werner and Hall 1979; M’Closkey
1981; Pierotti 1982; Bowers et al. 1987; Aho et al. 1997;
Robinson and Sutherland 1999). That is why individual
habitat selection behavior is influenced by resource avail-
ability and density of competitors and why individual be-
havior and populations interactions are tightly coupled
(Hairston 1980; Ives 1988; Morris 1988; Brown and Pav-
lovic 1992; Wilson and Yoshimura 1994; Rosenzweig 1995;
Sutherland 1996; Rosenzweig and Abramsky 1997).

In this article, we focus on two species that are com-
peting for resources in a heterogeneous environment con-
sisting of two different habitats (Pulliam and Mills 1977;
Werner and Hall 1979; Howard and Harrison 1984; Pimm
et al. 1985; Brown 1988; Abramsky and Pinshow 1989;
Abramsky et al. 1990; Dooley and Dueser 1996; Morris et
al. 2000). Our model predicts how each species should be
distributed across the habitats; it assumes that each in-
dividual selects its habitat in an adaptive way, as a response
to environmental heterogeneity and competition imposed
by conspecific and heterospecific animals. To model the
effects of intra- and interspecific competition on individual
success, we assume that individual fitness linearly decreases
with increasing densities of intra- and interspecific com-
petitors (Pimm and Rosenzweig 1981). We assume that
both species are distributed across habitats so that no in-
dividual can increase its fitness by changing habitat choice
and that this distribution is stable with respect to small
spatial disturbances. Such a distribution is a generalization
of the classic ideal free distribution (IFD) for a single
population (Fretwell and Lucas 1970; Rosenzweig 1981).
While derivation of IFD for a single population is a
straightforward task, it is more complicated for two or
more species because the distribution of one species in-
fluences the distribution of the other species, which, in
turn, affects the distribution of the first species. Thus,
simultaneous derivation of IFD for two species requires a



game theoretical approach (Maynard Smith 1982; Thomas
1986; Hofbauer and Sigmund 1998).

We represent these distributions graphically in the
population-density phase space by plotting isolegs, which
are the lines separating regions where qualitatively differ-
ent habitat preferences are observed (Rosenzweig 1979,
1981, 1991). In the literature, the shape of isolegs is often
assumed to have some a priori functional form (linear,
piecewise linear, or nonlinear) that is then fitted to existing
data (Rosenzweig 1986; Rosenzweig and Abramsky 1986;
Abramsky et al. 1990). In contrast, we derive functional
shape of isolegs from the assumption that both species
follow IFD across the habitats.

We study both the situation in which both species show
initial preference for the same part of the environment
(Abramsky et al. 1990; Ziv et al. 1995) and the situation
in which both species prefer different habitats (Morris
1996; Morris et al. 2000). We also explore the situation in
which one species is dominant over the other, and this
has been extensively studied in the field (Lawton and Has-
sell 1981; Connell 1983; Schoener 1983; Morin and John-
son 1987).

Our analytical approach allows us to determine precisely
the shape and position of isolegs and to discuss in more
detail the effect of competition on habitat selection. We
show that it may not be possible to predict a unique IFD
for each set of species densities when interspecific com-
petition is strong compared to intraspecific competition.
In this case, isolegs are not well defined in certain regions
of species-density phase space. Thus, in highly competitive
situations, the actual distribution of both species will de-
pend on the order of species arrivals.

Our objective is to predict distribution of each species
in each habitat without necessarily assuming that popu-
lation densities settle at an equilibrium. This is because
individuals are likely to experience a wide range of den-
sities in the field, as a result of, for example, accidental or
seasonal changes (Pimm et al. 1985) or migration (Terrill
1990). However, it is also important to examine the effects
of habitat selection strategies on the dynamics of the com-
munity (Pimm and Rosenzweig 1981; Morris et al. 2000).
In our study, we evaluate Lotka-Volterra population dy-
namics for two competing species in a two-habitat envi-
ronment, and we assume that species are distributed ac-
cording to the IFD. We show that adaptive habitat choice
leads to piecewise linear isoclines and that habitat segre-
gation occurs when interspecific competition exceeds a
certain threshold.

Distribution of a Single Population

First, we consider a single population living in an envi-
ronment consisting of two spatially segregated habitats
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with specific demographic parameters (ry, and K}, for hab-
itat 1 and r,, and K, for habitat 2, respectively). Here r
stands for the per capita intrinsic population growth rate
and K for the carrying capacity of the habitat. Following
Fretwell and Lucas (1970), we assume that animals move
freely from habitat to habitat instantaneously and without
cost.

Let N, and N, be the population densities in habitats 1
and 2, respectively, and n and 1 — n be the respective
proportions of animals in habitat 1 and 2. Then N, =
nNand N, = (1 — n)N, where N denotes the overall pop-
ulation density. Note that n reflects the preference of an
average animal for habitat 1. Habitat preference (n) has
two interpretations. At the individual level, it is the pro-
portion of time that an average animal spends in habitat
1. At the population level, it is the proportion of the total
population making use of habitat 1. Thus, at the individual
level, habitat preference (n) represents the individual strat-
egy for habitat selection. In this model, we make no as-
sumption concerning the level of spatial heterogeneity.
Thus, our derivations apply to particular environments in
which there are two habitats or resource patches that are
segregated spatially. But our conception can be extended
to environments in which two habitat types are spatially
juxtaposed over the landscape as a mosaic of habitats.
However, in fine-grained environments, it may be prac-
tically impossible for animals to visit one type of habitat
only (Morris 1999). Following Fretwell and Lucas (1970),
we require IFD to satisfy two conditions: (1) no individual
can unilaterally increase its fitness by changing its strategy,
i.e., by changing its habitat preferences, and (2) the spatial
distribution is stable against small fluctuations in the spa-
tial species distribution. Thus, in our setting, IFD is noth-
ing other than the Nash equilibrium (Thomas 1986; Hof-
bauer and Sigmund 1998). In the framework of game
theory, condition 2 is the “stability condition” that de-
scribes stability of the Nash equilibrium against fluctua-
tions in the spatial species distribution. We remark that
for a single population, the two conditions are those that
define evolutionarily stable strategy (Hofbauer and Sig-
mund 1998).

We assume that fitness is measured by the per capita
growth rate of the population. Individual success is then
a function of overall population density (N) and individual
strategy (n). If we assume that population growth is lo-
gistic, fitness of an individual in habitat 1 is

W N} = dNjdt _ Nl(

N,

and in habitat 2,
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We assume, without loss of generality, that the intrinsic
per capita growth rate in habitat 1 is higher than in habitat
2 (ry, > ry,). This means that at low densities, when in-
traspecific competition is weak, individual success is higher
in habitat 1 than in habitat 2. Following Morris (1988),
we will say that habitat 1 is quantitatively better than hab-
itat 2, for example, because resource standing crop is
higher there. Hence, at low population densities, only hab-
itat 1 will be colonized (n = 1; fig. 1). When population
density is high, a high level of competition in habitat 1
can make this habitat less profitable than habitat 2. So
when density exceeds a certain threshold, it pays for an
animal to share its time between habitat 1 and the poorer,
but less crowded, habitat 2. The density threshold N*,
where animals should switch from specialist to generalist
behavior, satisfies

WL, N*) = W,(1, N"),

which gives the minimal overall population density above
which both habitats are occupied

_ KNl(er - er)

In,

N* )

Since N* < K, animals will begin to colonize habitat
2 before the carrying capacity in habitat 1 is reached, and
colonization starts sooner when the difference between
habitat intrinsic growth rate parameters is smaller. When
population density (N) exceeds the switching threshold
(N™), IFD theory tells us that animals should share their
time between habitats 1 and 2 in such a way that fitness
remains the same in both habitats, that is,

Wi(n, N) = W,(n, N),
which yields animal distribution in habitat 1:

— erKNl KNIKNz(rNI B er)
n= + . )
Ky, Ky, Ky, + v Ky)N

In figure 1, IFD (#n) is plotted as a function of overall
population density (N). Figure 1 shows that, above the
switching threshold N, the proportion of animals in hab-
itat 1 is a decreasing function of the overall population
density. These computations allow us to derive for our
system a rule analogous to the input-matching rule (Parker
1978; Sutherland 1996) that relates the ratio of resource
input rates to the ratio of consumers in corresponding

0 5 10 15 20 25 30
N* Ky + Ky, N

Figure 1: Ideal free distribution (IFD) of a single population as a function
of its overall density N. Preference n for habitat 1 represents the pro-
portion of the population in this habitat. Values of N = K, + K}, and
n = K /(Ky, + Ky,) correspond to the population equilibrium density.
A assumes that habitat 1 is qualitatively better than habitat 2 (ry /Ky, <
ry,/Ky,), in which case habitat 1 is the preferred habitat at high population
densities. B assumes that habitat 2 is qualitatively better than habitat 1
(1 /Ky, > 1,/ Ky,), in which case the preference for habitat 1 at low pop-
ulation densities (ry, > ry,) switches to preference for habitat 2 at high
densities. Parameters in A: ry, = 3, ry, = 2, K, = 6, K, = 3. Param-
eters in B: ry, = 3, ry, = 2, Ky, = 3, K, = 6.

habitats. This rule was originally derived for “continuous
systems” in which resources are immediately consumed
upon arrival (Parker and Stuart 1976; Parker 1978; Mil-
inski and Parker 1991) and extended to the case of nonzero
standing crop (Lessells 1995; V. Ktivan, unpublished man-
uscript). Our model does not explicitly incorporate re-
source dynamics because resources are treated as a com-
ponent of the environment reflected by model parameter
values. Thus, habitat value depends solely on these pa-
rameters and the number of competitors present. The cor-
responding matching rule is given by

n _ KN, [KNz(er - TNZ) + rNZN ]
Ky [Ky(ry, — 1) + ny N1

2

®)

1—n

As population density N reaches high values, resources



will be consumed more quickly, and the matching rule
simplifies approximately to

n_ v, /Ky,
Ky, ’

4)

1—n ry

The ratio —r,,/Ky; is the slope (with respect to animal
abundance) of the fitness function in habitat 7 (i = 1, 2).
Hence, the habitat with the smallest /K value is the one
where the per capita effect of competition is weakest. For-
mula (4) predicts that it will be preferred at high consumer
densities; that is, the proportion of population in this hab-
itat will be higher than that in the other habitat. Quali-
tatively, there are two possibilities: either r /Ky <
1y,/Ky, and then habitat 1 will be preferred at both low
and high densities (fig. 1A) or ry /Ky, > 1, /Ky, and then
habitat preferences will switch from habitat 1 at low den-
sities to habitat 2 at high densities (fig. 1B). This is because
the originally more productive habitat 1 is more strongly
depreciated at high densities of consumers, for example,
because of lower renewal rate of resources (Holt 1985;
Morris 1988). These different modes of population reg-
ulation were considered by Morris (1988). Following Mor-
ris, we say that habitats differ quantitatively if they have
different r,; values and qualitatively if they have different
1vil Ky: values. These conclusions have an important bear-
ing for the case of two competing populations, as we will
see.

Consequences for Population Dynamics
of a Single Species

Here we consider the dynamics of an isolated population,
still assuming that animals disperse across habitats 1 and
2 according to the IFD, as described above. Assuming that
animals migrate fast enough between habitats and that
population growth in either habitat is logistic, correspond-
ing overall population dynamics are

7 Ty 1 K. Ty, n Ko, .

Below the threshold (N*), animals prefer habitat 1, and
population dynamics are described by the above differ-
ential equation, where we set n = 1. Above the threshold,
animals use both habitats, and population dynamics are
described by the above model, where we set n given by
formula (2). Thus, overall population dynamics are de-
scribed by a piecewise logistic equation:
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For any given initial population density, the total popu-
lation reaches equilibrium abundance, K, + K, at which
the population density in either habitat equals the carrying
capacity of that habitat. The matching principle (3) eval-
uated at the equilibrium states that

Distribution of Two Competing Species

Now we consider two different species, with total abun-
dances N and P, respectively, in a two-habitat environ-
ment. We have N = N, + N, and P = B + P, where N,
and P, are the respective abundances of species N and P
in habitat 1. Following the model given for a single pop-
ulation, we assume that individual fitness decreases linearly
with increasing densities of both conspecific and hetero-
specific competitors.

Interspecific competition is described by competition
coefficients o and 3, which model the effect of the second
species on the first species and of the first species on the
second species, respectively. If n and 1 — n are the pro-
portions of species N in habitat 1 and habitat 2, and p
and 1 — p are the proportions of species P in habitat 1
and habitat 2, respectively, then animal fitness in either
habitat is

nN apP

WNl(nr p) N) P) 1

>

(1—nN a(l — p)P
Ky,

Wi, p; N, P) = 1 |1 —

>
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(here and in what follows, the first subindex refers to

population while the second denotes the habitat). Thus,

Wj(n, p; N, P) is the fitness for individuals belonging to

species i (i = N, P) in habitat j (j = 1, 2) for population
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distributions # and p and overall population densities N
and P. Fitness of an animal now depends not only on the
distribution of its own population but also on the distri-
bution of the other population. Without loss of generality,
we assume that at low species densities the first habitat is
better for the first population than the second habitat,
which means that ry > 7.

Now we derive joint IFD for the two species. Because
we defined IFD as the Nash equilibrium, we can follow
standard methodology for computation of Nash equilibria
(Thomas 1986). A method for computing this is to de-
scribe the single IFD of the first species for any distribution
of the second species and conversely. The intersection of
these two curves in species distribution space defines the
possible candidates for joint IFD (Thomas 1986). We do
this now. For a fixed strategy p of the second species, the
strategy of the first species is to distribute across habitats
in such a way that no individual of this species can increase
its fitness by moving to the other habitat. As we saw earlier,
this means that either all individuals of the first species
are in the habitat that provides them with a higher per
capita growth rate (habitat 1) or the population distributes
across the two habitats in such a way that per capita growth
rate in both habitats is the same, that is,

WNl(na P; N) P) = WNz(n) p; N7 P)' (6)

This allows us to compute IFD of the first species n(p) for
every distribution p of the second species (solid line, fig.
2 and app. A). Similarly, we compute IFD of the second
species p(n) for each possible distribution #n of the first
species (dashed line, fig. 2 and app. A).

These curves intersect generically either at one or at
three points (fig. 2). Qualitatively, there are two possibil-
ities. Either there is no interior intersection point, and in
this case there is only one IFD, for which one or both
species specialize in one habitat only (fig. 2a-2g), or an
interior intersection point exists, which we denote by
(n*, p*). In the latter case, there may be two boundary
intersection points (fig. 2i~2g) or no boundary intersection
point (fig. 2h). For complete classification of all possibil-
ities listed in figure 2, see appendix A. Some of the in-
tersection points are unstable with respect to small fluc-
tuations in the spatial distribution, as is graphically
demonstrated in figure 2x. These unstable equilibria are
denoted by open circles (fig. 2i~2q). In other words, such
distributions are ecologically implausible because they are
not persistent with respect to accidental changes in species
spatial distributions. Thus, only those intersection points
that are stable with regard to small spatial perturbations
define IFDs.

We remark that the interior intersection point is an IFD
(i.e., stable) provided that at this point the slope of the

solid line (that describes strategies of the first species;
—N/[aP]) is smaller than is the slope of the dashed line
(that describes strategies of the second species; —BN/P; see
case h of fig. 2 and app. A). Therefore, a necessary con-
dition for the interior intersection point to be an IFD is
of} < 1, which represents weak interspecific competition.
If the opposite inequality holds, then the interior inter-
section point cannot be an IFD because it is unstable with
respect to small spatial perturbations. In this case, no IFD
would keep the two species distributed across both
habitats.

If there are two IFDs, we may ask which one will be
chosen, realistically. Consider the case of colonization of
two empty habitats by two species. The species that arrives
first will split across the two habitats, following the rules
for a single population. When the second population ar-
rives, both populations will redistribute to a new IFD that
is now uniquely determined by the distribution of the first
population. We call this situation the “priority effect” be-
cause the resulting IFD depends on the distribution of the
population that arrived first. For example, consider the
situation depicted in figure 21, and assume that population
N arrived before population P. Depending on its total
abundance, population N will distribute across the two
habitats following strategy described by equation (2). Fol-
lowing this distribution, the corresponding IFD when the
second species is introduced is either (1,0) or (0, 1) (fig.
2n). Thus, without knowing “who arrived first,” we cannot
uniquely determine the corresponding IFD.

In appendix A we expose how possible distributions are
derived for all sets of population densities (N, P). The map
that associates the corresponding IFD to species density
(N, P) is called the habitat selection graph (Abramsky et
al. 1990). As discussed above, this graph, or map, may be
multivalued; that is, for certain population densities there
are two possible spatial distributions. For each species and
for each set of population densities there are the following
three possible IFDs: first, n (or p) = 0 and the species
visits only habitat 2; second, 0 < #n (or p) <1 and the spe-
cies visits both habitats; and third, n (or p) = 1 and the
species visits only habitat 1. The curves that separate the
above three regions are called isolegs (Rosenzweig 1979,
1981, 1986, 1991; Pimm et al. 1985). For each species there
are two isolegs. For the N species, the first isoleg, which
delimits the part of the space in which it specializes in
habitat 1, is called 0% isoleg, and we denote it as N;* (solid
line, figs. 3—5). The second isoleg, which delimits special-
ization in habitat 2, is called 100% isoleg, and we denote
it as N;" (long dashed line, figs. 3, 4). In the region between
these two isolegs, species N visits both habitats. Similarly,
for P species we have 0% and 100% isolegs denoted as
P (dashed line, figs. 3-5) and P (dotted line, figs. 3-5),
respectively.
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Here we briefly survey general properties of isolegs for
our model. All isolegs are piecewise straight lines, and their
respective position depends on the values of the param-
eters. Our analysis shows that, theoretically, isolegs cannot
be uniquely defined due to the multivaluedness of the
habitat selection map. However, this can happen only pro-
vided the relative strength of the interspecific competition
with respect to intraspecific competition is very strong (i.e.,
o3 > 1). In this case, nonuniqueness in the strategy only
concerns certain regions of the density space (those
bounded by the solid quadrangle in figs. 3E, 4E) where
two alternative distributions are predicted. The Mathe-
matica III notebook that draws the habitat selection map
is available from the author on request. Here we graphi-
cally analyze habitat selection maps along a gradient (de-
scribed by parameter o) that measures the strength of in-
traspecific competition relative to that of interspecific
competition. Fitness functions are then

noN '5(1 — o)P
Wy, ps N, P) = 1y 1—L_M
1 1 KNl KNl

>

Wi, ps N, P) = er(l (1 -moN
Ky,
_ 2= pl=ob
Ky,

>

M = r”‘(l - % ) MlKi_O)N) )

1

W, (1, p; N, P) rpz(l _ @ =poP

K,

_ B0 =md—-0oN
K, )

For ¢ = 0, fitness functions given by equation (7) describe
a system with interspecific competition only, while for
o = 1, they describe a system with intraspecific compe-
tition only. In what follows we will analyze graphically the
positions of isolegs with respect to decreasing values of
parameter o (figs. 3, 4). By doing so, we progressively

increase the relative level of interspecific competition, and
we evaluate its effect on individual habitat selection be-
havior. The numbers given in figures 3 and 4 describe the
joint species IFD. Each couple of numbers describes pro-
portion of species N and P in habitat 1. Values for p(0),
p), n(0), n(1), n*, and p* are given explicitly in appendix
A.

The Shared-Preference Case

Here we consider the case in which both species prefer
the same habitat at low density, which happens when the
growth rate parameters for both species are higher in the
same habitat (r, >, and 7, > r,). When only intraspe-
cific competition is considered (¢ = 1; fig. 3A), the two
species do not interact, and each of them distributes fol-
lowing the rules given for a single isolated population.
Thus, we observe only 0% isolegs N," and B* because
neither of the two species ever occupies exclusively the
poorer habitat 2, as we showed for the single species case.
Isolegs are straight perpendicular lines. As o decreases from
1, interspecific competition increases, and isolegs N;* and
P” become piecewise linear lines with sharp angles at the
intersection point (fig. 3B). The fact that isolegs change
direction when crossing each other is an important and
ubiquitous prediction of our model. The reason is that
when one species qualitatively changes its distribution
(e.g., from inhabiting only one habitat to inhabiting both
habitats or vice versa), the other species must redistribute
too. This is reflected in the change of the slope of its isoleg.
Consider, for example, the case described in figure 3B.
Isoleg N;* (solid line) gives us, for each possible density of
species P, the density threshold above which members of
species N choose to spend some time in the poor part of
their environment (i.e., habitat 2). Below their own 0%
isoleg B* (dashed line), members of species P visit only
habitat 1. As density P increases, the suitability of habitat
1 decreases for animals of species N, and so this species
will begin to visit habitat 2 at lower intraspecific densities
(see the orientation of isoleg N" in fig. 3B below the dashed
line). Above their own isoleg B*, animals of species P visit
both habitats, more equally distributing interspecific com-
petition among habitat 1 and 2 for species N. In other
words, interspecific competition now increases more

Figure 2: Graphical approach for computation of joint IFD for two competing species. Here n(p) (solid line) is the IFD of species N for each possible
distribution p of species P, and p(n) (dashed line) is the IFD of species P for each distribution # of species N. The intersections of these two piecewise
linear lines define those strategies for both species that are optimal in the sense that no other strategy can achieve unilaterally higher fitness in this
population. The equilibrium points denoted by open circles are unstable with respect to small changes in population densities. Those denoted by
filled circles are stable, and they define IFD. a—q correspond to all qualitative cases for IFD positions that are listed in appendix A.
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Figure 3: Habitat selection maps for the shared-preference case. 0% (heavy solid line) and 100% (heavy long-dashed line) isolegs for species N and
0% (heavy dashed line) and 100% (heavy dotted line) isolegs for species P separate regions with qualitatively different species distributions. Proportions
of species N and P in first habitat are given in parentheses for each region. In A the strength of intraspecific competition relative to the interspecific
competition is high (0 = 1), and it decreases subsequently: ¢ = 0.8 in B; ¢ = 0.44 in C; 0 = 0.396 in D; ¢ = 0.33 in E. In the region bounded
by the heavy gray quadrangle in E, IFD is not uniquely defined and, consequently, isolegs also cannot be defined. Gray lines are isoclines (solid line
is the isocline for the first species; dashed line is the isocline for the second species). Locally stable equilibria are denoted by filled circles; unstable
equilibria are denoted by gray circles. Parameters: o = 3/4(1 — 0)/o, 8 = 4/7(1 — 0)/0, K, = 5/0, K, = 3/0, K, = 4/0, K, = 3/, 1y, = 3,
Ty, =2, 15 =4, 1, = 1.
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Figure 4: Habitat selection maps for the distinct-preference case (7, = 1, 1, = 4); other parameters are the same as those given in figure 3

slowly with increasing interspecific density in habitat 1.

That is why isoleg N;* shifts in a clockwise direction.

For higher levels of interspecific competition, isoleg
N meets the P-axis, isoleg B* meets the N-axis, and at
these meeting points, 100% isolegs N,” and P, appear.

These isolegs delimit regions of the density space in which
populations N and P, respectively, specialize in the poorer
habitat 2 (fig. 3C). To explain this rather surprising result,
we discuss the effect of interspecific competition on the
slopes of the isolegs. Consider, for example, figure 3C. We
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Figure 5: Habitat selection map for the case in which species N is competitively dominant. This figure describes all qualitative possibilities for isoleg
positions both for the shared-preference case (A-D) and the distinct-preference case (E, F). The vertical solid line is the isoleg for the dominant
species. 0% isoleg (Py) is represented by the short dashed line and 100% isoleg (P;) by the dotted line. Proportions of species N and P in first
habitat are given in parentheses. Gray lines are isoclines (solid line is the isocline for the first species; dashed line is the isocline for the second
species). Locally stable equilibria are denoted by filled circles and those that are unstable by gray circles. Parameters in A: « = 0, 8 = 1, K, =
7, Ky, =2, K, =5 K, =3, 1y =4, 1y, =151, =4, r, =2. Parameters in B: « = 0, 8 = 04, Ky, =7, K, =2, K, =5, K, =3, 1y =
4, ry, = 1.5, 1, = 4, r,, = 2. Parameters in C: « = 0, 3 = 1, Ky, =5, Ky, = 3, K;,, = 4, K, = 2, 1y, = 4, 1, = 1.5, 1, = 4, r,, = 2. Param-
eters in D: o« = 0,8 =04, Ky, =5, K, =3,K,, =4, K, =2, 1y =4, 1y, =15, 1, =4, 1, =2. Parameters in EE « =0, =1, K, =
7, Ky, =2, K, =5, Ky, =10, 1y, = 4, 1y, = 1.5, 1, = 3, 1,, = 4. Parameters in F: « = 0,8 =1, Ky, =5, Ky, =3, K,, =4, K,, =2, ry, =
4, 1y, =15, 1, =3, 1, = 4.
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have explained why isoleg N;* for species N has a negative
slope below isoleg B*. In the case of increased interspecific
competition relative to intraspecific competition (lower
value of o; fig. 3C), habitat 1 becomes less suitable for
species N at even lower densities of species P, making it
more profitable for species N to specialize in the other
habitat. Note that, depending on densities N and P, almost
all distributions of the species are now possible. The only
case that will never be observed is where both species
occupy only the poor habitat. In figure 3C, we see that
total spatial segregation between species N and P is pos-
sible. Depending on the density of both species, either
species can occupy the poor habitat only. At high densities
of both species, we observe the situation in which species
N uses exclusively habitat 1 while species P does not use
it at all (triangular area denoted by (1, 0)). In this case,
specializations at high densities can be understood by con-
sidering the qualitative values of the habitats because at
high densities, species N is more affected by competition
in habitat 2 than in habitat 1, while the opposite holds
for species P (ie., ry, /Ky, > ry /Ky, and 1, /K, <1, /K},).
On the contrary, figure 3C also shows that distribution
(0, 1) will be observed at low densities of species N and
relatively low densities of species P. Although both species
tend to prefer habitat 1 at low densities, the quantitative
difference between habitats 1 and 2 is much stronger for
species P than for species N (r, /r, = 4, while ry /n, =
1.5). Thus, species P will tend to occupy only habitat 1,
and because it is also the stronger interspecific competitor,
it will outcompete species N and force it to move to habitat
2. Thus, as we have seen for the case of a single species,
preferences at low species densities are influenced by quan-
titative differences between the habitats, while at high den-
sities, they are influenced by qualitative differences be-
tween habitats. In addition to the single species case, in
the case of two species, strength of interspecific compe-
tition must be also considered.

For relatively low interspecific competition (i.e., values
of o close to 1), the joint IFD is uniquely defined (fig.
3A-3C). As interspecific competition increases relative to
intraspecific competition (i.e., as parameter o decreases),
the habitat selection map becomes increasingly complex
because each species now has two isolegs (fig. 3C), but
strategies still are uniquely defined for each set of species
densities. There is a critical threshold for parameters at
which 0% and 100% isolegs N;* and N," and B* and B
partly coincide (fig. 3D). This happens when of =
o'B'(1 — 0)*/a* = 1, which gives

B 1
1+ 1o

*

If the strength of intraspecific competition relative to that
of interspecific competition is equal to or below the critical
value ¢, then the region in which both species are gen-
eralist—i.e., the region marked by (n* p*) in figure
3C—vanishes. Interspecific competition becomes so im-
portant compared to intraspecific competition that in all
cases at least one species is excluded from one habitat.
This situation arises because 0% and 100% isolegs cross
in species-density space (fig. 3D). Thus, as species densities
change, there may be sudden switches in species distri-
butions from one habitat to the other. For example, in-
crease in density of species N, for high enough densities
of species P, can lead to a sudden switch of species N from
habitat 2 to habitat 1 (transition from distribution
(0, p(0)) to distribution (1, p(1)) in fig. 3D). Such discon-
tinuous 0-1 transitions do not arise in situations with
lower levels of interspecific competition (see fig. 3A-3C).
In fact, nonuniqueness in species distributions does not
allow us to define species isolegs in the part of the species-
density space in which two possible IFDs exist (the region
of species-density space bounded by the solid gray quad-
rangle in fig. 3D). The isolegs are well defined only outside
of this quadrangle.

Because of 0% and 100% isoleg crossing, the resulting
habitat selection map is no longer uniquely defined. This
is because the region of density space in which, say, species
N occupies habitat 1 only and the region where it occupies
habitat 2 only partly overlap. The result is an apparently
complex habitat selection map, with two possible IFDs
always in the region of overlap (fig. 3E). Habitat selection
outside this region can be interpreted by considering both
the level of interspecific competition and the qualitative
and quantitative differences between the habitats, for both
species, as we discussed in the case of figure 3C.

The fact that isolegs and IFD are not uniquely defined
for high interspecific competition does not preclude
unique definition of IFD along population trajectories in
species-density space, provided that the initial species dis-
tribution is given. For example, consider the transect in
figure 3E, along which density of species N is constant and
equal to 7.5 and density of species P increases from 0 to
20. Along this transect, IFD can be uniquely determined
from figure 3E, and it is shown in figure 6. This is due to
the “priority effect” that effectively selects one of the two
possible species distributions when crossing boundaries of
regions of the species-density space in which distributions
qualitatively change. Along the transect species, distribu-
tion for low densities of species P is uniquely given by
(n(1), 1). This distribution will be kept when density of
species P is such that the transect enters the region of
species-density space in which IFD is not uniquely deter-
mined. Then distribution along the transect will switch to



Figure 6: IFD along a transect of E for constant density of species
N = 7.5; shows preference of N species (solid line) and of P species
(dashed line) for habitat 1 as a function of increasing P species density.
Along such transects IFD is uniquely defined if the initial population
densities lie in the part of the species-density space where IFD is uniquely
defined.

(0, p(0)) and, finally, to (1, p(1)). The last transition along
the transect will be discontinuous.

The Distinct-Preference Case

Now we assume that the intrinsic per capita growth rate
for species N is higher in habitat 1, while for species P it
is higher in habitat 2 (i.e., ry, > ry, and 7, <7,). Species
N and P are sharing common resources but show different
initial preferences. For example, one of them could be
more efficient than the other at harvesting a particular
type of resource (Morris et al. 2000). As a consequence,
when densities are low, each species will inhabit only its
preferred habitat (see fig. 4).

Again we study graphically the changes of the habitat
selection map along the gradient given by the relative im-
portance of interspecific competition represented by pa-
rameter o (fig. 4). Isolegs show the same general tenden-
cies: straight and perpendicular isolegs for the intraspecific
case only become piecewise linear when interspecific com-
petition is introduced in the model. Again, very high levels
of interspecific competition lead to numerous possible dis-
tributions. When a3 > 1 (which means that o is below
o), distribution of both species in both habitats becomes
impossible, and isolegs are not uniquely defined in some
regions of the species-density space (fig. 4E).

One Species Is Dominant

The ecological literature reports that interspecific com-
petition is asymmetric in most situations (Schoener 1983).
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Additionally, published habitat selection graphs demon-
strate this situation for birds (Pimm et al. 1985) and ro-
dents (Abramsky et al. 1990). That is why we now present
a detailed study of the case wherein one species is dom-
inant. We assume that species N is not affected by com-
petition with species P in either habitat. As a consequence,
competition coefficient o« = 0. Habitat selection by the
dominant species N is not affected by the density of the
subordinate species P and follows the rules given for a
single population: it specializes in habitat 1 when at den-
sities below the threshold N* given by equation (1), and
visits both habitats above that density, with a preference
for habitat 1 given by equation (2). Because the dominant
species never specializes in the poorer habitat, only the
0% isoleg exists for this species. This isoleg is a vertical
line (fig. 5, heavy solid line).

By contrast, both 0% and 100% isolegs B* (dashed heavy
line) and P, (dotted heavy line) exist for species P. Com-
putation of IFD for this species follows from the general
case and is given in appendix B. Here we briefly survey
general properties of the subordinate species isolegs (see
fig. 5 and app. B). We remark that because o = 0, the
condition of3 < 1 is satisfied, and therefore, IFD is uniquely
defined for all species densities and all parameter com-
binations. On the left side of the dominant species isoleg,
that is, for low-dominant species density (N < N*), this
species will occupy only the more profitable habitat 1. In
the corresponding part of the population density space,
the 0% isoleg for the subordinate species (dashed line, fig.
5) always has a negative slope and the 100% isoleg (dotted
line, fig. 5) has a positive slope. This is because increasing
the density of the dominant species in habitat 1 tends to
lower the density above which animals of species P begin
to colonize habitat 2 and to increase the density below
which it pays for them to occupy habitat 2 only. Appendix
B shows that the two subordinate species isolegs can in-
tersect at most in two points that are on the N-axis. From
the analysis given in appendix B, it follows that actual
position of the subordinate species isolegs qualitatively de-
pends on two critical relations among parameters. First,
it depends on the value of competition coefficient 3 with
respect to a threshold value of this coefficient given by

g = Kperl(rpl - rpz) .
KNer,(er - er)
We remark that for the shared-preference case (7, > r,),
B* is positive while for the distinct-preference case it is
negative. To the left of the dominant species isoleg, the
two subordinate species isolegs intersect only if compe-
tition is strong (8 > 3*) and habitat 1 is preferred by both
species (, > 1,, shared-preference case; fig. 54, 5C).
Second, to give conditions under which the subordinate
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species isolegs intersect to the right of the dominant species
isoleg, we need to consider, in addition to the value of the
competition coefficient, the following inequality, which re-
lates to the input matching rules for the two species if
considered alone (see “Distribution of a Single Population”

and app. B):
o1 o v B

Inequality (8) implicates that if we consider the two species
separately, species N at high densities would prefer habitat
1 more strongly than would species P. It is shown in ap-
pendix B that the two subordinate species isolegs intersect
to the right of the dominant species isoleg either if 8>
B* and the opposite inequality to relation (8) holds (fig.
5C, 5F) or if competition is weak (8 < 8*) and inequality
(8) holds (fig. 5B).

The Shared-Preference Case

We first consider the “shared-preference” case (i.e., ry, >
1y, and 7, > 7, ), in which both species prefer habitat 1 at
low densities (fig. 5A-5D). When colonization begins, re-
sources present in habitat 1 are more appealing for both
species. As density of the dominant species (N) increases,
the relative suitability of each habitat is now determined
by whether individual success is strongly influenced by
competition. In figure 5A and 5B, habitat 1 becomes less
suitable for species P (in the sense that inequality [8]
holds), and species P reverses its preference at high den-
sities of the dominant species. In figure 5C and 5D, habitat
1, which was more attractive at low densities, is also the
more suitable habitat at high densities for species P (in
the sense that inequality [8] is reversed). Species P regains
its original preference at high densities. This is because in
crowded environments, habitat suitability is no longer de-
termined by resource potential standing crop but by the
way habitat value is affected by increasing numbers of
consumers (Holt 1985; Morris 1988). In figure 5A and
5C, the per capita effect of interspecific competition is
high, in the sense that 8> 3*. As a consequence, we ob-
serve that total segregation is possible. For certain sets of
densities, the dominant species stays in the best habitat
and forces the subordinate species to stay in the poor
habitat. If 8 < 8%, interspecific competition is too weak to
make total segregation possible (see fig. 5B, 5D).

The Distinct-Preference Case

For the distinct-preferences case, the qualitative positions
of isolegs are given in figure 5E and 5F. Contrary to the

shared-preferences case, at low densities of the dominant
species, the subordinate species never specializes in habitat
1 regardless of its density. At high densities of the dominant
species, however, the subordinate species can specialize in
the less preferred habitat 1 (fig. 5F). This happens if in-
equality (8) is reversed, which means that the subordinate
species will specialize in habitat 1 because the value of this
habitat is less affected at high densities of consumers.

Consequences for Population Dynamics

The primary aim of our model was to derive habitat se-
lection rules for all possible densities of conspecific and
heterospecific competitors. We now study population dis-
tributions only at population equilibrium. This will show
whether IFDs should promote coexistence between species.
The classical Lotka-Volterra competition model extended
to a two-habitat system with species distributions given
by n, 1 —n, and p, 1 — p, is described by the following
system:

AN ( nN  apP
— = rynN|l — — — —

dt : Ky, Ky

1— N ol —pP
+rN(1—n)N(1—( IN_ o~ pP)
: Ky, Ky,

p pP  BuN
& o ppl - E-E2 9
a - PP Tk Kk, ) ®

+ 7,1 —pP
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For fixed population distributions (i.e., for nonadaptive
consumers that do not follow IFD), the above system is
the classical Lotka-Volterra competition model with iso-
clines that are straight lines in density-state space. De-
pending on the position of isoclines, the model either has
one interior equilibrium or one population outcompetes
the other species. If the interior equilibrium exists, then
it is globally stable if 8 < 1.

If species spatial distribution follows IFD, as described
in the previous sections of this article, then isoclines be-
come piecewise straight lines (gray lines, figs. 3—5; isocline
for the first species is shown as a solid line while the
isocline for the second species is shown as a dashed line).
This is because isolegs split the density space into several
regions, in each of which population dynamics are de-
scribed by a Lotka-Volterra competition system with spe-
cific parameters; therefore, the slope of isoclines changes
when isoclines cross the isolegs.



Appendix C shows that coexistence within both habitats
at population equilibrium is possible if and only if « <
Ky, /Kp, o < Ky, IK;,, B < Kp /Ky, and 8 < K}, /K. We re-
mark that conditions o < K} /K, and 8 < K, /K, are the
conditions that permit stable coexistence in habitat 1, if
it is isolated from the rest of the environment, while con-
ditions o < K,,/K;, and 8 < K}, /K, permit stable coexis-
tence in habitat 2. Hence, parameter values that permit
species coexistence over the whole environment are also
those that would allow coexistence within each habitat, if
it is considered in isolation.

Complete segregation between habitats 1 and 2 at pop-
ulation equilibrium occurs if «a>K/K, and B>
K, /Ky, or if o> Ky /K, and 8> K, /K, (see app. C).
Hence, the sets of parameters that make segregation pos-
sible across the habitats are those that lead to competitive
exclusion in single-habitat environments.

Figures 3 and 4 show that for low values of interspecific
competition, both species occupy both habitats at popu-
lation equilibrium (figs. 3A-3C, 4A—4C). Exclusion occurs
when the relative strength of interspecific competition
compared with intraspecific competition increases. In fig-
ures 3D and 4D, population equilibrium coincides with
total segregation: species N is found only in habitat 1 and
species P occupies only habitat 2. When interspecific com-
petition is even stronger (i.e., when o3 > 1), isoclines be-
come very complicated, and multiple equilibria exist (figs.
3E, 4E). We note in figures 3E and 4E that two stable
equilibria exist that coincide with segregation between spe-
cies N and P. One corresponds to IFD (1, 0) and the other
to IFD (0,1). This is because o > Ky /K,, 8> K, /K,
o> K, /K,, and 8> K, /K. In the situations described
in figures 3E and 4E, as well as those described in figures
3D and 4D, intense competition between species N and P
will preclude their coexistence at a population equilibrium.
Thus, we will observe the “ghost of competition” (Rosen-
zweig 1991; Morris 1999).

Discussion

In this article we study the influence of intraspecific and
interspecific competition on habitat selection behavior in
a two-habitat environment. Our models consider either
one or two competing species in a habitat that is composed
of two habitats of different quality; the habitat selection
strategy for a particular species is the proportion of time
that its members spend in either habitat. We assume that
animals maximize their instantaneous per capita popu-
lation rate of increase, and we derive the ideal free dis-
tribution across habitats. This allows us to determine the
exact shape of isolegs, which are the lines in species-density
space that separate regions with qualitatively different spe-
cies distributions (Rosenzweig 1981). The IFD has been
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demonstrated many times in foraging groups (Milinski
1988; Dreisig 1995). When breeding behavior is consid-
ered, increasing densities of both conspecifics and heter-
ospecifics lead to decreasing reproductive success (Gus-
tafsson 1987). Also, breeding populations settling in
heterogeneous environments may achieve IFD (Pierotti
1982; Wahlstrom and Kjellander 1995).

When applied to a single population, IFD theory pre-
dicts that below a certain density, all individuals will oc-
cupy the best part of their environment. Above this thresh-
old, they will also spend some time in the poorer part of
their habitat. This phenomenon has been called the “buffer
effect” (Brown 1969; Sutherland 1996). Our model pre-
dicts the threshold density above which generalization
should begin and a hyperbolic and decreasing relationship
between the total population density and individual pref-
erence for the most profitable habitat (fig. 1). In a field
study on feeding hummingbirds by Pimm et al. (1985)
and reanalyzed by Rosenzweig (1986), the response of the
dominant species is unaffected by interspecific competi-
tion and exhibits these particular patterns in close agree-
ment with figure 1 (see also Rosenzweig 1991; Rosenzweig
and Abramsky 1997). Other studies are also in qualitative
agreement with our prediction (Zwarts 1976; Goss-
Custard 1977).

Several field studies focused on interactions between a
dominant and a subordinate species with similar habitat
preferences (Pimm et al. 1985; Abramsky et al. 1990;
Bourke et al. 1999; Morris et al. 2000). In accordance with
our predictions, they show that the dominant species will
stay in the best parts of their environment at low density
and will invade all parts when their density exceeds a cer-
tain threshold. Pimm et al. (1985), Abramsky et al. (1990),
Suhling (1996), and Bourke et al. (1999) observed that
increasing the density of either subordinate or dominant
species may increase the use of the poorest parts of the
environment by a subordinate species. These observations
are compatible with our predictions. So is the observation
that at very high densities of the dominant species, the
subordinate species may be forced to inhabit only these
poor areas (Pimm et al. 1985; Bowers et al. 1987; Franke
and Janke 1998).

We predict that the 0% isoleg for the subordinate species
always has a negative slope on the left side of the dominant
species isoleg. Pimm et al. (1985) suggested that the sub-
ordinate isoleg may intersect the dominant species axis
either to the left or to the right of the dominant species
isoleg. Our model shows that both cases are possible, in-
tersection to the left of the dominant species isoleg being
conditioned by intense competitive effect of the dominant
species on the subordinate species. Our analysis predicts
that there are more qualitative cases because, depending
on parameter values, either isoleg for the subordinate spe-
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cies can intersect the dominant species isoleg (fig. 5).
Moreover, isolegs are not straight lines; they are piecewise
linear. Our model predicts that if the 0% isoleg for the
subordinate species crosses the isoleg of the dominant spe-
cies, then its orientation changes in a counterclockwise
manner (fig. 5B, 5D). This happens because to the right
of the dominant species isoleg, the dominant species also
visits habitat 2, and so increasing its density does not solely
affect the fitness of the subordinate species in habitat 1.
If interspecific competition is strong enough, then both
isolegs for the subordinate species will be observed on the
left side of the dominant species isoleg (fig. 54, 5C). In
this case, the 100% isoleg for the subordinate species will
cross the dominant species isoleg at a sharp angle, with
declining slope to the right of the intersection. If inequality
(8) does not hold, then the slope becomes negative and
the 0% isoleg will reappear with a positive slope on the
right side of the dominant species isoleg (fig. 5C). In that
situation, the subordinate species switches its habitat pref-
erence twice as the density of the dominant species in-
creases. The reason for this particular behavior is that the
ratio of habitat qualitative values is higher for the sub-
ordinate species than for the dominant (i.e., inequality [8]
does not hold). Thus, preference of the subordinate species
for habitat 1 is more marked at high densities than pref-
erence of the dominant species for this habitat, and it will
specialize in habitat 1 at high densities, just as it did at
low densities but for a different reason.

In a recent study, Morris et al. (2000) traced the habitat
selection map for asymmetric competition between two
species of lemmings with distinct preferences. This map
is qualitatively similar to our figure 5F and shows the
strong discontinuity in the direction of the isoleg of the
100% species when it crosses that of the dominant. Morris
et al. (2000) did not observe the second isoleg for the
subordinate species. Their study does not, however, pre-
clude the existence of this isoleg.

In conclusion, for the case of asymmetric competition,
our model predicts that both isolegs for the subordinate
species should meet at a sharp angle when crossing the
dominant species isoleg, that the 0% isoleg may consist
of two separated lines, and that the 100% isoleg may not
exist at all. It also predicts that whenever any of the two
isolegs of a subordinate species intersects the dominant
species axis, then the other isoleg will also cross that par-
ticular intersection point too.

Although ecological reviews stress that asymmetric com-
petition is very common in nature, our study proposes a
general method to derive IFD for habitat selection even
in cases of more balanced interspecific competition. Der-
ivation of IFD for this case is more complicated because
distribution of species 1 depends on distribution of species
2 and vice versa. The solution to this problem that assures

that neither species can increase its fitness by changing its
strategy requires a game theoretical approach (Maynard
Smith 1982; Thomas 1986; Hofbauer and Sigmund 1998).
Our model predicts that as the strength of interspecific
competition increases, complexity of habitat selection
maps increases too. When interspecific competition is very
strong when compared to intraspecific competition, 0%
and 100% isolegs for one species can cross, which leads
to nonuniqueness in species distributions in some regions
of the density space. In these situations, the model predicts
that habitat selection will lead to habitat segregation be-
tween species at the population equilibrium, thus creating
the “ghost of competition” (Rosenzweig 1991; Morris
1999; see fig. 3D, 3E; fig. 4D, 4E).

The prediction that the isolegs for each species should
change direction when crossing those of the other species
is ubiquitous in our model. It emerges as soon as we
consider even low levels of interspecific competition, and
we believe it to be of general value. As stated above, such
deflections have already been mapped for natural systems
(Morris et al. 2000). In contrast, the particular prediction
that more than one IFD may be possible for certain sets
of densities only applies to situations with extremely high
levels of interspecific competition. We remark that the
condition required for the existence of multiple IFDs (i.e.,
af3 > 1) also precludes stable coexistence between the two
species in both habitats. Thus, multiple IFDs are possible
only for extreme levels of interspecific competition, and
even then will not be observed if the system is close to a
population equilibrium. In other words, multiple IFDs are
expected only during the transitory phase that will finally
lead two highly competitive species to total segregation.
Although it is doubtless important to explore global pos-
sibilities, the consideration above certainly limits the like-
lihood of occurrence of the most complex of the habitat
selection maps (namely, fig. 3E for the case of shared pref-
erences and fig. 4E for the case of distinct preferences,
where high levels of interspecific competition are even less
expected).

Our predictions were obtained from a Lotka-Volterra
model, which yields linear fitness functions similar to some
functions already used in habitat selection theory (Pimm
and Rosenzweig 1981; Morris 1987, 1994, 1999). These
functions permit us to represent both qualitative and
quantitative richness of habitats, which in reality may vary
in different ways for competing species (Ovadia and
Abramsky 1995). Morris et al. (2000) state that real fitness
functions should be curvilinear (see also Morris 1989; Wil-
son and Yoshimura 1994), although linear fitness density
lines have been reported too (Ovadia and Abramsky 1995).
One characteristic of these fitness functions is that they
assume full competition between species as soon as they
begin to use the same habitat. However, even linear fitness



functions can predict complex behavioral patterns, some-
times with more than one possible outcome. Also, piece-
wise linear isolegs may be relevant approximations of real
isolegs, which most likely are not linear (Pimm and Ro-
senzweig 1981).

The assumption that competition coefficients are the
same in both habitats is also simplifying, since the level
of exploitative competition may depend on the resources
present in the habitat as well as the level of aggressiveness
between species (Hairston 1980). The model could be
made more realistic by including different competition
coefficients in habitats 1 and 2, as has already been done
with other kinds of models (isodars; Morris (1988).

There exists a large literature that aims to understand
how resource or habitat partitioning may allow coexistence
between competing species (Schoener 1974a, 1974b, 1974¢
Connell 1980). Moreover, both theoretical and experi-
mental explorations strongly suggest that habitat selection
strategies play a role in the initiation of sympatric speci-
ation by favoring isolation between species (Rice and Salt
1988; Johannesson 2001). Our model shows that adaptive
rules for habitat selection may indeed lead to segregation
of competing species across different parts of the envi-
ronment. However, the model also shows that high levels
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of competition are necessary for segregation across the
habitats at population equilibrium. This prediction agrees
with observations that high levels of interference tend to
reduce overlap between distribution areas of neighboring
and competing species, making borderlines (Brown 1971;
Hairston 1980). Hence, adaptive strategies for habitat
choice in heterogeneous environments may lead to seg-
regation between species. This may allow coexistence at
the scale of the whole environment, if we observe recip-
rocal exclusion as well as favor the initial steps of sympatric
speciation by allowing reproductive isolation. However,
our models suggest that this will be possible only if high
levels of competition between species already exist.
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APPENDIX A

Habitat Selection Map: The General Case

In this appendix we compute ideal free distribution (IFD) for two competing species in a two-habitat environment.
First we compute all distributions of both species such that no individual can increase its fitness by playing a different
strategy. In game theory these strategies are called noncooperative Nash equilibria (Thomas 1986). Then we select
those that are stable with respect to small spatial perturbations. These latter are those that we call IFDs.

In order to compute Nash equilibria we follow the standard approach (Thomas 1986). First we compute the best
distribution of species N for any fixed distribution of species P and conversely. The intersections of these two functions
define the Nash equilibrium points. The IFD strategy # of species N for every distribution p of species P is

1 if p<p
Ky [Ky(ry, — 1y,) + 1 (N+ aP)]  paP |
n(p) = { — NNAéK rN+KNr ) N ifp<p<p,
N TNy NN
0 if p>p,,
where

KKy (g — ) + aKyn P — Ky N

pr= aP(Kyry, + Ky ry,) ’
K, [K - + N+ oP

p, = Nl[ Nz(rN, er) er( aP)] . (A1)

aP(Ky ry, + Ky 1y,)

Similarly, for a fixed strategy n of species N, the IFD strategy p of species P satisfies
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p(n) =

where

1 if n<n,
KPI[KPz(rPI — T’PZ) + TP2(6N+ P)]  nBN

- if ny<n<n,
P(Kp, 1y, + K 15,) P

0 if n,<mn,

K, K, (r,, — 1)) + 8K, 1, N — K, 1, P
' BN (szrpl + KP, rpz) ’

KPl[KPZ(rPl - T’PZ) + T‘PZ(P + BN)]
BN(KPZT'P, + K, T’Pz) ’

n, =

(A2)

The points where the two piecewise linear lines n(p) and p(n) cross-define distributions of both species such that
no individual can increase its fitness by playing a different strategy. However, not all of them are stable with regard
to small perturbations in strategies. Those that are stable (shown as filled circles in fig. 2) are characterized by the
property that the slope of the inverse function of n(p), which is —N/(aP), is smaller than is the slope of p(n), which
is —BN/P (see fig. 2h). Here we give a complete classification of IFD. The structure of the IFD set depends on the
position of p,, n,, p,, 1, p(0), p(1), n(0), and n(1). Because of our assumption that r, >r,, p, is always positive.
Moreover, p, < p, and n, < n,. Because the curves n(p) and p(n) are piecewise linear and constrained by values 0 and
1, they can intersect at most at three points (fig. 2), if we do not consider those parameter values for which the two
curves coincide. The interior intersection point that corresponds to the case in which both species occupy both habitats

is denoted by (n”, p*), where

and

K[

* 1

_ KKy (g — ) + ny(N+aP)]  p'aP
B N(Kyry, + Ky 1) N

*

I<P2(rpl - rPZ) + rPZ(P+ Nﬁ)] _ KNI[KNZ(er B er) + rNZ(N+ POL)]B

P — O‘B)(szrpl + KPerZ)

Here we categorize possible IFD with respect to their position in the unit square (0, 1) x (0, 1) (fig. 2).

(a) If n(1) = 1 and p(1) = 1, then IFD is (1, 1).

Otherwise we have

(b) If n(0) < n,, n(l) < n,, p(0) < p,, and p(1) > p,, then IFD is (n(1), 1).

(o) If n(0) < n,, n(1) < n,, p(0) > p,, and p(1) > p,, then IFD is (0, 1).

(d) If n(0) < n,, n(l) > n,, p(0) > p,, and p(1) > p,, then IFD is (0, p(0)).

(e) If n(0) < n,, n(1) > n,, p(0) < p,, and p(1) < p,, then IFD is (1, p(1)).

(f) If n(0) > n, n(l) > n,, p(0) < p,, and p(1) < p,, then IFD is (1, 0).

(g) If n(0) > n,, n(l) > n,, p(0) < p,, and p(1) > p,, then IFD is (n(0), 0).

(h) If n(0) < n, n(l) > n,, p(0) < p,, and p(1) > p,, then IFD is (n*, p*).

() If n(0) < n,, n(1) < n,, p(0) < p,, and p(1) < p,, then IFD are (1, p(1)) and (n(1), 1).
() If n(0) > n,, n(1) < n,, p(0) < p,, and p(1) < p,, then IFD are (1, 0) and (n(1), 1).
(k) If n(0) > n,, n(1) < n,, p(0) < p,, and p(1) > p,, then IFD are (n(0), 0) and (n(1), 1).
(I) If n(0) > n,, n(1) < n,, p(0) > p,, and p(1) > p,, then IFD are (n(0), 0) and (0, 1).
(m) If n(0) > n,, n(l) > n,, p(0) > p,, and p(1) > p,, then IFD are (n(0), 0) and (0, p(0)).
(n) If n(0) > n,, n(l) < n,, p(0) > p,, and p(1) < p,, then IFD are (1, 0) and (0, 1).

(0) If n(0) < n,, n() > n,, p(0) > p,, and p(1) < p,, then IFD are (1, p(1)) and (0, p(0)).

P(1 = af)(Ky,ry, + Ky 1,)
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(p) If n(0) > n,, n(1) > n,, p(0) > p,, and p(1) < p,, then IFD are (1, 0) and (0, p(0)).
(q9) If n(0) < n, n(l) < ny, p(0) > p,, and p(l) < p,, then IFD are (0, 1) and (1, p(1)).

APPENDIX B

Isolegs Analysis for the Dominant Case

Here we analyze the isoleg position for the case in which species N is dominant. Because the dominant species N is
not affected by competition with species P (competition coefficient « = 0) in either habitat, it distributes as if it were
alone. First we assume that the density for the dominant species is below N* (see formula [1]); that is, it occupies
only habitat 1 (n* = 1). Then IFD of the subordinate species P is

1 if P<B”
K,K,(r, —1,) — BK,1r» N+ K, 1, P
p* — Py Pz( Py Pz) B P, Py PP if P> max (Pl'*> Pz*)
P(K,, 15 + Ky 15,)
0 if P<P;,

where

_ KPIKPZ(rPl - er) - BKPJPlN
K, 1,

_ _KP,KPZ(rP1 - TPZ) + BszrP,N

})2*
K, 1,

(B1)

Functions of the dominant species density B* and B* are 0% and 100% isolegs, respectively. The two isolegs intersect
on the N-axis at the point

KPI(TP1 - rpz)
Brpl

The intersection point is to the left of the point N* if 3> 8*. If N> N*, then the dominant species occupies both
habitats (see eq. [2]), and the distribution of the subordinate species is given by

1 if P<PB*
BKy Ky, (ry, — 1) n B(Ky, K, 1 T, = Ky Kp, T 1o )N
. (Ky,ty, + Ky, )P (K 1y, + Ky 1o, (K, 15, + K 1) P
KP, [KPZ(rP, - T’Pz) + rPZP ]
(KPZTP1 + KP, TPZ)P
0 if P<P;,

4 if P> max(B", P,")

where

_ Kpl(rpl - rpz) n _BKNIKNZ(er - er)(KPerl + KPerZ) + B(_KNIKPZerrPI + Ky, Kp, 1,1, )N

P*
l K, (KNerl + Ky, er)rPl

T,

pr = _KPZ(TPI — sz) n 6KNIKNZ(TN1 — rNZ)(KPerI + KP1 T’PZ) + B(KNIKPJNZ”P, — KNZKP] N, TPZ)N
’ KPI(KNZer + Ky, er)er .

(B2)

Tp,

The two isolegs B* and B intersect on the N-axis at the point
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KPIKPZ(KNJ'NI + KNerz)(rPl - TPZ) - BKNlKNZ(rNI - er)(KPerl + Kplrpz)
B(I<l\/,KPzri\ler1 - KNzKPernrf’z)

This intersection point is to the right of N* if either inequality (8) holds and 8 < 3 or the opposite inequality to
inequality (8) holds and 5 > (3.

APPENDIX C

Coexistence

Analysis of the Interior Equilibrium

Here we determine the conditions under which coexistence in both habitats is stable from both evolutionary and
population dynamics points of view. In the region of the density space where IFD is given by (n*, p*), population
dynamics are given by

dN Ny + Ky, = N— Pa)
dr Ky, + Ky 1,

>

dP 11, P(Kp + Ky, = P— NB)
dt Koty + Kot '

(9

Densities at population equilibrium are given by N, = [K,, + K, — a(K,, + K,,)]/(1 — of) and P, = [K, + K, —
B(Ky, + K)I/(1 — «B). Equilibrium (N,,, B,) exists and is stable for population dynamics if a < (K, + Ky, )/(Kjp, +
Kp) and B < (K, + K;,)/(Ky, + K,,), which also implies that o8 < 1. Moreover, the equilibrium (N,,, P,)) lies in the
part of the state space where IFD is given by (n", p*) provided inequalities / of appendix A are satisfied.

These inequalities evaluated in (N, P,)) are a < Ky /K, o < K, /K, 8 < K}, /Ky, and 8 < K, /K. From these four

inequalities, o < (Ky, + K)/(K, + K,,), B< (K, + Kp,)/(Ky, + K,,), and aff <1, which implies that equilibrium
(N, P,) exists and is stable from the population dynamics point of view.

Segregation

Here we seek the conditions under which, at population equilibrium, species N will inhabit only habitat 1 while species
P will specialize in habitat 2. The corresponding IFD will be (1, 0), and in the corresponding region of the density
space, population dynamics are given by

N _ N
ar Ky/
ar_ Pl—i (2
i~ ™ K,

The densities at equilibrium will be N, = K, and P, = K,,. This equilibrium is stable from the population dynamics
point of view. Equilibrium (N,,, B,,) is in the part of the state space where IFD is given by (1, 0) in one of the following
cases: f, j, n, and p of appendix A and figure 2. The conditions that hold in the corresponding region of the density
space are n,<1 and p, > 0. These inequalities evaluated in (N,, P,) are 8> K, /Ky, and o> K, /K,. Finally, these
two inequalities are necessary and sufficient for complete species segregation at equilibrium, with species N specializing
in habitat 1 and species P specializing in habitat 2. In a similar way, we can show that if 8> K, /K,, and o >
Ky, /Ky, total segregation is again possible, but this time species N specializes in habitat 2 and species P in habitat 1.
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