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INTRODUCTION

In Kr� ivan (1996) a two-prey�one-predator population
dynamic model with optimal predator foraging behavior
was considered. This model assumes that predators
forage according to optimal foraging theory (Charnov,
1976; Stephens and Krebs, 1986), which predicts that the
more profitable prey type is always included in the
predator diet while the less profitable (i.e., alternative)
prey type is included with probability one only if the den-
sity of the more profitable prey type falls below a critical
threshold. Therefore, the optimal foraging model does
not predict the emergence of partial preferences for the
alternative prey type which is either completely included
or excluded from predators' diet. The predictions of
optimal foraging theory were compared with several
experimental and field studies in Stephens and Krebs
(1986) (see also Richardson and Verbeeck (1992)). These
studies support the idea that the diet choice is based on
food profitability although the inclusion of the less
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optimal foraging theory.

Kr� ivan (1996) showed that optimal foraging leads
naturally to a more general class of population dynami-
cal systems which are described by differential inclusions
(i.e., by differential equations with multivalued right-
hand sides), and to the emergence of partial preferences
for the alternative prey type as a consequence of popula-
tion dynamics. The multivaluedness in the model des-
cription is due to the non-uniqueness of optimal foraging
strategy when the more profitable prey type reaches the
critical threshold. It was shown that the interplay among
behavioral ecology and population dynamics is twofold:
optimal foraging influences population dynamics, which,
in turn, affects optimal prey diet. Analysis given in
Kr� ivan (1996) focused mainly on local stability of the
ecological equilibrium and analytical results given there
were only for a special case in which both prey types had
the same intrinsic per capita growth rate. The reason for
this limitation was due to the fact that even local stability
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analysis for the general case gives very complex expres-
sions which cannot be efficiently analyzed. On the
numerical evidence it was conceived there that optimal
foraging may lead to permanence in the one-predator�
two-prey model; i.e., all three populations can coexist
indefinitely. Optimal foraging can also reduce amplitude
of fluctuations in population densities when compared
with generalist predator behavior.

In this paper we study analytically the effect of optimal
foraging on permanence of the one-predator�two-prey
system introduced in Kr� ivan (1996). We show that the
conditions for permanence are a great deal simpler and
more efficiently tractable than those for local asymptotic
stability. To conclude that all populations can coexist,
permanence theory (Hofbauer and Sigmund, 1984;
Butler and Waltman, 1986; Hutson and Schmitt, 1992)
does not require consideration of the complicated
behavior of interior (i.e., all populations present) orbits
of the model found in Kr� ivan (1996). Permanence means
that there is a lower positive bound such that in a long
term run all population densities (initially positive) will
be above this bound and no population density tends to
infinity. In Butler and Waltman (1986) the results con-
cerning permanence are given for continuous dynamical
systems, i.e., for systems in which trajectories depend
continuously on initial data. Since the system studied in
Kr� ivan (1996) is described by differential inclusions
which define a continuous dynamical system, we can use
the results of Butler and Waltman (1986) to study its per-
manence.

We consider the effects of three types of predator
foraging behaviors: (i) predators specialize on the more
profitable prey type only, (ii) predators are generalists
and they feed on both prey types, and (iii) predators
forage adaptively following rules of optimal foraging
theory. We derive and compare permanence conditions
for the system incorporating the above three predator
foraging behavior types. We show that the region of the
parameter space for which permanence holds for adap-
tive foragers is larger than that for non-adaptive
generalist foragers, but smaller than that for specialist
foragers which feed only on the more profitable prey
type.

We do not consider any direct competition among the
two prey types. Therefore, in the predator absence both
prey populations coexist at their equilibrium levels.
When predators are introduced, predator-mediated
apparent competition (Holt, 1977) among prey popula-
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tions may drive on prey type to extinction. For generalist
predators the indirect effects of predation on competition
among the two prey types were studied by Holt (1977).
In this paper we extend this study to the case where
predators follow optimal diet choice and predator�prey
population dynamics is of the Rosenzweig�MacArthur
type.

POPULATION DYNAMICS

In this part we survey the model introduced in Kr� ivan
(1996) where more details can be found. We consider
predators foraging on two prey types. Predator density is
denoted by x3 , and prey densities are x1 and x2 , respec-
tively. Population dynamics is described by a system of
differential equations

x$1 =a1 x1 \1&
x1

K1+&
u1*1x1 x3

1+u1h1*1 x1+u2 h2*2x2

x$2=a2 x2 \1&
x2

K2+&
u2*2x2 x3

1+u1h1*1 x1+u2h2*2x2

(1)

x$3=
u1 e1*1 x1 x3+u2e2 *2 x2 x3

1+u1 h1*1x1+u2 h2*2x2

&mx3 .

Here ui denotes the probability that a predator will
attack the prey type i, *i is the search rate of a predator
for the i th prey type, ei is the expected net energy gained
from the i th prey type, and hi is the expected handling
time spent with the i th prey type. In what follows we
assume that either u1 and u2 are fixed if predators show
fixed preferences for their prey or they are chosen accord-
ing to the optimal diet model. Maximization of the net
energy intake rate which is used as the fitness measure in
optimal foraging theory (Stephens and Krebs, 1986;
Kr� ivan, 1996) is equivalent to maximization of the
instantaneous per capita predator growth rate x$3 �x3 . We
remark that model (1) does not consider any direct com-
petition between the two prey populations, but the two
prey types are in apparent competition through the
shared predation (Holt, 1977). Of course, this apparent
competition appears only provided that both prey types
are included in predators' diet.

Throughout the paper we will assume that the first
prey type is more profitable for predators than the
second alternative prey type, by which we mean that

e1

h1

>
e2

h2

.

Kr� @van and Sikder
If predators follow optimal diet choice, the optimal
strategy of a predator when encountering a prey depends
on the density of the more profitable prey type which is



always attacked upon an encounter, i.e., u1=1. The
alternative prey type is attacked with probability one
(u1=1) if the density of the more profitable prey type is
below the critical threshold

x*1=
e2

*1(e1 h2&e2 h1)
.

If the first prey type density is above x*1 then the alter-
native prey type is not attacked upon an encounter
(u2=0) since it pays off for predators to search for the
more profitable prey type. Following Murdoch and
Oaten (1975) we call x*1 the switching density because
predators switch their behavior at this prey density. If the
first prey type density equals x*1 then optimal predator
strategy is not uniquely defined by maximization of
x$3 �x3 , i.e, 0�u2�1. Thus, control u2 as a function of the
more profitable prey type density is a step-like function
and (1) which is driven by optimal predator foraging
strategy is not a differential equation but a differential
inclusion (Aubin and Cellina, 1984; Filippov, 1988)
because the right-hand side of (1) is not uniquely defined
for x1=x*1 .

By R3
+=[(x1 , x2 , x3) | x1�0, x2�0, x3�0], we

denote the non-negative octant which we split in three
parts:

G1=[x # R3
+ | x1<x*1 ],

G2=[x # R3
+ | x1>x*1 ],

G0=[x # R3
+ | x1=x*1 ].

System (1) driven by optimal predator foraging strategy
is defined on each set Gi (i=0, 1, 2) separately. In the
region G1 the more profitable prey type density is low,
the alternative prey type is always included into the
predator diet (u2=1), and system (1) becomes

x$1 =a1 x1 \1&
x1

K1+&
*1x1 x3

1+h1*1 x1+h2 *2x2

x$2=a2 x2 \1&
x2

K2+&
*2x2x3

1+h1*1 x1+h2 *2x2

(2)

x$3=
e1*1x1 x3+e2 *2x2 x3

1+h1*1x1+h2*2x2

&mx3 .
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In G2 the more profitable prey type density is high, the
alternative prey type is excluded from the predator diet
(u2=0), and the corresponding dynamics is
x$1 =a1 x1 \1&
x1

K1+&
*1x1 x3

1+h1*1x1

x$2=a2 x2 \1&
x2

K2+ (3)

x$3=
e1 *1x1x3

1+h1*1x1

&mx3 .

Note that the equation for x2 in (3) is independent of the
other two equations.

In G0 the right-hand side of (1) is not uniquely defined
since 0�u2�1. However, it was shown in Kr� ivan (1996)
that in the subregion of G0 described by

a1

*1 \1&
x*1
K1+ (1+h1*1x*1 )

<x3<
a1

*1 \1&
x*1
K1+ (1+h1*1x*1+h2*2 x2)

trajectories of (1) cannot leave G0. This region was called
the partial preference domain, since partial preferences
(i.e., u2 is strictly between zero and one) for the alter-
native prey type arise in this area. These partial pre-
ferences can be uniquely computed along the partial
preference domain since in the partial preference domain
x$1=0, which gives

u2 =
e1

*2x2(e2h1&e1h2)

+
K1*2

1 x3(e2 h1&e1h2)
a1 *2 h2x2(e2+*1K1(e2 h1&e1h2))

;

for details see Kr� ivan (1996). Substituting this expression
for u2 in (1) the dynamics in the partial preference region
is described by

x$1 =0

x$2=x2a2 \1&
x*1
K1+

&
1

h2 *1 \*1x3&a1(1+h1*1 x*1 ) \1&
x*1
K1++

x$3=x3 \e2

h2

&m+ .

We want to study permanence of (1) for various
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predator foraging behaviors. Permanence is a weaker
notion than stability because it says only that there is a
positive lower and upper bound for population densities
but it does not give any information regarding qualitative



behavior of trajectories. For deriving conditions for the
permanence of three-dimensional systems it is enough to
study the behavior of trajectories of (1) with one popula-
tion missing. This simplifies the analysis, by reducing the
dimensionality of the problem. Butler and Waltman
(1986) derived the necessary and sufficient conditions for
permanence of a dynamical system. The conditions
require that trajectories of the system depend con-
tinuously on initial data, trajectories of the system are
uniformly bounded, all boundary invariant sets repel
interior trajectories, there are no cycles formed by subsets
of boundary invariant sets, and all boundary invariant
sets are isolated. For Gause-type models such as those
described by (2) the dynamics when one population is
missing are simple. The two-dimensional xi&x3 (i=
1, 2) predator�prey dynamics when one prey type is mis-
sing has one equilibrium which either is globally
asymptotically stable or is unstable and then a globally
asymptotically stable limit cycle around this equilibrium
exists (Hofbauer and Sigmund, 1984; Kuangand Freedman,
1988). If the equilibrium is not feasible (by feasible we
mean that all coordinates are positive), then due to a
high mortality rate predator population is eliminated
from the two-dimensional system. When the predator
population is missing then the two-prey system has one
equilibrium (K1 , K2) which is globally asymptotically
stable. The conditions ensuring permanence for three-
dimensional Gause-type models reduce to verify that the
boundary equilibria are repelling interior trajectories if
the boundary limit cycles do not appear, since other con-
ditions of the Butler and Waltman theorem are satisfied.
We remark that the conditions ensuring repellence of
boundary equilibria are also called invasibility conditions,
because they imply that if the one-prey�one-predator
subsystem is in equilibrium and the missing prey is intro-
duced in a small quantity then it will invade the com-
munity (Holt, 1977, Hofbauer and Sigmund, 1984).

Verification of boundary limit cycle repellence, if it
exists, is a cumbersome problem as we do not know the
analytical description of the limit cycle and thus we can-
not compute the Floquet multipliers which determine
limit cycle repellence. Throughout this paper we will
assume that if a boundary limit cycle exists then it repels
interior trajectories. This condition can be verified
numerically for each set of parameters.

PERMANENCE FOR GENERALIST
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PREDATORS

Here we assume that predators are generalists and they
forage on every prey encountered (u2=1), regardless of
its profitability measured by the ratio ei �h i . Population
dynamics are described by system (2) which has the
following boundary equilibria (i.e., equilibria at which at
least one population is missing): E0=(0, 0, 0), E1=
(K1 , 0, 0), E2=(0, K2 , 0), E12=(K1 , K2 , 0),

E13 =\ m
*1(e1&h1m)

, 0,

a1 e1(e1K1*1&(1+h1 K1*1) m)
K1*2

1(e1&h1 m)2 + ,

E23=\0,
m

*2(e2&h2 m)
,

a2 e2(e2K2*2&(1+h2 K2*2) m)
K2*2

2(e2&h2 m)2 + .

We will call E12 , E13 , and E23 planar equilibria. Since

ei Ki*i

1+hiKi *i
<

ei

h i
,

equilibrium Ei3 (i=1, 2) is feasible (i.e., i th and third
coordinates are positive) if

m<
ei Ki*i

1+hiKi* i
, i=1, 2. (4)

Condition (4) is more likely to be satisfied for large
values of carrying capacity Ki . If the predator mortality
rate is higher than the prey profitability measured by
ei �hi , then Ei3 is not feasible.

System (2) has one interior equilibrium

E (2)=\K1(a2*1m&K2*2(a2*1&a1*2)(e2&h2m))
a2K1*2

1(e1&h1m)+a1K2 *2
2(e2&h2m)

,

K2(a1 *2m+K1 *1(a2 *1&a1 *2)(e1&h1m))
a2 K1*2

1(e1&h1 m)+a1K2 *2
2(e2&h2m)

,

(e1K1*1+e2K2*2&(1+h1K1*1+h2K2*2) m)

(a1 a2(a1K2 *2
2(e2+e2 h1 K1*1&e1h2K1*1)

+a2K1 *2
1(e1&e2h1K2*2+e1h2K2*2)))

(a2 K1*2
1(e1&h1m)+a1K2 *2

2(e2&h2 m))2 + .

Kr� @van and Sikder
If predators are missing then equilibrium E12 is always
feasible and globally asymptotically stable for the two-
prey system because densities of both prey types con-
verge to their carrying capacities. If one of the two prey



types is missing and the corresponding Rosenzweig�
MacArthur predator�prey system has a feasible equi-
librium Ei3 (i=1, 2) then this equilibrium is globally
asymptotically stable provided that

m�
ei (Ki*ih i&1)
hi (Ki*i hi+1)

(5)

(Hofbauer and Sigmund, 1984). If the opposite in-
equality holds in (5), then there is a unique globally
asymptotically stable limit cycle around Ei3 (Kuang and
Freedman, 1988). In what follows we will assume that
either no boundary limit cycle exists (which happens if
either E13 and E23 are not feasible or (5) holds for
i=1, 2) or if a boundary limit cycle exists then it repels
interior trajectories. Under this assumption permanence
for (2) holds if all feasible boundary equilibria are repel-
ling interior orbits; i.e., when one population is missing
and the corresponding two-dimensional system is in
equilibrium, then the missing population will invade the
community when introduced in small quantity; see
Appendix A. Predators will invade the two-prey com-
munity which is at equilibrium E12 if

m<
e1K1 *1+e2 K2*2

1+h1 K1 *1+h2K2 *2

. (6)

If opposite inequality holds in (6) then predators will be
always driven to extinction due to a high mortality rate.
Note that since the first prey type is more profitable than
the second prey type the following inequality is satisfied

e2 K2 *2

1+h2 K2*2

<
e1K1 *1+e2 K2*2

1+h1K1 *1+h2 K2*2

, (7)

which implies that feasibility of equilibrium E23 auto-
matically implies that predators will invade the com-
munity of the two prey types. If E13 is feasible then the
second prey type will invade the equilibrial community
consisting of the first prey type and predators if

a2 *1&a1*2>&
ma1*2

(e1&mh1) K1 *1

(8)

and, similarly, if E23 is feasible then the first prey type will
invade the equilibrial community consisting of the
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second prey type and predators if

a2 *1&a1*2<
ma2*1

(e2&mh2) K2*2

. (9)
Invasibility condition (8) can be rewritten as

*1 \a2 *1

a1*2

&1+>&
m

(e1&mh1) K1

(10)

and condition (9) as

*2 \1&
a1*2

a2*1+<
m

(e2&mh2) K2

. (11)

The prey type with higher ratio ai �*i is called the
keystone species (Paine, 1969; Holt, 1977; Vandermeer
and Maruca, 1998). It follows that the keystone prey type
will always invade the equilibrial community consisting
of the other prey type and predators. For example, if the
first prey type is the keystone species (a1 �*1>a2 �*2) then
it will always invade the system consisting of the second
prey type and predators because condition (11) will hold.
Under the same assumption condition (10) constrains
the possibility for the second prey type to invade the
community consisting of the first prey type and
predators. If, for example, the predator mortality rate m
is low or carrying capacity K1 is high the second prey
type cannot invade. This implies that in this case the
second prey type is in higher danger of being eliminated
from the community when environmental productivity
increases, or predator mortality rate decreases. If
a1 �*1=a2 �*2 , which is the case considered in Kr� ivan
(1996), then invasibility conditions (10) and (11) are
automatically satisfied. Invasibility conditions with
handling times set to zero (i.e., population dynamics is
described by the Lotka�Volterra model) are discussed in
detail in Holt (1977).

It is known that permanence implies automatically
feasibility (densities of all populations are positive) of the
interior equilibrium E (2) (Hofbauer and Sigmund, 1984).
In our case this can be easily verified directly. Indeed,
repellence of the boundary equilibria E13 and E23 implies
positivity of both prey densities in equilibrium E (2).
Positivity of the predator equilibrial density follows from
the repellence conditions and condition (4). Local
stability analysis of E (2) leads to very complex expres-
sions which do not seem to be readily interpretable.

To get permanence for (2) we have the following cases
with respect to the predator mortality rate; see Appen-
dix A:

(a)
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0<m<min { e1K1*1

1+h1K1*1

,
e2 K2*2

1+h2K2*2= .



This is the case in which both predator�prey systems
with one prey type missing do coexist because both
planar equilibria E13 and E23 are feasible (Fig. 1A). Due
to (7) equilibrium E12 repels interior trajectories, and E13

and E23 repel interior orbits if

&
ma1 *2

(e1&mh1) K1*1

<a2*1&a1 *2

<
ma2 *1

(e2&mh2) K2*2

. (12)

Note that if prey type 2 is the keystone species (a2 �*2>
a1 �*1), condition (12) can be satisfied only if K2 is not too
large, and, similarly, if prey type 1 is the keystone species
then K1 cannot be large. This means that in order to
satisfy invasibility condition (12), the keystone prey type
cannot have high carrying capacity, or it cannot strongly
dominate the other prey type in the sense that the two a�*
ratios do not differ too much. When a1 �*1 {a2 �*2 and
both K1 and K2 are large enough, then (12) will never
hold and (2) will not be permanent.

(b)

e2K2 *2

1+h2K2*2

<m<min { e1 K1 *1

1+h1K1 *1

,
e1K1*1+e2K2*2

1+h1 K1*1+h2K2 *2= .

In this case the only feasible planar equilibria are E12 and
E13 (Fig. 1B). E12 repels interior trajectories due to (6)
and E13 repels interior trajectories if (8) holds. For
example, this will be the case if the second prey type is the
keystone species.

(c)

e1 K1 *1

1+h1 K1*1

<m<
e2K2 *2

1+h2 K2 *2

.

In this case the only feasible planar equilibria are E12 and
E23 (Fig. 1C). E12 repels interior orbits due to (7) and E23

repels interior orbits if (9) holds which happens, for
example, if the first prey type is the keystone species.

(d)

e1K1*1 e2K2*2
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max {1+h1K1 *1

,
1+h2K2 *2=

<m<
e1K1*1+e2 K2 *2

1+h1K1*1+h2 K2*2

.

In this case neither E13 nor E23 is feasible, E12 repels inte-
rior trajectories, and no additional assumptions are
needed to have permanence of (2) (Fig. 1D).

The above results can be interpreted from the com-
munity ecology point of view. The case (a) considers the
situation in which predators can coexist with each of the
two prey types alone. Introduction of the missing prey
will result in permanence if (12) is satisfied which is
possible only if the two prey types do not differ too much
in their a�* value, or in other words, if the carrying
capacity of the keystone prey type is low. Cases (b) and
(c) describe the situation in which predators can coexist
with one prey type alone, but they cannot coexist with
the other prey type alone. Conditions which allow the
missing prey type to invade the predator�prey system are
less restrictive than those for case (a). For example, in
case (b) the three-dimensional system will be permanent
if the second prey type is the keystone species. If the first
prey type is the keystone species then the system with
generalist predators will be permanent only provided
that a1 �*1 is not too much higher than a2 �*2 , i.e., when
the keystone species is not strongly dominant over the
other prey type. Case (d) describes the situation in which
predators cannot coexist with any of the two prey types
alone, but coexistence is possible when both prey types
are in the community. Thus we see that conditions which
ensure permanence of the three-dimensional system
depend strongly on the predator mortality rate. For
higher predator mortality rates (case (d)) the conditions
are less restrictive than those for low mortality rates (case
(a)); see Fig. 2. We remark that parameters used in Fig. 2
are such that (5) is satisfied; i.e., no population cycles
appear in predator�prey dynamics if one prey type is
missing.

The shape of the set of parameters that lead to per-
manence for generalist predators depends on the relation
between the carrying capacities of the two prey types.
First assume that

e1 K1 *1

1+h1K1*1

<
e2 K2 *2

1+h2 K2*2

,

which happens if the carrying capacity of the first prey
type is low, namely

K1<
e2 K2*2

*1(e1+K2*2(e1h2&e2h1))
. (13)

Kr� @van and Sikder
Because

e2K2 *2

*1(e1+K2*2(e1 h2&e2 h1))
<x*1 ,
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it follows that (13) can be satisfied only if the carrying
capacity of the more profitable prey type is lower than
the switching density, i.e., K1<x*1 . The parameter region
leading to permanence looks as in Fig. 2A.

Now assume that

e2 K2 *2

1+h2K2*2

<
e1K1 *1

1+h1 K1*1

<
e1K1*1+e2 K2*2

1+h1K1*1+h2 K2*2

.

This is satisfied if

e2K2 *2

*1(e1+K2*2(e1 h2&e2h1))
<K1<x*1 . (14)

The parameter region leading to permanence looks as in
Fig. 2B.

If the carrying capacity of the more profitable prey
type is higher than the switching density then

e1K1 *1

1+h1 K1*1

>
e1K1 *1+e2K2*2

1+h1K2 *1+h2 K2*2

and the region of the parameter space where permanence
holds is shown in Fig. 2C.

PERMANENCE FOR SPECIALIST
PREDATORS

Here we consider the case in which predators specialize
only on the more profitable prey type and the alternative
prey type is excluded from predator diet (u2=0). Pop-
ulation dynamics is then described by system (3), which
has two planar equilibria E12 and E13 . These two equi-
libria are the same as those for system (2). Again, we
assume that if the boundary limit cycle exists then it
repels interior trajectories. If E13 is feasible then it always
repels interior orbits, and E12 repels interior trajectories
if

m<
e1*1 K1

1+h1 *1K1

; (15)

FIG. 1. This figure shows four possible scenarios that lead to per-
manence of (2). In order for (2) to be permanent all planar equilibria
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must repel interior orbits. In (A) the three planar equilibria E12 , E13 ,
and E23 are feasible and they are repelling interior trajectories. In (B)
and (C) only one of the two planar equilibria E13 and E23 is feasible and
repelling. In (D) E13 and E23 do not exist. In all cases it is trivial to see
that boundary equilibria are acyclic.
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see Appendix B. Since (15) is equivalent with feasibility of
E13 , it follows that (3) is permanent if and only if E13 is
feasible. Note that feasibility of E13 is equivalent with the
existence of a feasible interior equilibrium

E (3)=\ m
*1(e1&h1m)

, K2 ,

a1e1(e1K1 *1&(1+h1K1*1) m)
K1*2

1(e1&h1m)2 + .

Since x2 is independent of x1 ad x3 and it converges to
K2 , every trajectory of (3) converges to a plane described
by x2=K2 . In this plane the dynamics of (3) is described
by a two-dimensional system for the first prey and
predator. Thus, the system in which predators specialize
on the more profitable prey type is permanent only if (15)
holds. If the mortality rate m is large (i.e., when opposite
inequality in (15) holds) then the prey population cannot
support the predator population, which will die out.
Compared with generalist predators we see that condi-
tions that imply permanence for specialist predators are
much less restrictive. In Fig. 3 the region of the parameter
space where permanence holds when predators specialize
on the more profitable prey type is shown for the same set
of parameters as in Fig. 2C.

PERMANENCE FOR OPTIMALLY
FORAGING PREDATORS

Now we consider the case in which predators follow
optimal prey choice. We show that the parameter space
that leads to permanence of (1) driven by optimal forag-
ing strategy is larger than for the case in which predators
are generalists and they choose their diet in a non-adap-
tive way.

As in the previous parts we assume that if a boundary
limit cycle exists then it repels interior trajectories. The
key observation is the fact that system (3), which
describes the dynamics when predators feed only on the
more profitable prey type, has only two planar equilibria
E12 and E13 , and the alternative prey type, not being

FIG. 2. In this figure the regions of parameter space that lead to pe
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capacities. Here m1=e2 K2*2�(1+h2K2 *2), m2=e2�h2 , m3=(e1 K1*1+e2K
this plot the following values of parameters were chose: a1=1, a2=2, e1=4
condition (5); i.e., no predator�prey cycles appear when one prey type is m
carrying capacities satisfy (14) (K1=0.2, K2=1), and in (C) the more prof
K1>x*1 (K1=1, K2=1).
nence for generalist predators are shown for various values of carrying

eaten, can always invade the community. We will con-
sider two cases depending on the position of the switch-
ing threshold x*1 with respect to the carrying capacity K1

of the more profitable prey type. First we assume that
K1<x*1 , which happens if the carrying capacity of the
more profitable prey type is low, or prey types do not
differ too much in their profitability which leads to
high values of the switching threshold. Since the density
of the more profitable prey type is bounded by K1 ,
predators will never switch to exclude the alternative
prey type from their diet and will always behave as
generalists. Thus, the results concerning system per-
manence driven by optimal foraging strategy will be the
same as those for the case of generalist predators dis-
cussed earlier.

Next we assume that K1>x*1 . This condition is likely
to be satisfied provided that either the profitability of the
two prey types differs one from another significantly
(e1 �h1 is sufficiently larger than e2 �h2), or the carrying
capacity K1 for the more profitable prey type is high.
Since condition K1>x*1 implies that E12 belongs to
G2 where predators behave as specialists, E12 repels
interior trajectories provides that (15) holds. Further,
condition K1>x*1 leads to the occurrence of switching
in predator behavior, and, moreover, it implies the
ordering

e2K2*2

1+h2 K2*2

<
e2

h2

<
e1K1 *1+e2 K2*2

1+h1K1 *1+h2 K2*2

<
e1K1 *1

1+h1 K1*1

<
e1

h1

. (16)

In turn, this ordering implies the occurrence of the
following cases which lead to permanence; see
Appendix C:

(Aa)

0<m<
e2 K2 *2

1+h2K2*2

.

In this case E13 and E23 are feasible and E13 belongs to
G1. E12 always repels interior orbits and (1) is permanent
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2 *2)�(1+h1K1*1+h2K2*2), and m4=e1K1*1 �(1+h1 K1*1), where for
, e2=1, h1=h2=0.5, and *1=*2=2. This choice of parameters satisfies
issing. In (A) carrying capacities satisfy (13) (K1=0.05, K2=1). In (B)
itable prey type carrying capacity is above the switching threshold; i.e.,
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FIG. 3. In this figure the region of parameter space that leads to per
used in Fig. 2C.

provided that E13 and E23 repel interior orbits, which
happens if (12) holds (Fig. 4A).

(Ab)

e2 K2*2

1+h2K2*2

<m<
e2

h2

.

In this case E23 is not feasible and E13 is in G1. E12 repels
interior trajectories and (1) is permanent if (8) holds
(Fig. 4B).

(Ac)

e2

h2

<m<
e1 K1 *1

1+h1 K1*1

.

In this case E23 is not feasible and E13 is in G2. In G2

dynamics of (1) driven by optimal foraging strategy is
described by (3), for which E13 always repels interior
orbits. Therefore, no additional constraints are necessary
to ensure permanence of (1) driven by optimal foraging
strategy (Fig. 4C).

In Fig. 5 the region of parameter space in which the
permanence of (1) when driven by optimal foraging
strategy is shown for the case K1>x*1 . We see that com-
pared to generalist predators (see Fig. 2C) the parameter
space leading to permanence is larger for optimally
foraging predators, but smaller than that for specialist
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predators (see Fig. 3). When the predator mortality rate
is lower than m2=e2 �h2 , the ordering of (16) implies that
the conditions for permanence for optimal foragers (Aa)
and (Ab) are the same as are the conditions (a) and (b)
nence for specialist predators is shown for the same parameters that are

for permanence for generalist predators. These condi-
tions ensure that neither of the two prey types will be
driven to extinction by predation. When predator mor-
tality rate is above m2 , for optimally foraging predators
planar equilibrium E23 is not feasible and E13 always
repels interior trajectories. This means that neither of the
two prey types can be driven to extinction due to preda-
tion and the situation is qualitatively the same as that for
predators which specialize on the more profitable prey
type. Thus, the set of parameters that lead to permanence
for optimally foraging predators is obtained as a com-
bination of these parameters for generalist (for m<m2)
and specialist predators (for m>m2). The reason optimal
foraging behavior of predators enlarges the region of
parameter space that leads to permanence is that for
predator mortality rates which are higher than the
profitability of the second prey type (case (Ac)) neither of
the two prey populations can be driven to extinction by
predation. Indeed, for

e2

h2

<m<
e1 K1 *1

1+h1 K1*1

and due to the ordering given by (16) persistence for
generalist predators is given by (b) while that for
optimally foraging predators, by (Ac). Thus, in order to
have permanence for generalist predators the alternative
prey type must be able to invade the community consist-

Kr� @van and Sikder
ing of the first prey type and predators. This is so if, for
example, the alternative prey type is the keystone species.
However, under the above assumptions, for optimally
foraging predators the alternative prey type can always



FIG. 4. This figure shows the acyclicity of the boundary equilibria
and permanence of system (1) driven by optimal foraging strategy. In
all cases E12 is in G2. In (A) E13 and E23 exist in G1. If E23 does not exist,
then we get two cases: E13 exists in G1 (B) or E13 exists in G2(C).

invade when the system consisting of the first prey type
and predators is at E13 equilibrium because at this equi-
librium predators do not feed on the less profitable prey

Optimal Foraging
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type. This is because as the more profitable prey type
becomes abundant, predators exclude the alternative
prey type from their diet which then recovers until it is
included again in the predator diet.
DISCUSSION

In this paper we studied the effects of three types of
predator behavior on the permanence of one-predator�
two-prey population dynamics. These types of behavior
were: (i) predators specialize only on the more profitable
prey type; (ii) predators are non-adaptive generalists
��they feed on every encountered prey; and (iii) pre-
dators are adaptive generalists��they behave as optimal
foragers. For all three types of behavior we compared the
set of parameters that leads to permanence of all three
populations. The largest region of parameter space that
leads to permanence is for predators that specialize on
the more profitable prey type (Fig. 3). This is because, in
this case, the alternative prey type not being preyed upon
grows logistically and therefore it will always be present.
Thus, permanence of a three-dimensional system reduces
to permanence of a system which consists of the more
profitable prey type and predators only. This model is the
Rosenzweig�MacArthur predator�prey model which has
one equilibrium. This equilibrium, if positive (see condi-
tion (15)), either is stable or a stable limit cycle exists due
to the paradox of enrichment. In both cases predators
coexist indefinitely with prey and the model is therefore
permanent. If predators behave as generalists and they
include the alternative prey type in their diet, this gives
more restrictive conditions for permanence of the model
(Fig. 2). Such more restrictive conditions are due to the
fact that we have to ensure that predators do not drive
any of the two prey types to extinction. Holt (1977)
showed that by including an alternative prey type in pre-
dators' diet the predator equilibrium density increases
and the original prey type suffers heavier predation. This
leads to lower equilibrium density of the original prey
type, or even to exclusion of the original prey type. This
indirect effect of one prey type on the other prey species
is called predator-mediated apparent competition. The
shape of the parameter set that leads to permanence
depends on the environmental productivity. If produc-
tivity is low, i.e., if the carrying capacity of the more
profitable prey type is below the switching threshold,
then the set of parameters for which the two-prey�one
predator system is permanent is shown in Figs. 2A and
2B. If the carrying capacity for the more profitable prey
type is above the switching threshold, then the set of
parameters leading to permanence is given in Fig. 2C.

If predators follow the optimal diet rule then we show
(Fig. 5) that when the carrying capacity of the more
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profitable prey type is above the switching threshold then
the region of parameter space that leads to permanence
for optimal predators is larger than that for generalist
predators (Fig. 2C) but smaller than that for specialist
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FIG. 5. In this figure the region of parameter space that leads to pe
used in Fig. 3C.

predators (Fig. 3). This is because for predator mortality
rates which are lower than the profitability of the alter-
native prey type the set of parameters leading to per-
manence for optimal predators is the same as that for
generalist predators while for higher predator mortality
rates the set of parameters leading to permanence for
optimal foragers is the same as that for specialist
predators. This is due to the fact that for low predator
mortality rates (m<e2 �h2) the conditions that lead to
permanence are the same for both generalist and optimal
predators. However, for higher predator mortality rates
the alternative prey type cannot be driven to extinction
because when the more profitable prey type is abundant,
predators exclude the alternative prey type from their
diet. This reduces predation pressure on the alternative
prey type which can survive in the community.

The results of this paper suggest that adaptive (i.e.,
optimal) behavior which maximizes fitness, measured by
instantaneous per capita growth rate, may be an impor-
tant mechanism maintaining high biodiversity. A similar
conclusion was also obtained in some other papers that
analyzed the effects of various adaptive animal behaviors
on population dynamics within the predator�prey and
host�parasitoid models: optimal foraging of predators
(Fryxell and Lundberg, 1994; Kr� ivan, 1996; Schmitz et
al., 1997), optimal patch use (Colombo and Kr� ivan,
1993; van Baalen and Sabelis, 1993; Kr� ivan, 1997a),
adaptive host-feeding (Yamamura and Yano, 1988; Kidd
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and Jervis, 1989, 1991; Briggs et al., 1995; Kr� ivan,
1997b), adaptive superparasitism (Sirot and Kr� ivan,
1997), adaptive searching for food versus parasitizing
(Kr� ivan and Sirot, 1997), and adaptive use of refuges by
nence for optimal predators is shown for the same parameters that are

prey (Ives and Dobson, 1987; Sih, 1987; Ruxton, 1995:
Kr� ivan, 1998). For example, Fryxell and Lundberg
(1994) assumed a gradual change in profitability of inclu-
sion of the less profitable prey type. However, this
gradual change described by a sigmoidal function leads
to expressions in permanence analysis which are very dif-
ficult to analyze. Our approach, based on the direct use
of the step function, allows us to obtain simple conditions
ensuring permanence.

In predator�prey models with Holling type II func-
tional response limit cycles occur. Numerical simulations
such as those given in Kr� ivan (1996) show that such fluc-
tuations in population densities may occur also in the
two-prey�one-predator system considered in this paper.
If there are fluctuations with large amplitude, the system
is still permanent from a mathematical point of view, but
in reality extinction has to be expected. It was shown in
Kr� ivan (1996) that optimal foraging reduces the amplitude
of fluctuations that occur for generalist predators.

The key condition under which optimal foraging in-
creases permanence is that the carrying capacity of the
more profitable prey type is above the switching density.
This condition is more likely to be satisfied, if, for
example, the profitability of the alternative prey type is
sufficiently lower than the profitability of the better prey
type, or the carrying capacity of the more profitable prey
type is sufficiently high.

In applications of permanence results dynamical

Kr� @van and Sikder
systems are typically assumed to be described by differen-
tial equations with smooth right-hand sides (Hutson
and Schmitt, 1992; Sikder and Roy, 1994) for which
continuous dependence of trajectories on initial data



automatically holds. This condition allowed us to apply
the permanence results of Butler and Waltman and we
showed that this theory is a useful tool in some models
that are described by differential inclusions. Such models
arise naturally when the effects of optimal adaptive
behavior on population dynamics are studied.

We remark that the model considered in this paper is
purely deterministic. Permanence in this setting means
only that population densities are bounded and they will
be larger than some positive quantity which is not
explicitly specified. Therefore, this lower positive bound
can be rather small and stochastic effects (e.g.,
demographic noise) may lead to population extinction.
For stochastic systems the concept of permanence is
called stochastic boundedness (Chesson, 1978).

Stochastic boundedness means that for every positive
probability = there is an upper and lower bound such that
the average densities of populations are within these
bounds with probability at least 1&=. Thus, for deter-
ministic systems these two definitions give the same
notion of permanence.

The permanence analysis given in this paper does not
provide any detailed insight into the behavior of interior
trajectories. However, for the purposes of community
ecology which focuses on species composition rather
than on details of dynamics this may suffice.

In this paper we assumed that both prey populations
grow in the absence of predators logistically. If the prey
population grows exponentially, then still we get that the
indefinite coexistence of all three populations is possible,
but due to the exponential growth the alternative prey
type will grow to infinity. We remark that due to such
unboundedness of trajectories application of the Butler�
Waltman theorem is impossible. The Butler�Waltman
permanence theory can also be applied to more general
Gause or Kolmogorov two-prey�one-predator models.
For these models prey isoclines may not be unimodal
and multiple steady states in the predator�prey sub-
systems might appear. However, this is not an obstacle
for applying the permanence theory, although inva-
sibility conditions may become more complicated.

APPENDIX A: PERMANENCE OF (2)

Proposition 1. Assume that if a boundary limit cycle
of (2) exists then it repels interior trajectories. System (2)
is permanent if one of the following conditions holds:

Optimal Foraging
(a)

m<min { e1 K1*1

1+h1 K1*1

,
e2K2*2

1+h2 K2*2= (17)
and

&
ma1*2

(e1&mh1) K1*1

<a2*1&a1 *2

<
ma2 *1

(e2&mh2) K2*2

. (18)

(b)

e2 K2 *2

1+h2 K2*2

<m

<min { e1K1*1

1+h1K1 *1

,
e1 K1*1+e2K2*2

1+h1K1*1+h2K2 *2= , (19)

and

&
ma1*2

(e1&mh1) K1 *1

<a2*1&a1*2 .

(c)

e1 K1 *1

1+h1 K1*1

<m<
e2K2*2

1+h2 K2 *2

,

and

a2*1&a1*2<
ma2*1

(e2&mh2) K2*2

.

(d)

max { e1K1*1

1+h1K1*1

,
e2K2*2

1+h2K2 *2=
<m<

e1K1 *1+e2 K2 *2

1+h1K1*1+h2 K2*2

.

Proof. First we note that the trajectories of (2) are
uniformly bounded in the set

[(x1 , x2 , x3) # R3 | e1 x1+e2x2+x3�M],

where we take M larger than K1�e1 and K2 �e2 . Now the
proof consists in verifying the three conditions of the
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theorem of Butler and Waltman (1986) which we recall
here. The first condition requires that the stable manifold
of any boundary invariant set has an empty intersection
with the positive octant. The second condition requires



that all boundary invariant sets form an acyclic sequence;
i.e., no subset of these sets forms a cycle. The last condi-
tion is that all boundary invariant sets are isolated, which
is automatically satisfied if they are hyperbolic (i.e., all
eigenvalues have non-zero real parts in the case of equi-
libria). By 6i (i=1, 2, 3) we denote the part of the
boundary of R3

+ for which the i th population is missing,
i.e., x i=0 (i=1, 2, 3). Since we assume that if boundary
limit cycles exist then they repel interior trajectories, we
have to study only the repelling properties of boundary
equilibria. E12 # 63 is always feasible and it is also
globally asymptotically stable in the plan 63 . Moreover,
since

e2 K2 *2

1+h2 K2*2

<
e1K1 *1+e2 K2*2

1+h1K1 *1+h2 K2*2

it follows that the condition

m<
e1K1 *1+e2 K2*2

1+h1 K1 *1+h2K2 *2

,

which implies that x$3 �x3 evaluated at E12 is positive,
holds in all cases. Thus, E12 repels interior trajectories. E0

is locally unstable along the x1 and x2 directions but
locally stable along the x3 direction. By M we denote the
set of all feasible boundary equilibria. Since

x$3
x3 }Ei

=
ei* iKi

1+h i*i Ki
&m, i=1, 2

it follows that if Ei3 is feasible then Ei repels boundary
trajectories along the x3 direction. Moreover, E1 always
repels boundary trajectories in the x2 direction and
similarly for E2 . Thus, all the boundary equilibria are
isolated.

(a) From inequality (17) it follows that

M=[E0 , E1 , E2 , E12 , E13 , E23];

see Fig. 1A. Since E13 and E23 are feasible, equilibrium Ei

(i=1, 2) repels orbits locally along the x3 direction. Due
to condition (18) both E13 and E23 repel the interior
orbits. Thus, the boundary equilibria of (2) have no
stable manifold intersecting the interior of the positive
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octant. From the above analysis of the boundary flow the
phase portrait for each two-dimensional subsystem
reveals the fact that no equilibrium is chained to itself
and no subsets of M form a cycle; see Fig. 1A. If repelling
boundary limit cycles exist the situation is similar. Thus,
M is acyclic; that is, the boundary flow of (1) is acyclic
and the proof of permanence follows from the theorem of
Butler and Waltman (1986).

(b) In this case, the set of feasible boundary equi-
libria is

M=[E0 , E1 , E2 , E12 , E13].

The behavior of trajectories in the neighborhood of
boundary equilibria is the same as that in case (a) with
the exception that E2 is locally stable along the x3 direc-
tion; see Fig. 1B. So the proof follows from Part (a).

(c) This case is similar to (b) if we replace E13 by E23

and E2 by E1 ; see Fig. 1C.

(d) In this case M=[E0 , E1 , E2 , E12], and the proof
is the same as in the previous case; see Fig. 1D.

APPENDIX B: PERMANENCE OF (3)

Proposition 2. Assume that if a boundary limit cycle
of (3) exists then it repels interior trajectories. Let

m<
e1K1 *1

1+h1 *1 K1

(20)

Then system (3) is permanent.

Proof. Under the given conditions, E13 is feasible and
globally asymptotically stable in the plane 62 . Since

x$2
x2 }E13

=a2 ,

it follows that E13 repels the interior orbits. Moreover,

x$3
x3 }E12

=
e1 *1 K1

1+h1 *1K1

&m;

i.e., the feasibility of E13 implies that E12 repels interior
trajectories. The remaining part of the proof is the same
as that of part (b) of Proposition 1.

Kr� @van and Sikder
APPENDIX C: PERMANENCE OF (1)

Proposition 3. Assume that if a boundary limit cycle
of (1) exists then it repels interior trajectories.



A. Let K1>x*1 . Then system (1) governed by optimal
foraging strategy is permanent if one of the following con-
ditions holds:

(Aa)

m<
e2K2 *2

1+h2 K2 *2

,

and

&
ma1 *2

(e1&mh1) K1*1

<a2*1&a1 *2

<
ma2 *1

(e2&mh2) K2*2

. (21)

(Ab)

e2 K2*2

1+h2K2*2

<m<
e2

h2

,

and

&
ma1*2

(e1&mh1) K1 *1

<a2*1&a1*2 .

(Ac)

e2

h2

<m<
e1 K1 *1

1+h1 K1*1

.

B. Let K1<x*1 . Then system (1) governed by optimal
foraging strategy is permanent if one of the conditions of
Proposition 1 holds.

Proof. Since the theorem of Butler and Waltman
(1986), which we want to use, is for continuous dynami-
cal systems we have to prove first that trajectories of (1)
driven by optimal foraging strategy depend continuously
on the initial condition. This follows from the fact that
solutions of (1) driven by optimal foraging strategy are
uniquely defined on any forward time interval (Kr� ivan
1996) and from the corollary on p. 93 in Filippov (1988).
Moreover, we note that in the boundary plane 62 the
right-hand sides of (2) and (3) coincide; i.e., (1) driven by
optimal foraging strategy is described in 62 by a differen-
tial equation with a smooth right-hand side.

Optimal Foraging
(A) Note that if K1>x*1 then (16) holds. In this case
E12 lies in G2 and it is a repeller with respect to the inte-
rior flow because in all three cases the assumptions of
Proposition 3 together with (16) imply that m<e1K1*1�
(1+h1 K1*1). In what follows we will show that in all
cases the boundary equilibria are repelling interior tra-
jectories. The proof of acyclicity and isolatedness follows
the same lines as in the proof of Proposition 1 and it is
clear from Fig. 4. To prove permanence we have to show
that planar feasible equilibria are repelling interior
orbits.

(Aa) In this case (16) implies that E13 and E23 are
feasible and E13 is in G1; see Fig. 4A. Condition (21)
implies that E13 and E23 repel interior orbits.

(Ab) In this case assumptions of proposition and (16)
imply that only E13 is feasible, it lies in G1, and it repels
interior trajectories (due to (8)); see Fig. 4B.

(Ac) In this case assumptions of proposition and (16)
imply that only E13 is feasible and it lies in G2; see
Fig. 4C. In this case E13 is always repelling interior trajec-
tories.

(B) If K1<x*1 then E12 and E13 , if feasible, belong to
G1 where system (1) driven by optimal foraging strategy
is described by (2). Therefore Proposition 1 applies.
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