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ABSTRACT

Ecological studies of direct and indirect interactions in food webs usually represent systems as
unique configurations, such as keystone predation, exploitative competition, trophic cascades
or intra-guild predation. Food web dynamics are then studied using model systems that are
unique to the particular configuration. In an endeavour to develop a more unified theory of
food web structure and function, we explore here model systems in which a consumer species
forages adaptively on two resource species along a gradient of environmental productivity
and predation mortality. We explore the nature of trophic interactions under three different
assumptions about what constitutes a resource and the spatial distribution of resources. We first
examine a consumer (herbivore) feeding on two resources (plants) that are distributed randomly
in the environment. We extend this to the case in which each plant resource occurs in a discrete
patch. Finally, we examine a variant of the patch selection case in which the consumer (an
omnivore) feeds within and among two trophic levels. Our modelling shows that single systems
of predators, adaptive herbivores and resources can display food chain and food web topologies
under different levels of productivity and predator abundance. For example, adaptive omnivory
causes the exploitative competition, linear food chain and multi-trophic level omnivory to be
displayed by a single system. Thus, different food web topologies, normally thought to be
unique configurations in nature, can be different manifestations of the same dynamical system.
This suggests that tests for top-down or bottom-up control by manipulating predator
abundance or nutrient supply to resources could be confounded by topological shifts in the
system itself.
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INTRODUCTION

Ecological studies of direct and indirect interactions in food webs typically represent
systems in terms of simple but altogether unique configurations or topologies (e.g. Menge,
1995; Abrams et al., 1996; McCann et al., 1998). These topologies are then classified by
the nature of the dominant ecological interaction – for example, keystone predation,
exploitative competition, apparent competition, trophic cascade, intra-guild predation
(Menge, 1995; Abrams et al., 1996; McCann et al., 1998). There is an advantage to using
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this kind of taxonomy when developing ecological theory. Models that characterize
the essence of a dominant interaction using a conceptually simple species configuration can
lead to powerful insights about the way direct and indirect effects may play themselves out
over time. The downside to such an approach is that one is left with the impression that each
topologically unique system is a fixed entity requiring a correspondingly unique model
formalism to describe its dynamics. Such a perspective precludes any hope of developing
a more unified theory of direct and indirect interactions in ecological systems.

We show here, using principles of adaptive foraging, that topologically different food web
structures may in fact be different manifestations of the same dynamical system. Reaching
this conclusion, however, requires a slight shift from the normal approach used to model
dynamics of ecological food webs. Normally, a dynamical systems model is formalized to
represent some specific configuration of interacting species. The dynamics of that system
are then examined by altering factors intrinsic to the species populations themselves
(e.g. parameters describing population growth rates and magnitudes of interaction
strengths, or shapes of functional responses and the nature of density dependence).
One then ascertains whether the qualitative structure of the system remains stable to
quantitative changes in intrinsic factors.

Such an approach, however, overlooks a potentially rich range of qualitative outcomes
that may arise when exploring the effects of changing extrinsic factors (e.g. changes in
predator and resource abundance) on the structure of systems. Specifically, consumers
are known to alter their resource choice in the face of changing resource and predator
abundances, which has implications for community structure and dynamics. The interplay
between diet choice and consumer–resource dynamics has been studied intensively under
various assumptions on population dynamics and spatial distribution of resources (e.g.
Tansky, 1978; Teramoto et al., 1979; Gleeson and Wilson, 1986; Abrams, 1987, 1999;
Abrams and Matsuda, 1993; Colombo and Křivan, 1993; Fryxell and Lundberg, 1993,
1994, 1997; Matsuda et al., 1993; Křivan, 1996, 1997, 1998; Holt and Polis, 1997; McCann
and Hastings, 1997; Boukal and Křivan, 1999; Genkai-Kato and Yamamura, 1999; Křivan
and Sikder, 1999; Luttbeg and Schmitz, 2000; van Baalen et al., 2001; Křivan and Eisner,
2003). We extend this line of research by considering how consumer adaptive foraging in
response to such extrinsic factors can lead to topologically different states of a food web
during the time evolution of the system’s dynamics. This problem, although tightly related
to previous studies, has not been, to our knowledge, addressed explicitly. Moreover, using a
uniform modelling approach throughout this article allows us to compare effects of basic
behavioural and population models on food web topologies. We show here that there may
not be a single rigid topological structure that characterizes interactions among a given
complement of species in a food web.

This has important implications for conclusions drawn from perturbation experiments
that test for top-down or bottom-up control in food webs by manipulating predator
abundance or nutrient supply to resources. The implicit assumption during the execution of
these kinds of field experiments is that the feeding linkages among the species in the food
web (food web topology) remains intact whenever nutrients or predators are manipulated.
We show here that this assumption may not always hold. Thus, any conclusions that one
draws about important drivers of trophic control in food webs (i.e. top-down vs bottom-up
control in a system) may be confounded by shifting food web topology.

The core module in all of our modelling is a consumer–resource system in which
a consumer species utilizes two resource species. We then explore the nature of trophic
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interactions under three different assumptions about what constitutes a resource and the
spatial distribution of resources. We first examine the case in which an adaptive consumer
(herbivore) feeds on two resources (plants) that are distributed randomly in the environ-
ment. We then extend this to the case in which each resource occurs in a discrete patch and
predators also display adaptive foraging behaviour. Finally, we examine a variant of the
patch selection case in which the top predator (an adaptive omnivore) feeds within and
among two trophic levels. We assume that the resource species have different nutritional
value and that the adaptive consumer species is subject to mortality risk from a top predator
species. We assume that consumers trade-off foraging against avoidance of predation
mortality in ways that maximize per capita fitness, measured as net per capita reproduction.
We characterize the link between resource distribution and consumption using the familiar
prey and patch models of diet selection (Stephens and Krebs, 1986). Such models assume
that consumers are completely omniscient.

RANDOM RESOURCE DISTRIBUTION

This scenario is based on the assumption that consumers are limited by search and handling
time and encounter resources randomly, a case for which the classic prey model of adaptive
foraging (Stephens and Krebs, 1986) is an appropriate descriptor of consumer–resource
interactions. We explore how increasing consumer mortality caused by predation (i.e. the
predation gradient) alters resource selection and hence food web topology as the consumer
and resource species undergo dynamics.

We denote the primary resource as R1, the secondary resource as R2 and consumers as C.
In foraging jargon, resource 1 is the preferred resource and resource 2 is an alternative.
Population dynamical consequences of the prey model have been studied in detail by, for
example, Fryxell and Lundberg (1994, 1997), Křivan (1996), van Baalen et al. (2001) and
Křivan and Eisner (2003). Here, we use an extension of the model of van Baalen et al.
(2001), who assumed that the abundance of the alternative resource is relatively constant in
the environment. This effectively means that uptake of the alternate resource by consumers
is exactly compensated by resource production. This simplification is justified for many
arthropod consumers because they can rely on alternative food such as pollen or nectar, the
availability of which is unlikely to be influenced by the consumption (van Rijn and Sabelis,
1993; van Rijn and Tanigoshi, 1999). The presence of the alternative resource influences the
consumer per capita growth rate, which, in turn, has consequences for the abundance and
the dynamics of the primary resource population. The following model (without resource
density dependence) was proposed by van Baalen et al. (2001):

dR1

dt
= r1R1 �1 −

R1

K � −
λ1R1

1 + h1λ1R1 + u2(R1)h2λ2R2

C

(1)
dC

dt
= C � e1λ1R1 + e2u2(R1)λ2R2

1 + h1λ1R1 + u2(R1)h2λ2R2

− m�
Here r1 denotes resource 1 per capita growth rate, K is the resource 1 carrying capacity,
ei is the proportionality constant that describes the efficiency with which resources are
converted to new consumers, hi is the handling time an average consumer needs to process
a unit of resource i, λi are the cropping rates of resource i by a searching consumer, and
m is the consumer mortality rate which is dependent on predator (P) density (m = m(P)).
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The above model assumes that the first resource is more profitable than the second resource
(e1/h1 > e2/h2). Control parameter u2 describes diet choice,







0 if R1 > R*1

u2(R1) = [0, 1] if R1 = R*1

1 if R1 < R*1

where

R*1 =
e2

λ1 (e1h2 − e2h1)
(2)

These are well-known results of optimal diet selection theory, which extends to the case of
diet selection for multiple resources (Werner and Hall, 1974; Charnov, 1976; Stephens and
Krebs, 1986).

We now examine food web topology along the consumer mortality gradient. Depending
on the consumer’s diet choice, model (1) has two possible interior equilibria. Equilibrium
E2 corresponds to the case where consumers feed on the more profitable resource only,
while equilibrium E1 corresponds to the case of feeding on both resources (Fig. 1). Thus,
equilibrium E2 corresponds to a food chain topology, while E1 corresponds to a food
web with two resources. If the consumer cannot expect to produce sufficient numbers of
offspring while feeding on resource 2 only to compensate for mortality, that is

m > e2/h2 (3)

then both equilibria are in the region of the resource 1–consumer phase space where
the food web topology is described as the linear chain (Fig. 1C and D). If the opposite
inequality holds, then both equilibria are in the part of the phase space where food web
topology is described as a food web (Fig. 1A and B). When resource limitation is strong
(i.e. K is small), then the population dynamics are effectively stabilized at an equilibrium
(Fig. 1A and C). In this case, we tend to see consumers specialize on the preferred resource
when predation mortality (m) is high, so that inequality (3) holds. Accordingly, the food web
topology will be a linear chain (Figs 1C and 2). The reason for this is that the profitability of
the alternative resource is low relative to the magnitude of predation mortality, such that it
is not worth eating the alternative resource. However, when predation mortality is reduced,
we should see the topology switch from a linear chain to a food web with two resources
(Figs 1A and 2).

Enriching the system leads to resource 1–consumer low-amplitude fluctuations along
a limit cycle due to the ‘paradox of enrichment’ (Fig. 1B and D; Rosenzweig, 1971). When
the amplitude of the limit cycle is small (i.e. the resulting limit cycle does not reach the
dashed vertical line in Fig. 1), the basic topologies associated with the different predation
mortalities will be preserved (i.e. linear food chain under high mortality, food web topology
under low mortality). For yet higher values of resource carrying capacity, the amplitude of
the resulting limit cycle increases, but resource switching effectively sets the upper bound
on the limit cycle amplitude by preventing it from crossing the switching line. Figure 1B
and D show the limit cycle (dashed line cycle) for the resource–consumer model without
switching and with switching (bold line cycle). It is clear that switching reduces fluctuations
in population densities. When enrichment is strong enough so that the resulting limit
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cycle touches the switching line (as in Fig. 1B and D), then we should also see a periodic
fluctuation from one food web topology to the other along the trajectory of the model
system (1).

The topology fluctuates during the course of consumers and resources undergoing
dynamics because, as resource abundance changes due to consumption, consumers must
update their decision-making, which then feeds back on resource choice and ultimately on
dynamics leading to new qualitative predictions about food web structure. This is an explicit
consequence of blending two different organizational scales (i.e. behavioural vs population)
in a single dynamical model.

The implication for field research is that manipulating mortality of consumers by
predation (i.e. changing predator density) should not only cause a reduction in consumer
density, but it should also alter food web topology to the extent that consumers may no
longer eat all of the available resource types. Enriching the environment will also cause
changes in food web topology, but in this case the strength of interactions among
consumers and resources will also vary as population dynamics undergo periodic
fluctuations. Thus, field experiments that are not sampled over the longer term may arrive at

Fig. 1. Resource 1–consumer phase plane with resource and consumer isoclines (dotted lines) for
optimal diet model. When the consumer mortality rate is low (m = 0.4), the resource 1 equilibrium
density is lower than the switching density (A and B). In contrast, for higher resource mortality rates,
the equilibrial resource 1 density is above the switching density (C and D; m = 1). For low environ-
mental productivities (K = 5 in A and C), population densities are stabilized at an equilibrium. Enrich-
ing the environment (K = 20 in B and K = 9 in D) leads to the emergence of a locally stable limit cycle
(bold line) of smaller amplitude when compared with non-flexible consumers (dashed line cycle).
Parameters: R2 = 10, r1 = 1.2, e1 = 1, e2 = 0.1, h1 = 0.2, h2 = 0.2, λ1 = 1, λ2 = 1.
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a biased impression about the overall importance of cascading effects. Specifically, one may
conclude that they either may be very important or extremely weak depending on the
trajectory in abundance of species in each trophic level before the time of sampling. This
analysis predicts that in environments with strong predation, consumers should be more
specialized than in those where predation risk is low (Fig. 2). In essence, manipulating
predation can cause the nature of the cascading effects in a single food web to be altered.
Under certain levels of predation, we may see the system display a community cascade,
sensu Polis (1999), in which the indirect effects of top predators are manifest widely among
species of resources; under other levels of predation, we may see the same system switch
to a species cascade, sensu Polis (1999), in which the indirect effects are manifest narrowly in
a single resource species. This occurs despite the presence of other potential resources
available in the system.

PATCHY RESOURCE DISTRIBUTION

We now turn to the case in which resources are distributed patchily in the environment. This
case becomes a bit more complicated to model because it requires consideration of two
types of predator hunting modes: sit-and-wait and actively hunting (Schmitz and Suttle,
2001).

In the case of the sit-and-wait predator, we will assume that consumers move from patch
to patch to maximize their per capita fitness, but we also assume that top predators do not
respond adaptively to changes in consumer use of patches. Predators merely cause a fixed
level of mortality in one patch or another. To understand explicit linkages between model
parameters and corresponding food web topologies, we assume instantaneous patch
switching.

We then consider the case in which consumers select patches on the basis of resource
quality and predation risk and predators actively hunt consumers as they move from one

Fig. 2. Shift in the food web topology along the consumer mortality gradient for the optimal
diet choice model with bottom-up regulation when the system is at the equilibrium. As consumer
mortality increases due to increased predation, consumers switch (at m = e2/h2) from being generalist
to more specialized feeding on the preferred food type.
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patch to another. Thus, consumers and predators can be said to behave adaptively to each
other’s presence. Understanding interactions in this system requires taking a game-theoretic
approach to identify the appropriate distribution of consumers between the two resource
patches. This is because patch selection behaviour depends not only on resource abundance
and predation mortality, but also on the density of conspecifics in a patch. This case can be
examined by extending the ideal free distribution (IFD) concept originally defined for a
single species (Fretwell and Lucas, 1970) to our two-species setting. This extension defines
IFD for a predator–prey system as a Nash-Pareto (Křivan, 1997; Hofbauer and Sigmund,
1998) equilibrium of the corresponding game.

In any case of patch selection, consumers face a trade-off in that feeding on resources in
one patch precludes them from physically being present in and feeding on resources in
another patch. Thus, the most constraining factor on intake rate is the effort consumers
expend feeding in a particular patch.

Predators do not actively hunt consumers

In the interest of keeping our models mathematically simple, we start our analyses under the
assumption that resource handling times are zero. This allows us to consider population
dynamics using an extension of the classical Lotka-Volterra consumer–resource model as a
generic framework (Fryxell and Lundberg, 1994, 1997; Křivan, 1997):

dR1

dt
= r1R1 �1 −

R1

K1
� − u1λ1R1C

dR2

dt
= r2R2 �1 −

R2

K2
� − u2λ2R2C (4)

dC

dt
= (e1λ1R1 − m1)u1C + (e2λ2R2 − m2)u2C

In this model, the control ui (i = 1, 2) specifies the proportion of an average consumer’s
lifetime that is spent feeding in patch i, thus u1 + u2 = 1. Following Křivan (1997), who
analysed a similar system but without resource density dependence, we will assume that
adaptive consumers maximize their net per capita reproduction rate (dC/(Cdt)), which leads
to the following choice of controls. If e1λ1R1 − m1 > e2λ2R2 − m2, then patch 1 is more profit-
able (u1 = 1); if the opposite inequality holds, then all consumers feed in patch 2 (u1 = 0).

If we now assume that consumers move from a patch of one resource type to a patch of
another resource type in such a way that consumer fitness is maximized, we arrive at two
‘pure’ strategies (i.e. stay in patch 1 only or stay in patch 2 only) with the corresponding
equilibria

R1 =
m1

e1λ1

R2 = K2

C =
r1(e1λ1K1 − m1)

e1K1λ1
2
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and

R1 = K1

R2 =
m2

e2λ2

C =
r2(e2K2λ2 − m2)

e2K2λ2
2

If both equilibria are positive – that is, resource productivities are high enough
(Ki > mi/(eiλi)) – then it turns out that neither of these equilibria is feasible. This is because
the first equilibrium (computed under the assumption that consumers stay in patch 1) lies in
the upper triangular part of the resource 1–resource 2 phase space (this equilibrium is
denoted as E1 in Fig. 3B and C) where all animals should occupy patch 2 only. Similarly, the
second equilibrium (computed under the assumption that consumers stay in patch 2) lies in
the part of the resource 1–resource 2 phase space where all consumers should occupy patch
1 only (equilibrium E2 in the lower triangular part of the phase space in Fig. 3B).

The population trajectories of model (4) tend to converge on the first equilibrium
(denoted as E1 in Fig. 3) whenever resource densities are such that the consumer fitness in
patch 1 is higher than that in patch 2 (i.e. when resource densities are in the lower right
triangle of the resource 1–resource 2 phase space, e1λ1R1 − m1 > e2λ2R2 − m2); otherwise,
densities converge to the second equilibrium (denoted as E2 in Fig. 3). Thus, trajectories are
pushed from both sides to the IFD plane – the location in the phase space where fitness in
both patch types equalizes

e1λ1R1 − m1 = e2λ2R2 − m2

which is presented graphically in Fig. 3A as a shaded plane and in Fig. 3B and C as a dashed
line. Numerical analyses of population dynamics of this system indicate that the trajectories
will converge to a new equilibrium point on the IFD plane (denoted as EIFD in Fig. 3B). This
equilibrium point lies at the intersection of the IFD line (dashed line in Fig. 3) with a curve
that is obtained by varying consumer patch preference u1 from zero to one (see dotted line in
Fig. 3B and C). This implies that the IFD distribution of consumers at this equilibrium is

u*1
u*2

=
r1e2λ

2
2K2(e1λ1K1 − m1)

r2e1λ
2
1K1(e2λ2K2 − m2)

Because the consumer IFD at the population equilibrium is a linearly decreasing function
of consumer mortality rate in patches containing more profitable resource 1 (m1; Fig. 4A),
adaptive consumers will spend progressively more time in patches containing resource 2 as
mortality rate when feeding on resource 1 increases. That is, we tend to see the emergence of
a linear food chain configuration. Computing explicitly the interior equilibrium of model
(4) and substituting the IFD for the controls ui, we can solve explicitly for the equilibrium
solution:

R1
IFD =

m1

e1λ1

R2
IFD =

m2

e2λ2
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C IFD =
r1(e1λ1K1 − m1)

e1K1λ1
2 +

r2(e2K2λ2 − m2)

e2K2λ2
2

Note that without density dependence, the population dynamics will converge to the
IFD plane but the equilibrium in this plane will not be asymptotically stable
(Křivan, 1997).

So far we have assumed that the environmental carrying capacities in both patches are
high enough to support viable populations in the patches. We now consider the case in
which the productivity in one patch (say patch 1) is not sufficient to support consumers at
positive densities (K1 < m1/(e1λ1)). This condition can arise if resource productivity itself
is low or if predation risk is high relative to resource productivity, such that consumer
mortality from either food shortage or predation exceeds consumer reproduction – in
essence, the patch is a population sink. In this case, equilibrium E2 belongs to the upper
triangular part of the phase space where all consumers are in patch 2. Thus, E2 is feasible
and population dynamics settle at this equilibrium (Fig. 3C).

In this case, consumer–resource abundance at equilibrium can be qualitatively different
depending on the consumer mortality rate in patch 1 (Fig. 4B). Thus, as predation mortality
in patch 1 increases and remains unchanged in patch 2, we expect resource abundance in
patch 1 to increase (solid line in Fig. 4B) – that is, a positive indirect effect of predators on
resource 1 and little or no change in resource 2 (dashed line in Fig. 4B). Thus, we will see
cascading effects along one feeding chain in the food web, which would appear as a species
cascade if we were to sample resources in a field experiment, despite the fact that consumers
utilize both resources.

The above analysis shows that manipulating resource carrying capacities and/or preda-
tion mortality on consumers will cause changes in food web topology (Fig. 5). If the
predation mortality is high relative to resource carrying capacity in both patches (i.e. Ki /mi

low), then the system will not persist (Fig. 5). Alternatively, if both values are high, con-
sumers will use both resource patches (i.e. the IFD food web). In the other cases, only the
patch with the higher Ki /mi will be used, and the food web topology becomes a linear food
chain. The point is that bottom-up or top-down manipulations can lead to three different
topological manifestations of the food web.

Predators actively hunt consumers and behave adaptively

Up until now we have considered interactions between consumers and their resources
independently of predators. However, if consumers behave adaptively, their predators
should also respond to changes in consumer behaviour (Lima, 2002). Changes in consumer
behaviour will necessarily influence the per capita consumer mortality rate as well as
predator-caused mortality risk in both patches. As a consequence, predators must respond
to the changes in consumer dynamics caused by their presence in a community. This effect-
ively results in a game between consumers and predators: consumers try to avoid predators
by choosing a patch with low predation risk, while predators try to maximize their resource
consumption by choosing the patch with highest consumer density. Computing an IFD in
this case becomes more complicated because, as we explained above, the maximization of
consumer fitness depends on the behaviour of predators and vice versa.

To gain some sense of the interplay that arises among predators, consumers and
resources, we begin our analysis without considering population dynamics – that is, the
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Fig. 3. Trajectories of patch model (4) which are driven by the optimal patch choice. For low
consumer mortality rates in patch 1 (m1 < e1λ1K1, m1 = 2), the trajectory converges to an equilibrium
EIFD at which the consumer population splits across both patches: (A) shows a trajectory in the
three-dimensional phase space, while (B) shows the projection of the same trajectory to the resource
1–resource 2 phase space. When consumer mortality rate is high enough so that patch 1 cannot
support consumers at positive levels (m1 > e1λ1K1, m1 = 6), all consumers will be in patch 2 (C). The
dashed line is the projection of the IFD plane to the resource 1–resource 2 density phase space. E1

is the equilibrium of the linear food chain consisting of resource 1, consumers and predators.
As consumers include resource 2 in their diet, the equilibrium moves along the dotted curve
towards E2, which corresponds to a complete diet shift of consumers to resource 2. Parameters:
r1 = 0.5, r2 = 0.4, λ1 = 1, λ2 = 1, K1 = 50, K2 = 50, e1 = 0.1, e2 = 0.1, m2 = 1.1.
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behavioural ecology of the game. Once the static behaviour of the system is understood, we
explore further how the interactions play themselves out when consumers and resources are
allowed to undergo dynamics.

To model the interplay between consumers and their predators, we express explicitly
the consumer per capita mortality rate as a function of the predator’s patch choice
strategy. We assume that vi specifies the proportion of an average predator’s lifetime that
is spent in patch i (i = 1, 2). If P is the overall predator density and Λi is the predator
cropping rate in patch i, then the mean per capita consumer mortality rate in patch i can be
described as

mi = ΛiviP

Fig. 4. Ideal free distribution of consumer population at the equilibrium as a function of consumer
mortality rate in patch 1 (A). (B) shows dependence of the equilibrial resource density in patch 1 (solid
line) and in patch 2 (dashed line) and consumer density (dotted line) on mortality rate in patch 1 when
consumers adaptively respond to predation risk. Consumer mortality in patch 2 (refuge) is fixed
(m2 = 0.01). Other parameters are: r1 = 1, r2 = 0.5, λ1 = 0.1, λ2 = 0.1, K1 = 10, K2 = 8, m2 = 0.01, e1 = 0.1,
e2 = 0.1.
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To estimate fitness, we embed these functions in a model of population dynamics by
substituting the above mortality rates to model (4). That is:

dR1

dt
= r1R1 �1 −

R1

K1
� − u1λ1R1C

dR2

dt
= r2R2 �1 −

R2

K2
� − u2λ2R2C (5)

dC

dt
= (e1λ1R1 − Λ1v1P)u1C + (e2λ2R2 − Λ2v2P)u2C

The fitness of an average consumer, expressed in terms of the per capita consumer
population growth rate, is given by

(e1λ1R1 − Λ1v1P)u1 + (e2λ2R2 − Λ2v2P)u2 (6)

and fitness of an average predator (measured again by the instantaneous per capita predator
population growth dP/(Pdt)) is proportional to the predators’ intake rate

Λ1u1v1 + Λ2u2v2 (7)

Fig. 5. Shift in the food web topology along the patch resource carrying capacity/predation mortality
gradients for the optimal patch choice model with bottom-up regulation. When these ratios are low in
both patches, the consumers cannot survive in either patch. When both ratios are high, consumers
distribute at the equilibrium over both patches. In the other two cases, consumers feed only in the
patch with the higher carrying capacity/mortality ratio and the corresponding food web topology is of
the linear food chain.
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The joint IFD for consumers and predators is computed in Appendix 1. It follows from
this computation that provided predator density is at a level such that e1R1λ1 − PΛ1 <
e2λ2R2 < e1R1λ1 + PΛ2, the IFD for both consumer and predator is to occupy both patches
and the corresponding food web topology includes both resources (see the middle region in
Fig. 6). Appendix 1 shows that the corresponding IFD is given by

u*1 =
Λ2

Λ1 + Λ2

and

v*1 =
e1λ1R1 − e2λ2R2 + Λ2P

(Λ1 + Λ2)P

If predator density is low (i.e. either PΛ1 < e1R1λ1 − e2λ2R2 or PΛ2 < e2λ2R2 − e1R1λ1,
see lower and upper triangular region in Fig. 6), meaning that consumer mortality rates
in both patches are low, then consumers and predators will occupy only the patch
which provides consumers with higher per capita intake rate measured by the product eiλiRi.
The corresponding food web topology is described by a linear food chain where con-
sumers specialize on the more abundant resource. Thus, if enrichment experiments differ-
entially alter the abundance of resource patches (e.g. increasing the abundance of resource
1 much more than resource 2), those experiments may also alter the topology of the
system from a food web to a linear food chain. The implication for field research is that
experimental tests of bottom-up control may again be confounded by the alteration of
feeding linkages in the food web as a consequence of consumer and predator adaptive
foraging.

We now relax the assumption that resource and consumer densities are held constant
and consider the implication of the dynamic patch choice game between consumers and
predators on population dynamics and on food web structure. We assume, without loss of
generality, that the following inequality holds:

r1Λ1

λ1

>
r2Λ2

λ2

(8)

For example, if the respective cropping rates for consumers and for predators are identical
in each patch (i.e. λ1 = λ2 and Λ1 = Λ2), then the above condition holds if the resource growth
rate in patch 1 is higher than that in patch 2. Or, if patch 2 is a refuge for consumers, by
which we mean that the predator cropping rate (Λ2) there is either zero or negligible, then
the above inequality again holds. Population dynamics in the upper triangular part of
the state space where resource 2 is more abundant than resource 1 (Fig. 6) is described by
a linear food chain (u1 = v1 = 0 in model (5)) where consumers specialize on resource 2.
The corresponding equilibrium of this food chain is, however, not located in the upper
triangular part of the resource 1–resource 2 phase space and it is not, therefore, feasible (see
Appendix 1). Also, patch 1 is consumer-free in this case, so resource 1 grows logistically, and
trajectories will enter the middle region of the phase space where it becomes more profitable
to use both resources. That is:

e1λ1R1 − PΛ1 < e2λ2R2 < e1λ1R1 + PΛ2
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Fig. 6. Food web topologies and population dynamics for the patch model in which both consumers
and predators behave adaptively. (A) shows the food web topologies along the resource gradients. (B)
and (C) show corresponding population dynamics. (B) assumes that the parameters are such that
the equilibrium E2 is in the middle region (P = 7) of the phase space, while (C) assumes that this
equilibrium is not positive (P = 3). Parameters: r1 = 1.5, r2 = 0.5, λ1 = λ2 = 1, e2 = 0.1, e1 = 0.15,
Λ1 = Λ2 = 1, K1 = 40, K2 = 50.
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In this middle region of the phase space, both predator and consumer populations
co-exist in both patch types in accordance with the above derived IFD. The corresponding
food web topology includes both resources and the population dynamics are described by
substituting the IFD (see Appendix 1) in model (4), which implies:

dR1

dt
= r1R1 �1 −

R1

K1
� −

λ1Λ2

Λ1 + Λ2

R1C

dR2

dt
= r2R2 �1 −

R2

K2
� −

λ2Λ1

Λ1 + Λ2

R2C

dC

dt
= C �e1λ1Λ2R1 + e2λ2Λ1R2

Λ1 + Λ2

−
Λ1Λ2

Λ1 + Λ2

P�
Appendix 1 shows that provided

e1K1λ1Λ2 + e2K2Λ1λ2

Λ1 Λ2

> P >
K1e1λ1(r1λ2Λ1 − r2λ1Λ2)

r1λ2Λ
2
1

(9)

then there exists an interior equilibrium of the above model which is denoted as E2 in
Appendix 1 and in Fig. 6B. As predator density decreases, the equilibrium level of resource
2 decreases due to increasing apparent competition between resources [because of our
assumption (8), which implies that at low predator densities consumer 2 is outcompeted
from the system; see formula (A2) in Appendix 1]. At the moment when condition (9)
ceases to hold, the resource 2 equilibrium level is zero and for yet lower predator densities
the corresponding population equilibrium is as shown in Fig. 6C.

In the lower triangular region of the resource 1–resource 2 phase space, the population
dynamics are described by a linear food chain with resource 2 and, because the correspond-
ing equilibrium does not belong to this region of the phase space (Appendix 1), trajectories
that start at this lower region will necessarily enter the middle region where they converge to
equilibrium E2.

Unlike the case for sit-and-wait predators in which we see the predominance of a linear
food chain topology, actively hunting (adaptive) predators cause consumers to utilize both
patches and we see the predominance of a food web topology with two resources. The point
is that predator hunting mode can have an important bearing on the nature of the food web
topology and thus top-down and bottom-up effects.

FOOD CHAINS WITH ADAPTIVE OMNIVORY

The concept that natural systems can be arrayed into a chain, in which species at a higher
level consume species at adjacent, lower levels only, has been a powerful way to organize
thinking about the structure of food webs and the direct and indirect interactions that occur
therein. In such a conception, we assume that the trophic status of species is narrowly fixed.
So, predators will only interact directly with consumers; consumers will only interact
directly with resources. This ignores important dimensions of complexity that we see in
real-world systems. One source of complexity in particular is that many species engage
in consumer–resource interactions with species at more than one trophic level, known in
the broad sense as omnivory (Polis, 1991; Diehl, 1992, 1993, 1995; Dawah et al., 1995;
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Morin and Lawler, 1996; Winemiller, 1996; Fagan, 1997; McCann and Hastings, 1997;
Holyoak and Sachdev, 1998; Diehl and Feissel, 2000, 2001).

Omnivory can take on many forms. One form that immediately comes to mind is the
classic case in which a top predator preys on both consumers (herbivores) and resources
(plants). Other examples include predator species that share consumer prey and also feed on
each other, called intra-guild predation (Polis et al., 1989; Polis and Holt, 1992; Holt and
Polis, 1997; Rosenheim, 1998), and predator species that feed on individuals of their own
species in addition to feeding on consumers, called cannibalism (Wise, 1993; Claessen et al.,
2000). The omnivory link in a food web adds complexity because, in addition to direct
predator–consumer or consumer–resource interactions and indirect predator–resource
interactions (cascading effects), we now have another direct predator–resource interaction
and indirect interaction (exploitative competition) between an omnivorous predator and its
consumer prey.

Omnivory presents challenges to consumers. Not only must they avoid being captured
by their omnivorous predators, but they must also compete with them for resources.
Classical ecological theory (Pimm and Lawton, 1977, 1978; Pimm, 1991) indicates that,
for this reason, the likelihood of having an equilibrium in which all species stably
co-exist becomes extremely rare. As a consequence of this theory, and apparently con-
firming empirical observations based on data with low taxonomic resolution (i.e. many
different species aggregated into a trophic category), ecologists have long operated under
the belief that omnivory is not an important food web interaction because it should be
rare, or non-existent, under natural conditions. Recent efforts have revisited this issue
by refining the taxonomic resolution of food web data and precisely quantifying food
web linkages. This research has revealed that, contrary to past beliefs, omnivory is
fairly widespread in food webs (Polis, 1991; Diehl, 1993; Dawah et al., 1995; Winemiller,
1996; Fagan, 1997; Holyoak and Sachdev, 1998, and references therein). This revelation
naturally led to a re-examination of theory on the role of omnivory in food webs. Specific-
ally, theorists began trying to identify the kinds of mechanisms that might explain why
food webs with omnivorous links tend to exhibit a high degree of permanence (Law and
Blackford, 1992; Polis and Holt, 1992; Holt and Polis, 1997; McCann and Hastings,
1997; Sterner et al., 1997). These analyses generally show that consumers will persist
in food webs at equilibrium only if the omnivorous predators are inferior to the consumers
at exploiting the shared resource. If predators are superior competitors for the shared
resource, then even without predation the consumers will be excluded from the system
via competitive exclusion. These analyses have largely assumed that the strength of
omnivory remains fixed. Křivan (2000) showed that when the strength of omnivory
varies adaptively in a system in which there is a trade-off between predation and com-
petition, then behaviour may increase the range of conditions in which species may persist
in a food web.

To examine the effect of adaptive foraging on the topology of food webs with omnivory,
we use a generalization of the linear food chain by adding to it an omnivorous link (see
middle food web in Fig. 7A). We again assume that predator density is relatively constant
in time, and thus represents a component of the environment of the consumer–resource
interaction.

The basic resource–consumer linear food chain model can be extended to include
omnivory by adding a term that accounts for resource mortality due to consumption by
predators. This leads to the following model of food web dynamics:
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dR

dt
= R �r �1 −

R

K� − λC − M(u, P)�
(10)

dC

dt
= C (eλR − m(u, P))

Fig. 7. Food web topologies and population dynamics of a food chain with adaptive omnivory. (A)
The food web topologies along the predator gradients. (B–D) The corresponding population dynam-
ics. When predator density is low (B: P = 0.05), trajectories converge to the equilibrium (denoted by
the solid dot), which corresponds to a linear food chain topology without omnivory. At intermediate
predator densities (C: P = 0.8), a new locally stable equilibrium point (solid dot) emerges. At the
equilibrium, omnivory strength is strictly between zero and one (see formula (13)) and the food web
topology is one of a linear food web with omnivory. For yet higher predator densities, trajectories
converge to the equilibrium, which corresponds to a purely competitive system (D: P = 0.6). Resource
and consumer isoclines are shown as dotted lines. Parameter values are: K = 10, r = 1, λ = 1, e = 0.1,
eR = 0.5, eC = 1, λR = 1, λC = 1, m = 0.1.
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where R denotes the resource population density, C denotes the consumer population
density and M denotes the additional mortality imposed on resources by the omnivorous
link. The control parameter u (0 ≤ u ≤ 1) defines the strength of omnivory qualitatively as
the proportion of the resource in the diet of an average omnivorous predator (see also
McCann and Hastings, 1997; Křivan, 2000). This is effectively like a patch choice model in
which resource species are discrete entities and predators choose among one or the other or
both resources. Thus an omnivorous strength equal to zero means that there is no omnivory,
effectively making the food web a linear chain. At the other extreme, an omnivory strength
equal to 1 implies pure exploitative competition between the omnivorous predators
(technically, they no longer are predators in this case because they do not feed on
consumers) and consumers for the shared resources. Thus strength values greater than 0 and
less than 1 indicate varying degrees of omnivory in this system.

We consider the case in which the strength of omnivory (u) changes adaptively with
resource and consumer densities. This issue is especially relevant if omnivorous predators
trade-off foraging on resources with foraging on consumers. We assume that consumer and
resource mortality rates caused by omnivorous predators in model (10) are related linearly
to predator density (P). That is, the consumer mortality rate becomes

m(u, P) = m + (1 − u)λCP

and the resource mortality rate becomes

M(u,P) = uλRP

where λR is the maximum cropping rate of resources by predators whenever they feed
exclusively on resources and λC is the maximum cropping rate of consumers by predators.
As we assume that there is a linear trade-off between feeding on resources versus feeding on
consumers, then, for a given omnivory strength u, fitness of an average predator is described
as in the case of the patch model of optimal foraging by

eC (1 − u)λCC + eRuλRR

where eC and eR are constants that convert units of consumer or resource items into
predator fitness. Here eCλCC is the fitness of predators that feed exclusively on resources and
eRλRR is the fitness of predators that specialize on consumers, respectively. The above fitness
is then the average of these two pure strategies. The optimal strategy of the omnivorous
predators is to feed exclusively on consumers whenever consumer density is high – that is,
whenever eCλCC > eRλRR. In consumer–resource phase space, this strategy corresponds to
population densities that fall within the upper-left triangular region of the phase space in
Fig. 7B–D. The strength of omnivory u is then equal to zero, which effectively reduces the
topology of the system from a food web with omnivory to a linear food chain. If the
opposite inequality holds – that is, if resources are abundant relative to consumer densities
(when population densities fall within the lower-right triangular region of the phase space
in Fig. 7B–D) – then the predator optimal foraging strategy is to feed exclusively on the
resource. In this case, the strength of omnivory equals 1 and, as explained above, we obtain
a topology in which the omnivorous predator no longer feeds on the consumer and, instead,
becomes an exploitative competitor of the consumer for the resource. There is also a
boundary between these two regions (dashed line in Fig. 7B–D) that has an important
bearing on dynamics. Along this boundary line, the extent of omnivory is not determined
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uniquely by fitness maximization as it is in the triangular regions. Rather, it depends on the
population dynamics of consumers and resources, as we show below.

We now examine the effects of manipulating predator density on population dynamics
and on the food web topology. We show that the dynamics of the system do not merely
involve changes in consumer and resource densities over time. Rather, adaptive omnivory
also causes the topology of the system to switch to different states – that is, exploitative
competition versus linear food web with or without omnivory – as the abundances of
consumers and resources fluctuate. To this end, we examine the system in phase space
by plotting the consumer–resource isoclines and population trajectories. The adaptive
behaviour of predators leads to discontinuities in isoclines (dotted lines in Fig. 7). The
isoclines are discontinuous along the switching line (dashed line in Fig. 7). Let us consider
the case where the food web topology is of the linear food chain – that is, no omnivory
occurs (u = 0). The corresponding equilibrium

Req =
m + λCP

λe

and

Ceq =
r(eλK − m − λCP)

eλ
2K

can be either in the upper triangular region or in the lower triangular region. Let us
assume that it is in the upper triangular region (Fig. 7B), which happens when predator
density is not too high and parameters of the model are such that the following inequality
holds:

P <
eCλCr(eKλ − m) − eRλRmKλ

λC(eRλRλK + λCeCr)
(11)

Under this inequality, there is one equilibrium which lies in the upper-left triangle of the
phase space where food web topology is described by the food chain. All trajectories are
driven to this equilibrium (Fig. 7B).

As predator densities increase, the consumer equilibrium decreases, too, and when

eCλCr(eKλ − m) − eRλRmKλ

λC(eRλRλK + λCeCr)
< P <

eCλCr(eKλ − m) − eRλRmKλ

λCλRλKeeC

(12)

the two isoclines do not intersect in the upper or lower triangular regions (Fig. 7C). Despite
this we find that a new, locally stable equilibrium appears on the boundary between the two
triangular regions (Fig. 7C). This equilibrium is given by (see Appendix 2)

Req =
eCK((m + PλC)λR − rλC)

(eeC − eR)KλλR − eCrλC

and

Ceq =
eRλR

eCλC

 Req
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At this equilibrium, the strength of omnivory is given by the formula

ueq =
eRK(m + P)λ + eCr(m + P − eKλ)

P(eCr + (eR − eeC)Kλ)
(13)

(Appendix 2). Figure 8 illustrates that the strength of omnivory at the equilibrium increases
at a decreasing rate with increasing predator density. Thus, for intermediate predator
densities, the food web topology will be described by a linear food chain with omnivory.

When predator density is increased so that

P >
eCλCr(eKλ − m) − eRλRmKλ

λCλRλKeeC

the isoclines intersect in the lower-right triangular part of the phase space where food
web topology is of the purely competitive system. Trajectories converge to this equilibrium
(Fig. 7D).

These analyses show that changes in omnivorous predator density can lead to different
food web topologies (Fig. 7A). Again, food webs that we would normally characterize
as having distinct kinds of indirect effects (e.g. exploitative competition, trophic cascade,
food chain omnivory: Menge, 1995; Abrams et al., 1996) can be treated as different
manifestations of the same dynamical system.

DISCUSSION

A central goal in community ecology is to derive a conceptualization of food web structure
and function that both faithfully characterizes the trophic linkages among species in a
system, and predicts contingency in the nature and strength of species effects (Polis and
Strong, 1996). Most current analyses approach this issue by characterizing different systems
by the nature of the dominant interaction driving dynamics – for example, keystone
predation, exploitative competition, apparent competition, trophic cascade, intra-guild
predation (Menge, 1995; Abrams et al., 1996; McCann et al., 1998). Accordingly, theory is
developed around each type of food web configuration, giving the indication that food web

Fig. 8. Strength of omnivory ueq at the equilibrium as a function of predator density. Parameters are
the same as those in Fig. 7.
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ecology requires myriad models of interactions to characterize the rich diversity found in
the real world.

We instead argue here that considerable contingency in food web structure and inter-
actions can be understood using single-model frameworks that include adaptive foraging
behaviour of intermediate and top consumers. We focused our analysis on a conceptualiz-
ation of a consumer–resource system in which a consumer species utilizes two resource
species. We explored how the nature of trophic interactions varied under three different
assumptions about what constitutes a resource and the spatial distribution of resources. We
examined the case in which a consumer (herbivore) feeds on two resources (plants) that are
distributed randomly in the environment. We then extended this to the case in which each
plant resource occurs in a discrete patch. Finally, we examined a variant of the patch
selection case in which the consumer (an omnivore) feeds within and among two trophic
levels.

When resources are randomly distributed, we found that adaptive foraging by consumers
along a productivity and predation mortality gradient can vary between a food chain and a
food web with two resources. When resource productivity is low, then resource–consumer
population dynamics settle to an equilibrium. Under high levels of predation mortality,
consumers tend to feed on the more profitable resource only, which results in the linear food
chain (Fig. 1C). At low consumer mortality rates, consumers will be less selective and they
will feed on both resources (Fig. 1A). The equilibrium becomes destabilized by enrichment,
in which case the population dynamics will periodically fluctuate around their equilibrium.
There are two emergent outcomes of this periodicity. When fluctuations are small, food web
topology will exhibit the same pattern as in the case of stable equilibrium. For higher
enrichments, the limit cycle will result in periodic resource switching by the consumer and,
correspondingly, the food web topology will periodically change as resources and consumer
densities fluctuate. For high consumer mortality rates, the food web topology will periodic-
ally switch from the food chain to food web with two resources (Fig. 1D), while for low
consumer mortality rates, the food web dynamics will be that of the food web with two
resources along the whole cycle (Fig. 1B). This implies that enrichment experiments can
both enhance the abundance of different species in trophic levels as well as alter the nature
of the trophic interactions. In essence, we may see both species cascades and trophic
cascades arise in a single system depending on the level of productivity.

When resources are distributed in discrete patches, we see an even richer range of food
web topology depending again on the level of productivity and on the nature of the top
predator hunting mode. Top predators that display sit-and-wait behaviour associated with a
given resource patch cause consumers to settle in the patch which provides them with the
highest per capita population growth rate – that is, the one that best balances the trade-off
between predation mortality and nutrient intake. We showed that depending on the ratio
of the resource productivity (resource carrying capacity)/consumer mortality rate in each
patch, there are three possible topologies: two of the food chain, either with resource 1 or
resource 2 as the sole resource, and one of the food web with two resources (Fig. 5). When
these ratios are low in both patches, consumers cannot survive in either of them and we get
extinction. If these ratios are high enough in both patches, then the equilibrium corresponds
to the ideal free distribution of consumers among the two patches – that is, both patches
are occupied and we get a food web with two resources. In the other two possible cases,
consumers can survive in one patch only and we get a linear food chain. When top predators
are actively hunting adaptive foragers – that is, predators that track changes in consumer
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density in a patch in ways that maximize their own fitness – we get a game between
consumers and predators. We showed that adaptive predator movement between patches
causes consumers to distribute themselves over both patches, thus leading to a food web
topology rather than to a linear chain topology.

Finally, adaptive omnivory leads to an even richer range of possible topologies for a given
set of species. Again, depending on resource productivity and predator density, we may see
the emergence of exploitative resource competition between an omnivorous predator and its
consumer prey, a food chain in which the ‘omnivorous’ predator feeds on the consumer and
the consumer feeds on the resource, or a bona fide omnivorous chain in which the predator
feeds on both the consumer and the resource and competes exploitatively with the consumer
for the resource. Given the newly discovered ubiquity of omnivory in natural systems
(Polis, 1991; Diehl, 1993; Winemiller, 1996; Fagan, 1997; Diehl and Feissel, 2000, 2001), it
may prove worthwhile to explore further how food web topology changes when resource,
consumer and especially omnivorous predator abundance is systematically changed in
experiments. Adaptive omnivorous behaviour may be one conceptualization that offers
the broadest possibility of unifying thinking about the nature of different community
structures (topologies) in nature.

So far, we have considered only direct predation on consumers. However, recent empirical
studies of food web interactions (Messina, 1981; Power et al., 1985; Turner and Mittelbach,
1990; Huang and Sih, 1991; Diehl and Eklöv, 1995; McIntosh and Townsend, 1996;
Beckerman et al., 1997; Turner, 1997; Peckarsky and McIntosh, 1998; Schmitz, 1998, 2000;
Gastreich, 1999) have shown that predators also cause changes in consumer behaviour such
as lower foraging activity or habitat shift to seek refuge from predation. This effect of
predators on consumers is known as a trait effect. Our models allow us to study, at least
partially, implications of such trait effects on food web topology in the same way as we did
for direct predation. We do this by assuming that the presence of top predators decreases
the activity of consumers, which we model as a decrease in cropping rates. We can then
isolate the effects of risk from those of direct predation. For example, in the case of the
random resource distribution model (1), we keep consumer mortality rate m constant and
decrease the cropping rates. We observe that introducing increasing predation risk leads to
an increase in the critical switching density for resource 1 (see formula 2) because the
cropping rate λ1 decreases. At the same time, equilibrium density of resource 1 compensates
by increasing, with the net result that the relative position of the resource 1 equilibrium with
respect to the switching line remains unchanged with the introduction of predation risk
(see inequality (3), which does not depend on the cropping rates). Thus, we conclude that
predation risk alone does not cause any qualitative changes in food web topology
when consumers search for resources randomly. For the patchy resource distribution model,
Fig. 5 shows that decreasing the consumer cropping rates increases the two thresholds
below which extinction occurs. Thus, allowing only risk effects can cause a switch in top-
ology from a food web with two resources to either a food web with one resource only
(consumers become specialists on one resource) or a collapse of the food web structure. We
never see the converse, where predation risk results in specialist consumers becoming more
generalized in the face of predation risk (i.e. we never see a switch from food chain topology
to food web topology). Similarly, consumers in the omnivorous predator–consumer–
resource chain can respond behaviourally to the risk of predation. These situations often
arise when the consumer and omnivorous predator are intra-guild prey and predator
(Sih et al., 1998). In such cases, there may be less impact of the predator and consumer
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species on resources because of risk-reducing effects (Sih et al., 1998). Risk reduction arises
because the predator and consumer species engage in ‘lateral’ intra-guild interactions
that reduce the strength of the downward effect on the resources in the food web. These
intra-guild effects can arise because the predator reduces the numerical abundance of the
consumer or the consumer avoids the risk of being consumed by seeking refuge in other
habitats. The net effects of risk-avoidance behaviour by the consumer can be as strong or
stronger than the net effects of the numerical change in consumer abundance (Peacor and
Werner, 2001). Predictions about the net effects of risk reduction hinges entirely on the
relative importance of behavioural versus density effects. This is one important area that
needs much more experimental analysis before we can obtain the empirical insight required
to allow generalizations (Sih et al., 1998).

Our predictions are only qualitative in the sense that they show general trends, not the
exact strength of trophic interactions. Nevertheless, our modelling has some important
implications for perturbations experiments that test for top-down or bottom-up control
by manipulating predator abundance or nutrient supply to resources. Namely, the
experimental results and interpretation of the primacy for top-down versus bottom-up
effects may be confounded by topological changes. Thus, empirical research needs to
appreciate that food web linkages (interaction strengths) and topology may not remain
static when adaptive consumers switch their resource choice in response to changes in
extrinsic environmental factors such as nutrient addition or top predator manipulation.
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Boukal, D. and Křivan, V. 1999. Lyapunov functions for Lotka-Volterra predator–prey models with
optimal foraging behavior. J. Math. Biol., 39: 493–517.

Charnov, E.L. 1976. Optimal foraging: attack strategy of a mantid. Am. Nat., 110: 141–151.
Claessen, D., de Roos, A.M. and Persson, L. 2000. Dwarfs and giants: cannibalism and competition

in size-structured populations. Am. Nat., 155: 219–237.
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APPENDIX 1: ANALYSIS OF THE PATCH MODEL IN WHICH BOTH CONSUMERS AND
PREDATORS BEHAVE ADAPTIVELY

The IFD strategy u1 of consumers for every fixed distribution v1 of predators is







1 if e1λ1R1 − Λ1v1P > e2λ2R2 − Λ2v2P

 u1(v1) = [0, 1] if e1λ1R1 − Λ1v1P = e2λ2R2 − Λ2v2P

0 if e1λ1R1 − Λ1v1P < e2λ2R2 − Λ2v2P

Similarly, for a fixed strategy u1 of consumers, the IFD strategy v1 of predators satisfies







1 if Λ1u1 > Λ2u2

v1(u1) = [0, 1] if Λ1u1 = Λ2u2

0 if Λ1u1 < Λ2u2

The points where the graphs of u1(v1) and v1(u1) intersect define the Nash-Pareto equilibrium
(Hofbauer and Sigmund, 1998) of the game between consumers and predators. At the Nash-Pareto
equilibrium, it is impossible for both consumers and predators to simultaneously deviate from the
equilibrium: fitness of at least one of them would decrease. In this sense, the Nash-Pareto equilibrium
defines the ideal free distribution of consumers and predators.
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Here we give a complete classification of IFD as a function of parameters. The interior intersection
point of the two graphs is denoted by (u*1, v*1), where

u*1 =
Λ2

Λ1 + Λ2

and

v*1 =
e1λ1R1 − e2λ2R2 + Λ2P

(Λ1 + Λ2) P

Qualitatively, the following possibilities exist (Křivan, 1997; Boukal and Křivan, 1999):

(a) If (e1R1λ1 − PΛ1)/(e2λ2) < R2 < (e1R1λ1 + PΛ2)/(e2λ2), then the IFD is (u*1, v*1); for the position of
u1(v1) and v1(u1), see Fig. 9A. The corresponding population dynamics are described by the model:

dR1

dt
= r1R1 �1 −

R1

K1
� −

λ1Λ2

Λ1 + Λ2

 R1C

dR2

dt
= r2R2 �1 −

R2

K2
� −

λ2Λ1

Λ1 + Λ2

 R2C (A1)

dC

dt
=

C

Λ1 + Λ2

 (e1λ1Λ2R1 + e2λ2Λ1R2 − Λ1Λ2P)

Interior equilibrium E2 is

R1 =
K1(r2λ1Λ2PΛ1Λ2 + e2K2Λ1λ2(r1Λ1λ2 − r2λ1Λ2))

e2K2r1Λ
2
1λ

2
2 + e1K1r2λ

2
1Λ

2
2

R2 =
K2(r1Λ1λ2PΛ1Λ2 − e1K1λ1Λ2(r1Λ1λ2 − r2λ1Λ2))

e2K2r1Λ
2
1λ

2
2 + e1K1r2λ

2
1Λ

2
2

C =
r1r2(Λ1 + Λ2)(e2K2Λ1λ2 + e1K1λ1Λ2 − PΛ1Λ2)

e2K2r1Λ
2
1λ

2
2 + e1K1r2λ

2
1Λ

2
2

Due to our assumption (8), resource 1 at this equilibrium is always at a positive level, while the
positivity of resource 2 requires that

K1

P
<

r1λ2Λ
2
1

 e1λ1(r1λ2Λ1 − r2λ1Λ2)
(A2)

This condition also ensures that the equilibrium belongs to the part of the species density phase space
where population dynamics are described by model (A2). Consumers exist at the equilibrium at
positive levels provided

P <
e1K1λ1Λ2 + e2K2Λ1λ2

Λ1Λ2
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(b) If R2 < (e1R1λ1 − PΛ1)/(e2λ2), then the IFD is (1, 1); for the position of u1(v1) and v1(u1), see Fig. 9B.
The corresponding population dynamics are described by the model:

dR1

dt
= r1R1 �1 −

R1

K1
� − R1Cλ1

dR2

dt
= r2R2 �1 −

R2

K2
� (A3)

dC

dt
= C(e1R1λ1 − PΛ1)

with interior equilibrium

E1 = �PΛ1

e1λ1

, K2, 
r1(e1K1λ1 − PΛ1)

e1K1λ
2
1

�
This equilibrium never belongs to the lower triangular region of the phase space where the population
dynamics are described by model (A3). Therefore, it is not feasible because population densities cannot
settle at this equilibrium.

(c) If R2 > (e1R1λ1 + PΛ2)/(e2λ2), then the IFD is (0, 0); for the position of u1(v1) and v1(u1), see Fig. 9C.
The corresponding population dynamics are described by the model:

dR1

dt
= r1R1 �1 −

R1

K1
�

dR2

dt
= r2R2 �1 −

R2

K2
� − R2Cλ2 (A4)

dC

dt
= C(e2R2λ2 − PΛ2)

with interior equilibrium

E3 = �K1 , 
PΛ2

e2λ2

, 
r2 (e2K2λ2 − PΛ2)

e2K2λ
2
2

�
This equilibrium never belongs to the upper triangular region of the phase space where the dynamics
are described by model (A4). Once again, the equilibrium is not feasible and population densities
cannot settle at this equilibrium.

(d) If R2 = (e1R1λ1 − PΛ1)/(e2λ2), then the IFD is not uniquely defined because v1 = 1 and u1 is
anywhere between u*1 and 1.

(e) If R2 = (e1R1λ1 + PΛ2)/(e2λ2), then the IFD is not uniquely defined because v1 = 0 and u1 is anywhere
between 0 and u*1.

Now we study the population dynamics driven by the adaptive strategies. There are two possibilities.
Either condition (A2) holds and equilibrium E2 is positive, in which case it is the only equilibrium
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for population dynamics. If condition (A2) does not hold, then equilibrium E2 is not positive and
equilibrium E1 belongs either to the upper triangular part of the phase space or to the middle region
of the phase space and E3 belongs to the lower triangular part of the phase space. As numerical
simulations show, this leads to extinction of one resource.

APPENDIX 2: POPULATION DYNAMICS OF SYSTEM WITH ADAPTIVE
OMNIVOROUS PREDATORS

Here we compute the equilibrium that lies at the switching line where the food web topologies change.
When trajectories are pushed from both sides towards the switching line (which happens when
inequality (12) holds), once a trajectory reaches the switching line it cannot leave it. We can derive
explicitly equations describing population dynamics along the switching line. As eCλCC = eRλRR along
the switching line, trajectories must satisfy there the following differential equation:

eCλC

dC

dt
= eRλR

dR

dt

Substituting to this equation expressions for derivatives of population densities from model (10)
and functional dependence of mortality rates on the strength of omnivory, we can compute explicitly
the strength of omnivory:

u =
eCλC(−rR + K(m + r − eRλ + PλC)) − eRKRλλR

eCKPλC(λC + λR)

Substituting this control back to model (10) we get a description of the population dynamics along the
switching line:

dR

dt
=

eRRλR(eRKRλλ
2
R + eCλC(−rRλC + K(r − Cλ)λC − K(m + Cλ − eRλ + PλC)λR))

eCKλC(λC + λR)

dC

dt
=

CλC(eCr(K − R)λC − K(eRRλ + eC(m − eRλ + PλC))λR)

K(λC + λR)

The above system has one non-zero equilibrium:

Req =
eCK(−rλC + (m + PλC)λR)

−eCrλC + (eeC − eR)KλλR

Fig. 9. Three possible generic IFDs for the model in which both consumers and predators behave
adaptively. The figure shows u1(v1) (dotted line) and v1(u1) (solid line); for details, see Appendix 1.
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and

Ceq =
eRλR

eCλC

 Req

which is shown in Fig. 7C as a dot on the switching line. The strength of omnivory evaluated at the
equilibrium is given by formula (13).
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