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a b s t r a c t 

Coexistence of plants depends on their competition for common resources and indirect interactions medi- 

ated by shared exploiters or mutualists. These interactions are driven either by changes in animal abun- 

dance (density-mediated interactions, e.g., apparent competition), or by changes in animal preferences 

for plants (behaviorally-mediated interactions). This article studies effects of behaviorally-mediated inter- 

actions on two plant population dynamics and animal preference dynamics when animal densities are 

fixed. Animals can be either adaptive exploiters or adaptive mutualists (e.g., herbivores or pollinators) 

that maximize their fitness. Analysis of the model shows that adaptive animal preferences for plants can 

lead to multiple outcomes of plant coexistence with different levels of specialization or generalism for the 

mediator animal species. In particular, exploiter generalism promotes plant coexistence even when inter- 

specific competition is too strong to make plant coexistence possible without exploiters, and mutualist 

specialization promotes plant coexistence at alternative stable states when plant inter-specific competi- 

tion is weak. Introducing a new concept of generalized isoclines allows us to fully analyze the model 

with respect to the strength of competitive interactions between plants (weak or strong), and the type of 

interaction between plants and animals (exploitation or mutualism). 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

T  

l  

s  

t  

i  

t  

p

 

m  

t  

c  

t  

m  

d  

a  

t  
1. Introduction 

How do competing species coexist has been a puzzling question

for ecologists. The competitive exclusion principle states that two

species competing for the same resource cannot coexist at an equi-

librium ( Gause, 1934; Hardin, 1960 ). This view is supported by the

Lotka–Volterra competition model which predicts that coexistence

requires inter-specific competition to be weaker than intra-specific

competition. The ecological interpretation is that niche overlap for

competing species cannot be too large for species coexistence at an

equilibrium ( MacArthur and Levins, 1967 ). These early models of

competition focused on two species competing either directly, or

indirectly (i.e., interference vs. exploitative competition). Exploita-

tive competition is an example of indirect interaction between two

populations mediated by common resources ( Grover, 1997 ). An-

other indirect interaction is apparent competition ( Holt, 1977 ) that

is mediated by shared consumers. In these competitive scenarios
∗ corresponding author. 
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oexistence requires that species are limited by different factors.

hus, two exponentially growing plants will not coexist if they are

imited by the same resource (“R ∗” rule, Tilman 1982 ) or by the

ame single predator (“P ∗” rule, Holt et al. 1994 ). Plant–animal mu-

ualisms, on the other hand, can lead to apparent facilitation as

n the case of pollination ( Feinsinger, 1987; Ghazoul, 2006 ) where

wo plants flowering in different times can sustain large pollinator

opulations ( Waser and Real, 1979 ). 

Indirect interactions can be either density- or behaviorally-

ediated. In density-mediated indirect interactions the media-

or species density changes. E.g., in apparent competition an in-

rease in one plant density increases herbivore density which, in

urn, decreases density of the other plant species. In behaviorally-

ediated indirect interactions changes in one plant population

ensity are transmitted through changes in animal behavior when

nimal population density is fixed. In reality, both density- and

rait-mediated indirect interactions operate concurrently ( Bolker

t al., 2003; K ̌rivan and Schmitz, 2004 ). Analysis of the apparent

ompetition food web module with two plants and their com-

on consumers who undergo population dynamics and adap-

ively change their foraging preferences showed that combination

f density- and behaviorally-mediated interactions promotes plant

oexistence that would not be possible if consumer preferences

https://doi.org/10.1016/j.jtbi.2019.08.003
http://www.ScienceDirect.com
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1 When A = 0 inequalities (3) reduce to c 2 < 

K 1 
K 2 

< 

1 
c 1 

which are the classic condi- 
ere fixed ( K ̌rivan, 1997 ). Even when consumers were kept at fixed

ensities but they adaptively changed their preferences for plants,

lant coexistence was still promoted by behaviorally-mediated in-

eractions only ( K ̌rivan, 2003b ). This suggests that in antagonistic

etworks adaptive foraging promotes species coexistence by re-

ucing apparent competition. This was verified in more complex

ntagonistic di- and tri- trophic food web modules with many

pecies ( K ̌rivan, 2010 ). In simulated complex antagonistic food-

ebs adaptive prey switching also led to increased species persis-

ence ( Kondoh, 2003; Berec et al., 2010 ). 

Antagonistic interactions such as competition, predation and

arasitism are cornerstones of the niche centric view of commu-

ity structure (e.g., food webs, guilds), and theories of ecological

ynamics and biodiversity (e.g., stability–complexity debate). Cur-

ently, there is a great interest about the role of mutualisms as fac-

ors shaping communities ( Bastolla et al., 2009; Bronstein, 2015 ).

s it turns out, many mutualisms are mediated by consumer–

esource mechanisms, and several of them evolved from exploita-

ive relationships such as parasitisms ( Bronstein, 2015 ). Thus, we

ay be able to understand consequences of both mutualisms and

ntagonisms using common methodologies ( Holland and DeAnge-

is, 2010 ). Several models considered apparent competition or ap-

arent facilitation separately, and more recently, also together in

he context of mixed mutualistic–antagonistic communities ( Mougi

nd Kondoh, 2014; Sauve et al., 2016 ). A limited number of mod-

ls consider density- and behaviorally-mediated effects transmitted

y mutualisms. Some predict that adaptive mutualism promotes

oexistence in the case of large communities ( Valdovinos et al.,

013; Mougi and Kondoh, 2014 ), while others predict that adap-

ation constrain coexistence by favoring profitable partner species

n detriment to rare ones ( Revilla and K ̌rivan, 2016 ). Thus, more

esearch is required to evaluate the importance of adaptation and

lasticity as drivers of population dynamics and community struc-

ure in interaction networks that combine both mutualistic and an-

agonistic interactions. And this motivates us to explore how adap-

ive behavior of exploiters or mutualists changes the outcomes of

ompetition between the plants with which they interact. 

In this article we analyze how behaviorally-mediated interac-

ions transmitted by shared animals influence plant competition.

e demonstrate that foraging behavior of animal exploiters (e.g.,

erbivores) or mutualists (e.g., pollinators) can have important and

redictable consequences for plant competitive coexistence. By as-

uming that animal population densities are fixed, we eliminate

ensity-mediated effects, e.g., apparent competition or apparent fa-

ilitation. In this way, we can focus entirely on indirect effects that

re mediated only by changes in animal preferences (i.e., they are

rait-mediated) for plants. We give conditions for plant coexistence

t an equilibrium under exploitation or mutualism either when in-

eraction strength is fixed, or when it is adaptive and maximizes

nimal fitness. 

A plant competition model with adaptive preferences of one an-

mal species for two plants is presented in Section 2 . Because op-

imal animal strategy is not uniquely defined when both plants

rovide the same payoffs to animals, plant population dynam-

cs are described by a differential inclusion ( Aubin and Cellina,

984; Colombo and K ̌rivan, 1993 ). For such models we introduce

eneralized isoclines that allow us to fully analyze the model.

ection 3 provides a complete classification of plant equilibria and

orresponding animal preferences when animals are either ex-

loiters or mutualists and when inter-specific plant competition is

ither weak or strong. We conclude that adaptive exploitation per-

its global stable coexistence when competition between plants is

eak, and global or local stable coexistence when competition is

trong. In the case of adaptive mutualism only weakly competing

lants can coexist at a single equilibrium or at one of two alterna-

ive stable states. 
t
. Model 

We consider an interaction module consisting of two competing

lant species with population densities P 1 and P 2 and one animal

pecies with population density A . The important feature of this

nteraction module is that plant–animal interactions can be either

xploitative (e.g., folivory, granivory, modeled by parameter s = −1 )

r mutualistic (e.g., pollination, seed dispersal, s = 1 ). We assume

hat animal population density A is fixed, and we are interested in

lant population dynamics that are described by a Lotka–Volterra

LV) model 

dP 1 
dt 

= r 1 

(
1 − P 1 + c 2 P 2 

K 1 

)
P 1 + su 1 P 1 A 

dP 2 
dt 

= r 2 

(
1 − P 2 + c 1 P 1 

K 2 

)
P 2 + su 2 P 2 A (1) 

here r i > 0 and K i > 0 are plant intrinsic growth rates and envi-

onmental carrying capacities in absence of inter-specific interac-

ions, and c i ≥ 0 is the competition coefficient that measures com-

etitive effects of plant i on the other plant. The strength of plant–

nimal interactions depends on animal density ( A ) as well as on

nimal preferences u 1 and u 2 for plant 1 and 2, respectively ( u i ≥ 0

or i = 1 , 2 and u 1 + u 2 = 1 ). Preference for plant i can be inter-

reted as the proportion of time that an animal spends interacting

ith that plant, or, alternatively, as the fraction of the animal pop-

lation ( u i A ) interacting with that plant. 

When animals are mutualists ( s = 1 ), model (1) assumes facul-

ative mutualism for plants, i.e., plant populations can grow even

ithout animals. This is a reasonable assumption because the great

ajority of plants do not rely on a single mutualist species. E.g.,

hen the mutualist is a pollinator, plants can be pollinated by

ther means (e.g., by wind, or another pollinator species that is

ot being explicitly considered). Another feature of model (1) is

hat it assumes constant animal density. This can be a reason-

ble assumption if plant population dynamics are faster than an-

mal population dynamics or model (1) describes plant dynamics

n a small locality, saturated at level A by a large regional popu-

ation of highly mobile animals ( Melián et al., 2009 ). In these sce-

arios effects of plants on animal population density (i.e., the nu-

eric response) can be ignored. However, feedbacks between plant

ensity and animal foraging behavior can remain important. Ani-

al adaptation in response to changes in plant community com-

osition affects animal fitness even when the numerical response

s not considered. In turn, changes in animal preference influence

opulation density of plants and alter plant community composi-

ion. The constant animal density assumption allows us to focus on

ehavior-mediated effects arising from adaptive animal preferences

or plants. 

For fixed animal preferences u i ( i = 1 , 2 ) model (1) is the classi-

al Lotka–Volterra competitive system with well known dynamics

e.g., Case, 20 0 0; Rohr et al., 2014 ). In particular, both plants coex-

st at a globally stable equilibrium 

( ̂  P 1 , ˆ P 2 ) = 

(
K 1 r 2 (r 1 + sAu 1 ) − c 2 K 2 r 1 (r 2 + sAu 2 ) 

r 1 r 2 (1 − c 1 c 2 ) 
, 

K 2 r 1 (r 2 + sAu 2 ) − c 1 K 1 r 2 (r 1 + sAu 1 ) 

r 1 r 2 (1 − c 1 c 2 ) 

)
(2) 

f and only if the ratio of carrying capacities satisfies 1 

c 2 (1 + su 2 A/r 2 ) 

1 + su 1 A/r 1 
< 

K 1 

K 2 

< 

1 + su 2 A/r 2 
c 1 (1 + su 1 A/r 1 ) 

. (3) 
ions for stable coexistence in the Lotka–Volterra competition model. 
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Fig. 1. Interactions as a function of plant densities (axes) when animal preference 

changes according to the step-like rule (5) . Below the switching line (6) animals 

specialize on plant 1, and above they specialize on plant 2. Generalism occurs along 

the switching line where animals display intermediate preferences for plants. 
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Thus, stable plant coexistence requires that 

c 1 c 2 < 1 . (4)

When inequalities in (3) are reversed, equilibrium (2) is still

feasible for intermediate K 1 / K 2 ratios, but it is unstable, i.e., either

plant 1 or 2 wins depending on initial conditions. This is the bi-

stable outcome for the LV model when inter-specific competition

is stronger relative to intra-specific competition ( c 1 c 2 > 1). If under

exploitation u i A > r i , plant i is not viable and no interior equilib-

rium exists. 

In the next sections we show that these predictions change

when animals behave adaptively and they maximize their fitness. 

2.1. Adaptive animal preferences 

Here we assume that animal preferences change in the di-

rection that maximizes animal fitness. The payoff to an animal

when feeding on plant i (= 1 , 2) is measured, e.g., as the amount

of energy obtained per unit of time, i.e., e i P i where e i denotes

the amount of energy obtained from a single plant per unit of

time. Animal fitness is then defined as the average payoff, i.e.,

 A = e 1 u 1 P 1 + e 2 u 2 P 2 where u 1 + u 2 = 1 and u i ≥ 0. Under the ideal

circumstances where individuals have a perfect knowledge about

plant profitabilities and abundances, maximization of this fitness

leads to the following optimal foraging strategy ( K ̌rivan, 2003b;

K ̌rivan and Vrko ̌c, 2007 ): 

u 1 ∈ U 1 (P 1 , P 2 ) = 

{ { 0 } when e 1 P 1 < e 2 P 2 
[0 , 1] when e 1 P 1 = e 2 P 2 
{ 1 } when e 1 P 1 > e 2 P 2 . 

(5)

When plant densities are such that 

e 1 P 1 = e 2 P 2 , (6)

animal preference for plant 1 ( u 1 ) is not uniquely defined and can

take any value between 0 and 1. This is because either of the two

plants provides the same payoff for animals. 

The switching line (6) splits the positive quadrant of plant den-

sity phase space in two sectors, as shown in Fig. 1 . In both of these

sectors, animals behave as specialists. In sector I (sector II), which

is below (above) the switching line, animals specialize on plant 1

(plant 2) only because this maximizes their fitness. For plant den-

sities along the switching line, animals have intermediate prefer-

ences (0 < u 1 < 1), i.e., they are generalists that interact with both

plants. 
We observe that when u 1 is defined by (5) , model (1) becomes

 differential inclusion, or, equivalently, a Filippov (1988) regular-

zation of a differential equation with a discontinuous right hand

ide (see Appendix A.1; Colombo and K ̌rivan, 1993 ). To analyze

uch models we introduce in the next section generalized isoclines.

.2. Interaction dynamics 

.2.1. Generalized isoclines 

The effect of adaptive animals on plant coexistence can be pre-

icted by isocline analysis in the plant 1–plant 2 phase plane.

owever, because population dynamics (1) together with animal

references (5) are described by a differential inclusion, we need

o define generalized plant isoclines for this model. Isoclines need

o be defined in both sectors I and II, as well as in the switching

ine (6) . 

Within sectors I or II plant 1 and 2 isoclines are 

 1 + c 2 P 2 = H 1 

 2 + c 1 P 1 = H 2 , (7)

espectively. Here 

(H 1 , H 2 ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
K 1 

(
1 + 

sA 

r 1 

)
, K 2 

)
in sector I (

K 1 , K 2 

(
1 + 

sA 

r 2 

))
in sector II 

(8)

re sector-dependent adjusted carrying capacities that depend on

xploitative (s = −1) or mutualistic animal effects (s = 1) . For iso-

lines to exist in both sectors, H 1 and H 2 in (8) must be posi-

ive, i.e., r i + sA > 0 , i = 1 , 2 . Plant i monoculture is viable under

xploitation if A < r i , i.e., plant i has limited tolerance for exploita-

ion. If A > r 1 ( A > r 2 ), isocline for plant 1 (plant 2) does not exist in

ector I (sector II) under exploitation. On the other hand, monocul-

ures are always viable under facultative mutualism (r i + A > 0) . 

As a result, isoclines in sectors I and II are piece-wise linear as

llustrated in Fig. 2 . Plant 1 isocline in sector I is the line segment

onnecting points b and E 1 , and in sector II is the line segment

onnecting points k 1 and a . Point 

 1 = (P ∗1 , 0) = 

(
K 1 

(
1 + 

sA 

r 1 

)
, 0 

)
(9)

s plant 1 monoculture equilibrium of model (1) , and formulas for

ntersection points a, b (with switching line) and k 1 (with P 2 axis)

re given in Appendix A.1 . Similarly, plant 2 isocline consists of line

egments connecting points E 2 and p in sector II, and q and k 2 in

ector I. Point 

 2 = (0 , P ∗2 ) = 

(
0 , K 2 

(
1 + 

sA 

r 2 

))
(10)

s plant 2 monoculture equilibrium of model (1) , and intersection

oints p, q (with switching line) and k 2 (with P 1 axis) are given

n Appendix A.1 . We remark that both monoculture equilibria exist

or mutualists while for exploiters, plant i monoculture equilibrium

xists if A < r i . 

We define generalized isoclines by adding the segment a —b to

lant 1 isocline, and segment p —q to plant 2 isocline. Thus, both

lant isoclines are continuous, piece-wise linear curves in plant

hase space. Plant 1 (plant 2) isocline is shown as the black (gray)

ine in Fig. 2 . We stress here, that along their central segments

 a —b for plant 1 isocline, and p —q for plant 2 isocline) the usual

efinition of isoclines as points of zero growth for particular plant

pecies does not hold for generalized isoclines. In particular, we

how in the next section that when the two segments partially

verlap along the switching line as in Fig. 2 b,c, the overlap seg-

ent ( b —q in panel b and a —p in panel c) does not consist of

quilibria only, as we explain in the next section. 
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Fig. 2. Generalized isoclines (plant 1: black, plant 2: gray) and plant dynamics un- 

der weak competition ( c 1 c 2 < 1). The (dashed) switching line (6) splits the phase 

plane in sectors I and II. Stable equilibria are shown as dots, and unstable equi- 

libria as circles. Panel a assumes low population of exploiters and isoclines in- 

tersect at a stable equilibrium in sector I. As the number of exploiters increases 

(panel b), plants coexist at stable equilibrium E S at the switching line where an- 

imals are generalists. In panel c animals are mutualists and isoclines intersect at 

two stable equilibria, one in each sector. Equilibrium E S is unstable. Parameter val- 

ues: r i = 0 . 1 , c i = 0 . 6 , e 1 = 1 . 5 , e 2 = 1 , A = 0 . 04 , K 1 = 22 ; K 2 = 12 in (a) and K 2 = 20 

in (b,c); s = −1 in panels a,b, and s = 1 in panel c. 
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2 By local stability we mean local asymptotic stability throughout this article. 
We remark that under exploitation (s = −1) plant 1 (plant 2)

eneralized isocline consists of three segments if r 1 > A ( r 2 > A ).

therwise, the isocline has only two segments because E 1 and b

 E 2 and p ) are not in the first quadrant. In case of mutualism

(s = 1) generalized isoclines always consist of three segments be-

ause monocultures are viable since we assume that mutualism is

acultative. 

Appendix D shows that generalized isoclines obtained for step-

ike preferences given in (5) are well approximated by smooth
usual) isoclines when preferences are more gradual. However, the

eneralized isoclines allow us to fully analyze the model. 

.2.2. Model equilibria 

In the classic Lotka–Volterra (LV) model (1) stable plant co-

xistence requires that the missing species can invade when the

ther plant is at its population equilibrium. This is a consequence

f linear isoclines that generically intersect at most once. The case

here animals behave adaptively is more complex, because gen-

ralized isoclines are piece-wise linear and there can be interior

quilibria in both sectors (e.g., Fig. 2 c). In addition, we show in

his section that there is one equilibrium at the segment of the

witching line where the two isoclines coincide (e.g., Fig. 2 b,c). 

We start by analyzing position of isoclines in sectors I and II.

ince isoclines are linear there they can intersect in either sector

t most once. If they intersect, the corresponding equilibrium is

ocally stable 2 when c 1 c 2 < 1 and unstable when c 1 c 2 > 1. This fol-

ows from analysis of the classic LV competition model. We also

bserve that at these equilibria animals behave as specialists as

hey interact with a single plant only. To determine if isoclines in-

ersect within a sector, we compare their intersections with the

orresponding sector’s axis and with the switching line (6) . In sec-

or I we compare position of equilibrium E 1 with respect to point

 2 on P 1 axis, and position of point b with respect to point q on

he switching line. If E 1 exists and 

 1 < k 2 and q < b (11) 

y which we mean that point E 1 is to the left of point k 2 on P 1 
xes and point q is to the left and down from point b along the

ine e 1 P 1 = e 2 P 2 , or 

 1 > k 2 and q > b , (12) 

ppendix A.1 shows that there is one coexistence equilibrium 

 I = 

(
ˆ P 1 , ˆ P 2 

)
= 

(
K 1 r 2 (r 1 + sA ) − c 2 K 2 r 1 r 2 

r 1 r 2 (1 − c 1 c 2 ) 
, 

K 2 r 1 r 2 − c 1 K 1 r 2 (r 1 + sA ) 

r 1 r 2 (1 − c 1 c 2 ) 

)
(13) 

n sector I and this equilibrium is locally stable when (11) holds

ecause in this case c 1 c 2 < 1 ( Fig. 2 a,c). If conditions in (12) hold,

he equilibrium is unstable. Appendix A.1 shows that (11) is equiv-

lent with 

2 ≡ c 1 

(
1 + 

sA 

r 1 

)
< 

K 2 

K 1 

< 

(
e 1 + c 1 e 2 
e 2 + c 2 e 1 

)(
1 + 

sA 

r 1 

)
≡ τ2 . (14) 

f both inequalities in (14) are reversed, E I still exists because iso-

lines intersect in sector I but the equilibrium is unstable. If K 2 / K 1 

s larger or smaller than both γ 2 and τ 2 , there is no equilibrium

n sector I because the two isoclines do not intersect there (e.g.,

ig. 2 b where E 1 < k 2 but b < q ). 

Similarly, in sector II we compare position of k 1 with respect to

quilibrium E 2 on the P 2 axis, and position of a with respect to p

long the switching line. If equilibrium E 2 exists and 

 2 < k 1 and a < p (15) 

r 

 2 > k 1 and a > p , (16) 

ppendix A.1 shows that there is one equilibrium in sector II 

 II = 

(
ˆ P 1 , ˆ P 2 

)
= 

(
K 1 r 1 r 2 − c 2 K 2 r 1 (r 2 + sA ) 

r 1 r 2 (1 − c 1 c 2 ) 
, 

K 2 r 1 (r 2 + sA ) − c 1 K 1 r 1 r 2 
r 1 r 2 (1 − c 1 c 2 ) 

)
. (17) 
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This equilibrium is locally stable if and only if 

γ1 ≡ c 2 

(
1 + 

sA 

r 2 

)
< 

K 1 

K 2 

< 

(
e 2 + c 2 e 1 
e 1 + c 1 e 2 

)(
1 + 

sA 

r 2 

)
≡ τ1 . (18)

As in sector I, instability of E II follows from inequality reversal in

(18) . When K 1 / K 2 is larger or smaller than both γ 1 and τ 1 , no

equilibrium exists in sector II. 

We note that γ 1 and γ 2 are invasion thresholds that must be

met by K 1 / K 2 and K 2 / K 1 , respectively, for plant 1 to invade at equi-

librium E 2 and for plant 2 to invade at equilibrium E 1 , respectively.

Invasion thresholds depend on resident plant parameters, plant–

animal interaction type, and animal density. For example, γ 1 is di-

rectly proportional to the competitive effect of plant 2 on plant

1 ( c 2 ) exactly as in standard LV models. This means that increas-

ing inter-specific competition makes plant 1 less likely to invade

resident population consisting of plant 2 only. Under exploitation,

increasing animal density decreases the threshold allowing plant 1

to invade, while increasing plant 2 intrinsic growth rate ( r 2 ) makes

this plant more difficult to invade. These predictions change un-

der mutualism because the invasion threshold for plant 1 increases

with increasing density of mutualists and decreases with plant 2

intrinsic growth rate. 

Now we look for plant equilibria in the segment of the switch-

ing line where the two generalized isoclines overlap. To answer

this question we have to analyze plant dynamics (1) with op-

timal animal behavior (5) on the switching line where animal

preference for either plant is not uniquely defined. Analysis in

Appendix A.2 shows that when the two generalized isoclines par-

tially overlap along the switching line, there exists a single equi-

librium in the overlap segment 

E S = ( ̄P 1 , P̄ 2 ) = 

(
e 2 K 1 K 2 (r 1 + r 2 + sA ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 
, 

e 1 K 1 K 2 (r 1 + r 2 + sA ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

)
, (19)

see Fig. 2 b,c. This equilibrium is locally stable under exploitation

( Fig. 2 b) and unstable under mutualism ( Fig. 2 c). Appendix A.2 also

shows that animal preference for plant 1 at this equilibrium is 

ū 1 = 

K 2 r 1 (r 2 + sA )(e 2 + c 2 e 1 ) − K 1 r 1 r 2 (e 1 + c 1 e 2 ) 

sA [ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
, (20)

i.e., animals behave as generalists at this equilibrium. 

This analysis allows us to give meaning to attraction thresholds

τ i defined in (14) and (18) . For equilibrium E S to exist, ū 1 must be

between 0 and 1. Under exploitation ( s = −1 ) this happens when

K 1 

K 2 

> τ1 and 

K 2 

K 1 

> τ2 (21)

while under mutualism ( s = 1 ) the conditions are 

K 1 

K 2 

< τ1 and 

K 2 

K 1 

< τ2 . (22)

Equilibrium E S exists when r 1 + r 2 + sA > 0 and it is always lo-

cally stable for exploitation (i.e., (21) holds and “E S attracts” locally

trajectories from both sectors) and unstable for mutualism (i.e.,

(22) holds and “E S repels” trajectories away; see Appendix A.2 ). If

only one attraction threshold is passed, equilibrium E S does not

exist and there is no plant population equilibrium at which ani-

mals behave as generalists. Here the important observation is that

existence and stability of equilibrium E S does not depend whether

single plant monocultures are viable or not. In fact, even if neither

of the two plants is viable (i.e., A > r i , i = 1 , 2 ), equilibrium E S still

exists provided A < r 1 + r 2 ( Fig. 3 ). We show next how plant coex-

istence and animal preferences depend on animal abundance and

model parameters. 
Fig. 3 illustrates the effects of adaptive exploiters on plant equi-

ibria and exploiter preferences for plants. Let us consider the sit-

ation where 

K 1 

K 2 

> 

e 2 + c 2 e 1 
e 1 + c 1 e 2 

(23)

left column of Fig. 3 ). Without exploiters ( A = 0 ), plant 1 wins

ompetition over plant 2. As the number of exploiters increases,

xploiters are plant 1 specialists ( u 1 = 1 , bottom-left panel) and

lant 1 equilibrium density decreases until A ≈ 0.017. For higher

xploiter density (approx. 0.017 < A < 0.055) plant 2 invades plant

 monoculture and both plants coexist at equilibrium E I given in

13) . Plant 1 population density keeps decreasing with increasing

 while plant 2 population density increases. Exploiters still be-

ave as specialists on plant 1 till their population reaches another

ritical threshold A ≈ 0.055. For yet higher exploiter density, ani-

als behave as generalists feeding on both plants with decreasing

reference for plant 1 given in (20) and plants coexist at equilib-

ium E S given in (19) . Thus, both plant population densities now

ecrease with increasing animal abundance. The case where oppo-

ite inequality in (23) holds is shown in the right panels of Fig. 3 .

n this case, exploiters start as plant 2 specialists ( u 1 = 0 , bottom-

ight panel) at plant equilibrium E II given in (17) . Thus, plant 2

ecreases monotonically while plant 1 increases for 0 ≤ A < 0.021.

nce both plants are equally profitable for animals, animals be-

ome generalists and both plants start to decrease together as pref-

rence for plant 1 keeps increasing. 

Fig. 3 also shows that adaptive exploitation leads to indirect

ositive effects between plants. First, when animals are adap-

ive exploiters, plant equilibrium densities are positive for ani-

al densities at which plant monocultures are not viable. E.g.,

lant 1 (plant 2) monoculture cannot exist for A > 0.1 ( A > 0.08) in

ig. 3 but both plants do coexist at E S as long as A ≤ r 1 + r 2 = 0 . 18 .

hus, for large exploiter densities viability of plant 1 relies on co-

ccurrence with plant 2 and vice-versa. Second, from (19) it fol-

ows that under generalism increasing K 1 or K 2 raises both plant

quilibrium densities (cf. right vs. left top panels in Fig. 3 for

 > 0.05). This is unlike standard LV models where increasing K 2 

auses increase of plant 2 equilibrium density and decrease of

lant 1. The effect of other parameters on plant equilibria ( E I , E II ,

 S ) is given in Appendix B . 

Effects of changes in parameters on plant equilibria in the case

f mutualism are often in opposite directions as compared to ex-

loiters (see Appendix B ). Because we assume that mutualism is

acultative, plant monocultures ( E 1 and E 2 ) are always viable and

hey increase with A . Provided both plants coexist, plant 1 in-

reases and plant 2 decreases with A at equilibrium E I , and the

pposite happens at equilibrium E II . Equilibrium E S , if it exists, is

lways unstable. Fig. 4 serves as a good illustration. The left col-

mn displays plant coexistence at equilibrium E I when A < 0.022

nd animals specialize on plant 1 ( u 1 = 1 ). For higher animal den-

ities there are two stable equilibria E I and E II and unstable in-

erior equilibrium E S at which animals are generalists. The right

olumn shows situation where K 1 / K 2 is lower and plants coexists

t equilibrium E II when A < 0.0115 and animals specialize on plant

. For higher animal densities there are two coexisting stable plant

quilibria E I and E II and the unstable equilibrium E S . 

. Plant coexistence under exploitation or mutualism 

By comparing K 1 / K 2 with γ 1 and τ 1 thresholds in (18) , and

 2 / K 1 with γ 2 and τ 2 thresholds in (14) , we provide a complete

lassification of model outcomes for all generic parameter combi-

ations, see Appendix C . In the following sections we discuss all

ossible global dynamics when animals are exploiters or mutual-

sts, and plant inter-specific competition is weak or strong. In the
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Fig. 3. Plant coexistence under weak competition ( c 1 c 2 < 1) and adaptive exploitation (s = −1) , for high (left column) or low (right column) K 1 / K 2 ratios. Top panels show 

stable plant coexistence (thick lines) and monoculture ( E 1 and E 2 , thin lines) equilibria as a function of exploiter density. Bottom panels show corresponding exploiter 

preference for plant 1 ( u 1 ). It is interesting to observe that plant i (= 1 , 2) monoculture is viable only when A ≤ r i while when together, both plants form viable community 

for higher animal densities satisfying A ≤ r 1 + r 2 . Parameter values: r 1 = 0 . 1 , r 2 = 0 . 08 , c i = 0 . 6 , e 1 = 1 . 5 , e 2 = 1 , K 1 = 20 . 

Fig. 4. Plant coexistence under weak competition ( c 1 c 2 < 1) and adaptive mutualism (s = 1) , for high (left column) or low (right column) K 1 / K 2 ratios. Top panels show 

stable coexistence ( E I and E II , thick lines) and monoculture ( E 1 and E 2 , thin lines) equilibria as a function of exploiter density. Bottom panels show corresponding mutualist 

preference for plant 1 ( u 1 ). An alternative stable state (thick gray lines) emerges when u 1 changes from 1 or 0 into 0 < u 1 < 1. Parameter values: r i = 0 . 1 , c i = 0 . 6 , e 1 = 1 . 5 , e 2 = 

1 , K 1 = 22 . 
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Fig. 5. Plant generalized isoclines (plant 1: black, plant 2: gray) under exploitation (s = −1) and weak competition ( c 1 c 2 < 1). Isoclines intersect the dashed switching line 

(6) at four points a, b, p, q . Animals specialize on plant 1 (2) in sector I (II) that is below (above) the switching line in the P 1 P 2 plane. Dots and circles denote stable and 

unstable equilibria ( 9,10,13,17,19 ), respectively. Representative configurations are sketched according to carrying capacity ratios in relation to invasion ( γ 1 , γ 2 ) and attraction 

( τ 1 , τ 2 ) thresholds. 
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particular case of exploitation, we only display scenarios where

A < r 1 and A < r 2 , i.e., plant monocultures are viable and general-

ized isoclines display three segments. Scenarios where monocul-

tures are not viable, i.e., A > r i , lead to similar global dynamics as

long as r 1 + r 2 > A (i.e., if A > r 1 + r 2 both plants go extinct like in

Fig. 3 ). 

3.1. Exploitation ( s = −1 ) and weak inter-specific plant competition 

( c 1 c 2 < 1) 

All qualitatively different patterns of isoclines intersections

when inter-specific competition is weak and A < r i are shown in

Fig. 5 . Since s = −1 , either K 1 / K 2 > τ 1 or K 2 / K 1 > τ 2 , i.e., at least

one plant is always above its attraction threshold. 3 This is why

Fig. 5 a,b,d,e are blank, because there are no parameters that sat-

isfy inequalities that define these four panels. With respect to plant

equilibria, there are three mutually exclusive possible outcomes of

plant competition. 

First, the missing plant cannot invade the other plant monocul-

ture equilibrium and plant coexistence is not possible. These are

situations where generalized isoclines do not intersect nor overlap,

and the dynamics globally converge toward the monoculture equi-

librium of the plant that can invade (to E 1 in Fig. 5 c, and to E 2 in

panel g). 

Second, both plants can invade one another and the generalized

isoclines intersect in one of the two sectors. Thus, both plants co-
3 The case where both K 1 / K 2 < τ 1 and K 2 / K 1 < τ 2 is not possible because then 

1 < τ1 τ2 = (1 − A 
r 1 

)(1 − A 
r 2 

) < 1 , a contradiction. 

i  

p  

r  

1

xist either at the globally stable equilibrium E I (panel f) at which

xploiters specialize on plant 1, or globally stable equilibrium E II 

panel h) at which exploiters specialize on plant 2. 

Third, generalized isoclines partially overlap along the switch-

ng line ( Fig. 5 i), so that there is globally stable equilibrium E S at

hich animals behave as generalists with intermediate preferences

or plant 1 given by ū 1 in (20) . 

.2. Exploitation ( s = −1 ) and strong inter-specific plant competition 

 c 1 c 2 > 1) 

Since s = −1 , there are no parameters satisfying K 2 / K 1 < τ 2 and

 1 / K 2 < τ 1 exactly as in the previous case of weak competition and

here are 8 qualitative cases for isoclines intersections ( Fig. 6 ). 

Due to strong competition, stable plant coexistence is impossi-

le in sector I or sector II, but when both attraction thresholds are

et (i.e., K 1 / K 2 > τ 1 and K 2 / K 1 > τ 2 ), the isoclines partially overlap

long the switching line and plants can coexist at equilibrium E S 

here exploiters behave as adaptive generalists with intermediate

reference ū 1 for plant 1. This state of coexistence can be locally or

lobally stable, depending on whether invasion thresholds are met,

s we will see next. 

If neither of the two invasion thresholds are met ( Fig. 6 e), equi-

ibrium E S is locally stable and depending on initial conditions

here are three possible outcomes for plant population dynam-

cs: (i) monoculture equilibrium E 1 where exploiters specialize on

lant 1 (u 1 = 1) and plant 2 is excluded, (ii) monoculture equilib-

ium E 2 where exploiters specialize on plant 2 (u 1 = 0) and plant

 is excluded, or (iii) plant coexistence equilibrium E . 
S 
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Fig. 6. Plant generalized isoclines under exploitation (s = −1) and strong competition ( c 1 c 2 > 1). Notation like in Fig. 5 . 
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If only one plant invasion threshold is met, equilibrium E S stays

ocally stable and there is another monoculture equilibrium for the

lant that meets its invasion threshold (i.e., E 1 in panel f, or E 2 in

anel h). 

If both plants are above their invasion thresholds, E S is globally

table ( Fig. 6 i), despite of intra-specific competition being stronger

han inter-specific ( c 1 c 2 > 1) that would not permit stable coexis-

ence in the standard LV competition model. 

Like in standard LV models with strong competition, there are

arameter values for which generalized isoclines intersect in a sin-

le unstable equilibrium, leading to the well known bi-stable out-

ome where plant 1 or plant 2 wins depending on initial condi-

ions ( Fig. 6 b,d). 

.3. Mutualism ( s = 1 ) and weak inter-specific plant competition 

 c 1 c 2 < 1) 

All possible qualitative intersections of isoclines under mu-

ualism and weak inter-specific plant competition are shown in

ig. 7 . As inter-specific competition is weak ( c 1 c 2 < 1), plant inva-

ion thresholds are smaller than attraction thresholds ( γ 1 < τ 1 and

2 < τ 2 ) and there are no parameter values such that K 1 / K 2 > τ 1 

nd K 2 / K 1 > τ 2 , i.e., panel i in Fig. 7 is empty. 4 

There are important differences in plant competition dynam-

cs under mutualism when compared to the exploitative case

cf. Fig. 7 vs. Fig. 5 ). The main difference is that the interior equi-

ibrium E , when it exists, is unstable for mutualism ( Fig. 7 a,b,d,e).
S 

4 Indeed inequalities K 1 / K 2 > τ 1 and K 2 / K 1 > τ 2 imply that τ1 τ2 = (1 + 

sA 
r 1 

)(1 + 

sA 
r 2 

) < 1 which is false under mutualism when s = 1 . 

t

w  

c

s this is the only plant coexistence equilibrium at which animals

ehave as generalists, this predicts that mutualists will always be-

ave as specialists when plants are at a locally stable equilibrium,

hether both plants coexist ( Fig. 7 b,d,e,f,h) or not ( Fig. 7 a,c,g).

he other important difference between mutualists vs. exploiters

s that mutualism leads to alternative locally stable plant equilib-

ia ( Fig. 7 a,b,d,e). Where the plant dynamics converge depends on

nitial plant population densities, and there are three general cases

hat we describe next. 

First, if neither plant invasion threshold is met ( Fig. 7 a) initial

onditions lead towards monoculture equilibrium E 1 or E 2 , where

utualists specialize on plant 1 or plant 2 respectively. This out-

ome is analogous to the bi-stable case of the standard LV com-

etition model when competition is strong ( c 1 c 2 > 1) and the inte-

ior equilibrium is a saddle point. But here, instead, competition is

eak ( c 1 c 2 < 1), and bi-stability arises because equilibrium E S on

he switching line behaves like a saddle point. We described simi-

ar outcomes of mutual exclusion in previous obligatory mutualism

odels ( Revilla and K ̌rivan, 2016 ), where plants competed exclu-

ively for pollinator preferences (i.e., c 1 = c 2 = 0 ). 

Second, when plant 1 (2) meets its invasion threshold and the

ther plant 2 (1) does not, initial conditions lead either to a mono-

ulture of plant 1 (2) or to stable coexistence of both plants with

utualists specializing on plant 2 (1) (e.g., E 1 or E II in Fig. 7 b; E 2 

r E I in panel d). 

Third, when both plants are above their invasion thresholds

here are locally stable equilibria in both sectors, and initial condi-

ions determine whether coexistence takes place at equilibrium E I 

here mutualists specialize on plant 1, or at E II where they spe-

ialize on plant 2 ( Fig. 7 e). 
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Fig. 7. Plant generalized isoclines under mutualism (s = 1) and weak competition ( c 1 c 2 < 1). Notation like in Fig. 5 . 
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3.4. Mutualism ( s = 1 ) and strong inter-specific plant competition 

( c 1 c 2 > 1) 

When animals are mutualists ( s = 1 ) and inter-specific plant

competition is strong ( c 1 c 2 > 1) attraction thresholds are smaller

than invasion thresholds ( γ i > τ i , i = 1 , 2 ) and there are no param-

eters satisfying K 2 / K 1 > γ 2 and K 1 / K 2 > γ 1 (i.e., panels e, f, h and

i in Fig. 8 are empty). Moreover, plant coexistence is impossible

( Fig. 8 ) which is in a sharp contrast with the case of exploiters

( Fig. 6 ) where plant coexistence is possible depending on initial

conditions. 

When isoclines intersect in sector I or II, and do not over-

lap along the switching line, one plant competitively excludes the

other plant, and plant population dynamics are bi-stable ( Fig. 8 b,d).

These bi-stable scenarios can be attributed entirely to strong inter-

specific competition, like in standard LV competition models. But

again, as in the case of exploitation with strong competition, bi-

stability leads to mutualists specializing either on plant 1, or on

plant 2. 

Bi-stability can also be caused by instability of equilibrium E S 

when the two plant isoclines partially overlap ( Fig. 8 a), similarly

to the case where competition is weak as discussed in the previous

Section 3.3 . 

4. Discussion 

In this article we study effects of adaptive exploiters or mu-

tualists on two competing plant population dynamics, and on ani-

mal preference for plants. For plant population dynamics described

by the Lotka–Volterra competition model we provide a complete

classification ( Figs. 5–8 , Appendix C ) of coexistence states when
lants interact either with adaptive exploiters or mutualists that

ave fixed population densities. This classification is based on com-

aring plant invasion ( γ i given in (14) ) and attraction ( τ i given in

18) ) thresholds. These critical numbers capture the combined in-

uences of (i) plant–animal interaction type (exploitation vs. mu-

ualism), (ii) inter-specific plant competition (weak vs. strong), and

iii) indirect effects between plants mediated by changes in animal

references. 

Model analysis leads to the following general predictions: 

1. Under exploitation and weak competition a globally stable

plant coexistence equilibrium exists when carrying capaci-

ties are not very unbalanced. At plant coexistence equilib-

rium exploiters are specialist when at low densities while at

high densities they are generalists. Plant coexistence is pos-

sible even if neither of the two plants is viable as a mono-

culture. 

2. Plant coexistence under exploitation and strong competition

is possible but conditional, i.e., depends on initial conditions.

Up to three plant equilibria can co-exist. Plant coexistence is

possible only due to adaptive behavior of exploiters when

exploiters behave as adaptive generalists. 

3. Plant coexistence under mutualism and weak competition

can be global or conditional on initial plant population den-

sities. Under mutualism animals always specialize on the

more profitable plant only. 

4. Plant coexistence under mutualism and strong competition

is impossible. 

An important special case when plants do not compete directly

 c 1 = c 2 = 0 ), e.g., when plants grow in separate pots, or plants are

eparated by a fence or a road ( Geslin et al., 2017 ), was analyzed
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Fig. 8. Plant generalized isoclines under mutualism (s = 1) and strong competition ( c 1 c 2 > 1). Notation like in Fig. 5 . 
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n K ̌rivan (2003b) for exploiters. In this case plant 1 (plant 2) iso-

line is vertical (horizontal) in sectors I and II, invasion thresholds

re zero so that they play no role at all, and attraction thresholds

implify to τ1 = 

e 2 
e 1 

(1 + 

sA 
r 2 

) and τ2 = 

e 1 
e 2 

(1 + 

sA 
r 1 

) . In the case of ex-

loitation (s = −1) the only possible outcome is either global ex-

inction (when exploiter density is too high) or global coexistence

here animals can be specialists (when exploiter density is low) or

eneralists (when exploiter density is intermediate). In the case of

utualism (s = 1) possible outcomes always predict coexistence,

ncluding alternative stable states, as shown in Fig. 7 e,f,h. 

We stress here that our predictions concern a small commu-

ity, and it would be incorrect to extrapolate them to larger

lant–animal interaction networks without proper consideration

f model (1) limitations and assumptions (see section Model as-

umption below). For example, our model predicts that both plants

an coexist with generalist exploiters but not with generalists mu-

ualists, while there is empirical evidence that insect pollinators

re more generalist than insect herbivores ( Fontaine et al., 2009 ).

isagreement arises, e.g., because our Lotka–Volterra model does

ot consider competition for plants among the animals that are

ept at fixed density. When mutualism is modeled under explicit

onsumer–resource dynamics where animal population densities

hange ( Valdovinos et al., 2013; Revilla and K ̌rivan, 2016 ), resource

epletion (e.g., nectar consumption) can promote mutualist gener-

lism, countering the tendency towards exclusive specialization on

he most profitable plant. 

Another counter-intuitive prediction is that exploitation cou-

led with flexible foraging enables indirect facilitation between

lants. Once again, this is due to fixed animal population densities,

ecause increase in one plant population density does not lead

o increase in exploiter population density, a necessary condition
or apparent competition ( Holt, 1977 ) to occur. Even models that

onsider coupled prey–predator dynamics predict important posi-

ive effects between preys due to predator switching ( Abrams and

atsuda, 1996 ). Thus by coexisting, plants share exploitation costs,

hich leads to facilitation (i.e., higher equilibrium densities). Such

ndirect positive effect can be extreme, i.e., plants that cannot

olerate exploitation alone can survive when sharing exploitative

tress with another plant (e.g., Fig. 3 ). In the case of mutualism,

exible preferences gives rise to competition for preferences. This

ncreases competitive asymmetries already present between the

lants ( Fig. 4 ). In addition, indirect facilitation between plants that

hare mutualists ( Waser and Real, 1979 ) is prevented from happen-

ng by the animals having fixed densities. In this respect, experi-

ents show that competition between plants for pollinator prefer-

nces can overcome such facilitation effects ( Ghazoul, 2006 ). 

.1. Population dynamics and adaptive animal preferences 

To model effects of adaptive animal preferences on population

ynamics of two competing plant species, we combine the Lotka–

olterra competitive model with a behavioral model that describes

hanges in animal preferences for plants. This is a common sce-

ario in plant communities interacting with guilds of herbivores,

arasites, pollinators or seed dispersers ( Melián et al., 2009; Sauve

t al., 2016; Bronstein, 2015 ). We assume that animal preferences

or plants track instantaneously current plant population densities

hich, in turn, influence plant population dynamics. To model this

eedback, we assume that animal preferences maximize animal fit-

ess at current plant population densities. As optimal animal pref-

rences when both plants are equally profitable are not uniquely

iven, the resulting plant population dynamics are described by
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a Lotka–Volterra differential inclusion (e.g., Colombo and K ̌rivan,

1993; K ̌rivan, 1996; 1997; 2007; K ̌rivan et al., 2008 ). We analyze

this model by generalizing the concept of isoclines which allows us

to provide a complete classification of all plant equilibria. To this

end, we split the plant phase space into two sectors ( Figs. 2 a,c,e

and 5–8 ). The boundary that separates these sectors is called the

switching line because animals switch their preferences for plants

when plant population numbers cross this line. Along the switch-

ing line animal fitness is independent from animal preferences be-

cause payoffs from both plants are the same. Inside the sectors,

animals specialize on one plant only. 5 Thus, plant isoclines in-

side each sector coincide with the classical isoclines for the Lotka–

Volterra competition model. In this article we define generalized

plant isoclines that are formed by sector-wise pieces of isoclines

that are connected with segments of the switching line ( Figs. 5–

8 ). Thus, globally, generalized plant isoclines are piece-wise linear,

which leads to multiple isocline intersections and multiple steady

states. In particular, the segments of the two plant isoclines that

are subsets of the switching line can partially overlap ( Fig. 5 i;

Fig. 6 e,f,h,i; Fig. 7 a,b,d,e; Fig. 8 a). If so, we show that plant pop-

ulation dynamics have a unique equilibrium in this overlapping

segment (e.g., Fig. 2 b,c). This equilibrium is either locally stable

when animals are exploiters or unstable when animals are mutu-

alists. There are important differences between plant equilibria in

the switching line and those that are inside sectors because ani-

mals are specialists inside sectors, but they are generalists at the

equilibrium that is in the switching line. 

The configuration of generalized isoclines depends on plant

invasion thresholds (14) and attraction thresholds (18) . Invasion

thresholds γ i determine whether the missing plant species can in-

vade the other plant monoculture at the equilibrium. For the stan-

dard Lotka–Volterra competition model with fixed animal prefer-

ences, coexistence as well as global dynamics can be predicted

entirely in terms of invasion thresholds. However, when interac-

tions between plants and animals are adaptive, we have to con-

sider animal preferences which leads to non-linear generalized iso-

clines, and the concept of attraction thresholds. Attraction thresh-

old τ i determines whether the plant coexistence equilibrium at

the switching line, where animals behave as plant generalists, lo-

cally attracts or repels orbits. This is analogous to the invasion

threshold which determines whether the boundary equilibria at-

tract or repel orbits. Attraction thresholds depend on animal den-

sity, inter-specific competition, and on payoffs ( e i ) animals obtain

from plants. These payoffs define animal fitness which is a func-

tion of plant densities. Despite the fact that we assume fixed an-

imal densities, animal preferences (i.e., animal behavioral traits)

change with changes in plant numbers. In other words, we observe

indirect interactions between plants mediated by changes in ani-

mal preferences (i.e., trait-mediated indirect interactions between

plants sensu Bolker et al., 2003 ). Thus, attraction thresholds cap-

ture the combined effects of inter-specific plant competition and

behaviorally-mediated indirect effects, and their positions relative

to invasion thresholds determine global interaction dynamics as

summarized at the start of the discussion section. 

4.2. Model assumptions 

The plant–animal model assumes constant animal density. This
allows us to focus on behavior-mediated indirect interactions be- 

5 Similar concepts, called isodars and isolegs, are used in the habitat selection 

theory ( Pimm and Rosenzweig, 1981; Rosenzweig, 1981; K ̌rivan and Sirot, 2002; 

Morris, 2003; K ̌rivan and Vrko ̌c, 2007 ) where distribution of a single population is 

studied as a function of the number of individuals of that population. In this article 

distribution of animals depends not only on animal population density, but also on 

plant densities. 

i  

l  

s  

Z  

d  

s  

t  
ween plants not affected by simultaneous density-mediated inter-

ctions caused by changes in animal density (i.e., apparent com-

etition and facilitation). This is reasonable assumption if animal

opulations are regulated mainly by external factors not explic-

tly considered. A good example is the case of common bees with

arge managed populations ( Geslin et al., 2017 ), spilling over natu-

al communities. Constant animal density is also enforced in short

erm experiments that study the effect of foraging behavior on

lant success ( Fontaine et al., 2005 ). Another plausible scenario

s that the animal population dynamics is very slow when com-

ared with plants due to differences in generation time (e.g., ungu-

ate recruitment being slower than grass regrowth). An important

rediction of the model is that exploitation favors animal gener-

lism, while mutualism favors specialization. When animal pop-

lation dynamics are considered, animal benefits must decrease

ue to intra-specific competition for plant resources, favoring gen-

ralism over specialization, even under mutualism ( Revilla and

 ̌rivan, 2016 ). 

Another important assumption is that animal adaptation is

uch faster than plant population dynamics. This requires that

hanges of foraging behavior occur within individual lifetimes, e.g.,

ighly mobile consumers dispersing between plant species, like

n the ideal free distribution ( K ̌rivan, 2003b ). The assumption of

ast adaptation can be relaxed by modeling preference dynam-

cs explicitly using, e.g., replicator equation ( Kondoh, 2003 ). In

evilla and K ̌rivan (2016) we showed that qualitative predictions

elated to mutualist generalism vs. specialism are preserved even

hen adaptation runs on a similar time scale as population dy-

amics. However, when adaptation was much slower than pop-

lation dynamics, predictions frequently diverged due to extreme

ependence on animal initial preferences. For example, if animals

nitially strongly prefer one plant over the other despite the fact

hat such behavior is not optimal, the initially preferred plant can

ie out before animal preferences could change. In addition, when

daptation occurs over multiple generations, specialization or gen-

ralism also depends on the evolution of fitness related traits such

s conversion efficiencies ( e i ), which scale interactions with pay-

ffs. Parameters like these depend on complex morphological and

hysiological constraints, and they generally relate to one another

ia non-linear trade-offs ( Egas et al., 2004 ). Accounting for long

erm change of these parameters requires different approaches

e.g., adaptive dynamics, Kisdi 2002; Egas et al. 2004; Rueffler et al.

006 ). 

Finally, we only consider facultative mutualism because many

lants have multiple pollinators or seed dispersers ( Melián et al.,

009 ). Obligate mutualism can be modeled with Lotka–Volterra

quations ( Vandermeer and Boucher, 1978 ), but adaptive prefer-

nce rules out coexistence trivially because mutualists interact

ith the more profitable plant only and the less profitable plant

ill die. Obligate mutualisms are better studied using mechanistic

odels ( Revilla and K ̌rivan, 2016; 2018 ), that predict coexistence

epending on initial conditions because of mutualistic Allee effects

 Bronstein, 2015 ). 

.3. Conditional coexistence and alternative plant stable states 

The interplay between plant competition and animal adaptation

ives rise to complex plant population–animal preference dynam-

cs. As plant isoclines are non-linear (e.g., Fig. 7 ) multiple equi-

ibria can co-exist. This has important implications for the diver-

ity of communities under perturbations ( Yan and Zhang, 2014;

hang et al., 2015 ). On the one hand, perturbations in plant abun-

ances can lead to loss of coexistence under exploitation and

trong competition, i.e. coexistence conditioned by initial condi-

ions (e.g., Fig. 6 e,f,h). On the other hand, they can trigger tran-
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itions between alternative stable states of coexistence when mu-

ualism and weak inter-plant competition combine (e.g., Fig. 7 e). 

Conditional coexistence and coexistence at alternative stable

tates are common predictions of models that combine posi-

ive and negative density-dependent interactions (e.g., Hernandez,

998; Holland and DeAngelis, 2010; Revilla and Encinas-Viso,

015 ). In the present model, however, plants always interact neg-

tively due to inter-specific competition, and additional positive

r negative effects arise due to adaptive preference of com-

on exploiters or mutualists. Since animal densities are fixed,

hese indirect effects are behavior-mediated, but triggered by

hanges in plant densities. It is very important to remark that

uch abundance–preference feedbacks between trophic levels leads

o very different predictions when compared to abundance–

bundance feedbacks between trophic levels. In this latter case

here animals respond numerically to plant densities, exploitation

eads to apparent competition ( Holt, 1977 ) and mutualism to ap-

arent mutualism (or apparent facilitation) between plants, which

espectively opposes and favors coexistence ( Sauve et al., 2016 ).

hen animal preferences respond to plant densities, exploitation

eads to a competitive release that promotes stable plant coex-

stence ( K ̌rivan, 1997; 2003a ) while mutualism leads to compe-

ition for mutualists preferences between plants that destabilizes

lant coexistence and leads to plant exclusion ( Revilla and K ̌rivan,

018 ). 

In this article we showed that conditional plant coexistence is

xpected in scenarios where generalist exploiters regulate strongly

ompeting plants (i.e., c 1 c 2 > 1, Fig. 6 e,f,h,i). On the other hand,

utcomes like coexistence at alternative stable states are ex-

ected between weakly competing plants (i.e., c 1 c 2 < 1) that are

egulated by specialized mutualists. How relevant these predic-

ions are in the real world depends on how widespread are sit-

ations where intra-specific competition is stronger than inter-

pecific, and vice-versa. On the one hand, meta-analyses sug-

est that intra- and inter-specific effects are too similar to

e discerned ( Gurevitch et al., 1992 ), or that intra-specific ef-

ects are actually much stronger than inter-specific (i.e., c 1 c 2 ≤ 1;

dler et al., 2018 ). However, recent pair-wise competition experi-

ents ( Sheppard, 2019 ) suggest that inter-specific competition can

e strong (i.e., c 1 c 2 > 1). Such uncertainty is rooted in the fact

hat these surveys assume models like (1) that treat competition

henomenologically, and there can be multiple underlying factors

hat can lead to strong net competition. For example, competition

an be strengthened by allelopathy ( Inderjit and Del Moral, 1997 ),

hich is decidedly stronger against non-specifics compared to con-

pecifics. 

It will be interesting to explore to what extent our conclusions

an be extrapolated to larger communities, consisting of several

nimal and plant species. For such diverse scenarios coexistence

ust result from intricate balances between multiple positive and

egative effects ( Melián et al., 2009; Georgelin and Loeuille, 2014;

ougi and Kondoh, 2014; Revilla and K ̌rivan, 2016 ), where density-

nd behaviorally-mediated effects mix up. The analytical study of

ombined exploitative and mutualist effects is more difficult. For

n illustration, let us consider a second exploiter or mutualist. This

odification of model (1) will result in two switching lines (one

or each animal species), three sectors and piece-wise continuous

eneralized isoclines that will consist of five segments. Mathemat-

cal analysis given in this article can be extended to describe this

ase as well, but as the number of species increases, complete

athematical classification will be intractable due to combinato-

ial complexity of possible outcomes. In these cases simulation

pproaches can be useful for studying the likelihood of multiple

quilibria, as a function of competition intensity and the propor-

ion of exploitative vs. mutualistic interactions (e.g., Melián et al.

009 ). 
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ppendix A. Plant population dynamics 

The switching line e 1 P 1 = e 2 P 2 of the animal splits the positive

uadrant into 

ector I = { (P 1 , P 2 ) | e 1 P 1 > e 2 P 2 , P 1 ≥ 0 , P 2 ≥ 0 } 
nd 

ector II = { (P 1 , P 2 ) | e 1 P 1 < e 2 P 2 , P 1 ≥ 0 , P 2 ≥ 0 } . 
In sector I animals interact with plant 1 only and plant popula-

ion dynamics [system (1) in the main text] are 

dP 1 
dt 

= 

(
r 1 

(
1 − P 1 + c 2 P 2 

K 1 

)
+ sA 

)
P 1 

dP 2 
dt 

= 

(
r 2 

(
1 − P 2 + c 1 P 1 

K 2 

))
P 2 , (A.1) 

hereas in sector II animals interact with plant 2 only and popu-

ation dynamics are 

dP 1 
dt 

= 

(
r 1 

(
1 − P 1 + c 2 P 2 

K 1 

))
P 1 

dP 2 
dt 

= 

(
r 2 

(
1 − P 2 + c 1 P 1 

K 2 

)
+ sA 

)
P 2 . (A.2) 

Along the switching line e 1 P 1 = e 2 P 2 animal strategy is not

niquely defined and population dynamics satisfy 

dP 1 
dt 

= r 1 

(
1 − P 1 + c 2 P 2 

K 1 

)
P 1 + su 1 P 1 A 

dP 2 
dt 

= r 2 

(
1 − P 2 + c 1 P 1 

K 2 

)
P 2 + su 2 P 2 A 

(u 1 , u 2 ) ∈ { (v 1 , v 2 ) | v 1 + v 2 = 1 , v 1 ≥ 0 , v 2 ≥ 0 } . (A.3) 

.1. Plant dynamics in sectors I and II 

From (A.1) and (A.2) , the isoclines of plant 1 in sectors I and II

re 

 1 + c 2 P 2 = K 1 

(
1 + 

sA 

r 1 

)
(A.4)

 1 + c 2 P 2 = K 1 , (A.5)

espectively. We observe that plant 1 isocline exists in sector I iff

 1 + sA > 0 . For mutualists ( s = 1 ) this is always the case, but for

xploiters this holds only if A < r 1 which we assume now. The seg-

ent of plant 1 isocline in sector I given in (A.4) intersects the P 1 
xis at E 1 [given by (9) in the main text] and switching line (6) at

 = 

(
e 2 K 1 (r 1 + sA ) 

r 1 (e 2 + c 2 e 1 ) 
, 

e 1 K 1 (r 1 + sA ) 

r 1 (e 2 + c 2 e 1 ) 

)
, (A.6) 

nd the segment of plant 1 isocline in sector II given in (A.5) in-

ersects the P 2 axis and the switching line at points 

 1 = 

(
0 , 

K 1 

c 2 

)
(A.7) 

 = 

(
e 2 K 1 

e 2 + c 2 e 1 
, 

e 1 K 1 

e 2 + c 2 e 1 

)
, (A.8) 

espectively. 

https://doi.org/10.13039/501100007601


124 V. K ̌rivan and T.A. Revilla / Journal of Theoretical Biology 480 (2019) 112–128 

Fig. A.1. Plant isoclines (plant 1: black, plant 2: gray) and population dynam- 

ics under weak competition ( c 1 c 2 < 1) and preferences given by the Hill function 

with z = 20 (dashed lines correspond to contour lines for which u 1 = 0 . 05 and 

u 1 = 0 . 95 ). Panels and parameters correspond to those of Fig. 2 in the main text. 
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Similarly from (A.1) and (A.2) , plant 2 isocline in sector I is 

P 2 + c 1 P 1 = K 2 (A.9)

and in sector II 

P 2 + c 1 P 1 = K 2 

(
1 + 

sA 

r 2 

)
, (A.10)

respectively. Once again, plant 2 isocline exists in sector II iff r 2 +
sA > 0 . Isocline (A.9) intersects the P 1 axis and the switching line

at points 

k 2 = 

(
K 2 

c 1 
, 0 

)
(A.11)

q = 

(
e 2 K 2 

e + c e 
, 

e 1 K 2 

e + c e 

)
, (A.12)
1 1 2 1 1 2 
espectively. Isocline (A.10) intersects the P 2 axis at E 2 [given by

10) in the main text] and the switching line at 

 = 

(
e 2 K 2 (r 2 + sA ) 

r 2 (e 1 + c 1 e 2 ) 
, 

e 1 K 2 (r 2 + sA ) 

r 2 (e 1 + c 1 e 2 ) 

)
. (A.13)

Isoclines position in sector I is determined by position of k 2 

ith respect to E 1 on the P 1 axis, and position of b with respect to

 along the switching line. The following statements apply in this

ector 

 2 > E 1 ⇐⇒ 

K 2 

K 1 

> c 1 

(
1 + 

sA 

r 1 

)
≡ γ2 (A.14)

 > b ⇐⇒ 

K 2 

K 1 

> 

(
e 1 + c 1 e 2 
e 2 + c 2 e 1 

)(
1 + 

sA 

r 1 

)
≡ τ2 . (A.15)

f both conditions above are true, plant 2 isocline is above plant

 isocline in sector I and there is no interior equilibrium in this

ector (e.g., Fig. 2 c, sector I). If both conditions are false, then

lant 1 isocline is above plant 2 isocline in sector I ( Fig. 5 c, sec-

or I). If (A.14) is true and (A.15) false, isoclines intersect at point

 I [given by (13) in the main text], and because plant 1 isocline

s steeper than plant 2 isocline ( 1 c 2 
> c 1 ) this equilibrium is stable

e.g., Fig. 5 f, sector I). If (A.14) is false and (A.15) true, isoclines in-

ersect again but because plant 2 isocline is steeper than plant 1

socline ( 1 c 2 
< c 1 ) , E I is unstable (e.g., Fig. 6 d, sector I). 

For sector II we compare k 1 with E 2 on the P 2 axis, and a with

 along the switching line. We obtain 

 1 > E 2 ⇐⇒ 

K 1 

K 2 

> c 2 

(
1 + 

sA 

r 2 

)
≡ γ1 (A.16)

 > p ⇐⇒ 

K 1 

K 2 

> 

(
e 2 + c 2 e 1 
e 1 + c 1 e 2 

)(
1 + 

sA 

r 2 

)
≡ τ1 . (A.17)

f both conditions above are true (e.g., Fig. 2 a,c) or both are false

e.g., Fig. 5 g), there is no interior equilibrium in sector II because

he two plant isoclines do not intersect there. If (A.16) is true and

A.17) false, isoclines intersect at the point E II [given by (17) in the

ain text], and because plant 1 isocline is steeper than plant 2

socline ( 1 c 2 
> c 1 ) the equilibrium is stable (e.g., Fig. 2 e, sector II).

nd if (A.16) is false and (A.17) true, isoclines intersect and because

lant 2 isocline is steeper than plant 1 isocline ( 1 c 2 
< c 1 ) , E II is

nstable (e.g., Fig. 6 b, sector II). 

.2. Plant population dynamics along the switching line 

Here we are interested in plant population dynamics at the

witching line. Let n = (e 1 , −e 2 ) be a perpendicular vector to the

witching line e 1 P 1 = e 2 P 2 and let us denote the right hand sides

f (A.1) and (A.2) by f I and f II , respectively. The dynamics close to

he switching line depend on the following scalar products 

〈 n , f I 〉 = e 1 P 1 

{
(r 1 + sA ) − r 2 + P 1 

K 1 r 2 (e 1 + c 1 e 2 ) − K 2 r 1 (e 2 + c 2 e 1 ) 

e 2 K 1 K 2 

}

 n , f II 〉 = e 1 P 1 

{
r 1 − (r 2 + sA ) + P 1 

K 1 r 2 (e 1 + c 1 e 2 ) − K 2 r 1 (e 2 + c 2 e 1 ) 

e 2 K 1 K 2 

}
. 

(A.18)

There are four possibilities ( Filippov, 1988; Colombo and K ̌rivan,

993 ): 

1. If 〈 n, f I 〉 < 0 and 〈 n, f II 〉 < 0 trajectories are crossing the

switching line in direction from sector I to sector II. 

2. If 〈 n, f I 〉 > 0 and 〈 n, f II 〉 > 0 trajectories are crossing the

switching line in direction from sector II to sector I. 
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Table A.1 

List of all possible overlaps of generalized isoclines along the switching line. 

Cases 〈 n, f I 〉 〈 n, f II 〉 overlap E S dynamics at the 

segment overlap segment 

s = −1 p 1 < b 1 < a 1 < q 1 < 0 > 0 ba Yes Sliding regime 

b 1 < p 1 < q 1 < a 1 < 0 > 0 pq Yes sliding regime 

p 1 < b 1 < q 1 < a 1 < 0 > 0 bq Yes sliding regime 

b 1 < p 1 < a 1 < q 1 < 0 > 0 pa Yes sliding regime 

p 1 < q 1 < b 1 < a 1 > 0 > 0 no overlap No crossing from sector II to I 

b 1 < a 1 < p 1 < q 1 < 0 < 0 no overlap No crossing from sector I to II 

s = 1 q 1 < a 1 < b 1 < p 1 > 0 < 0 ab Yes repelling regime 

a 1 < q 1 < p 1 < b 1 > 0 < 0 qp Yes repelling regime 

q 1 < a 1 < p 1 < b 1 > 0 < 0 ap Yes repelling regime 

a 1 < q 1 < b 1 < p 1 > 0 < 0 qb Yes repelling regime 

q 1 < p 1 < a 1 < b 1 > 0 > 0 no overlap No crossing from sector II to I 

a 1 < b 1 < q 1 < p 1 < 0 < 0 no overlap No crossing from sector I to II 
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3. If 〈 n, f I 〉 < 0 and 〈 n, f II 〉 > 0 trajectories do not cross the

switching line and they have to stay for some positive time

on the switching line. This is called the sliding regime. 

4. If 〈 n, f I 〉 > 0 and 〈 n, f II 〉 < 0 trajectories that start at such

points are not uniquely defined. They can move along the

switching line for some time and then leave the line either

to sector I or to sector II. This is called the repelling regime.

We observe that 

 n , f I 〉 = 〈 n , f II 〉 + 2 se 1 P 1 A. 

hus, when s = 1 , 〈 n, f II 〉 > 0 implies 〈 n, f I 〉 > 0 which excludes

he sliding regime. Similarly, when s = −1 , 〈 n, f II 〉 < 0 implies 〈 n,

 

I 〉 < 0 which excludes the repelling regime. 

To analyze all possible situations under which sliding or re-

elling regime occurs, using (A .6), (A .8), (A .12) , and (A .13) we

ewrite (A.18) as 

〈 n , f I 〉 = 

e 1 P 1 { K 1 r 2 (e 1 + c 1 e 2 ) [ P 1 − q 1 ] − K 2 r 1 (e 2 + c 2 e 1 ) [ P 1 − b 1 ] } 
e 2 K 1 K 2 

 n , f II 〉 = 

e 1 P 1 { K 1 r 2 (e 1 + c 1 e 2 ) [ P 1 − p 1 ] − K 2 r 1 (e 2 + c 2 e 1 ) [ P 1 − a 1 ] } 
e 2 K 1 K 2 

. 

(A.19) 

or exploiters ( s = −1 ) b < a and p < q so that there are four pos-

ibilities for isoclines overlap at the switching line. All these pos-

ibilities together with the overlap segment of the two generalized

soclines are listed in Table A.1 . Moreover, scalar products given in

A.19) show that in the overlap segment plant dynamics are in the 

liding regime. 

Similarly, for mutualists ( s = 1 ) b > a and p > q and again there

re four possibilities where the two isoclines overlap at the switch-

ng line ( Table A.1 ). However, in this case, the overlap segment re-

els trajectories. 

.2.1. Equilibrium E S 

Now we look for equilibria of model (1) and (5) in the switch-

ng line. Every non-trivial equilibrium there must satisfy 

 1 P 1 = e 2 P 2 

0 = r 1 

(
1 − P 1 + c 2 P 2 

K 1 

)
P 1 + su 1 P 1 A 

0 = r 2 

(
1 − P 2 + c 1 P 1 

K 2 

)
P 2 + s (1 − u 1 ) P 2 A. 

hese equations have a single non-trivial solution that gives equi-

ibrium E S given in (19) and the corresponding preference for plant

, ū 1 , given in (20) . For E S to be feasible, ū 1 must be between 0

nd 1. This happens iff either (21) or (22) holds. Using (A.6) and

A.12) , plant 1 population equilibrium given in (19) can be written
s a convex combination of points b 1 and q 1 

 ̄1 = 

[
K 2 r 1 (e 2 + c 2 e 1 ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

]
b 1 

+ 

[
K 1 r 2 (e 1 + c 1 e 2 ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

]
q 1 , 

hich shows that b 1 < P̄ 1 < q 1 . 

Similarly, using (A.8) and (A.13) , plant 1 population equilibrium

ecomes 

 ̄1 = 

[
K 2 r 1 (e 2 + c 2 e 1 ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

]
a 1 

+ 

[
K 1 r 2 (e 1 + c 1 e 2 ) 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

]
p 1 

hich shows that p 1 < P̄ 1 < a 1 . It follows from Table A.1 that equi-

ibrium E S is in the sliding regime where the plant generalized iso-

lines overlap. Now we study stability of E S . 

First we consider the exploitation case where s = −1 .

able A.1 shows that at points where the generalized isoclines

verlap, trajectories are driven toward the switching line from

oth sectors. In this case trajectories cannot cross the switching

ine inside the isoclines overlap segment. Thus, once a trajec-

ory reaches the overlap segment, it must move along it, i.e.,

 1 P 1 (t) = e 2 P 2 (t) . This means that when the trajectory moves

long the overlap segment, preferences for plants ( u 1 , u 2 ) must

atisfy e 1 P 
′ 
1 
(t) = e 2 P 

′ 
2 
(t) , i.e., 

 1 

[ 
r 1 

(
1 − P 1 + c 2 P 2 

K 1 

)
+ su 1 A 

] 
= e 2 

[ 
r 2 

(
1 − P 2 + c 1 P 1 

K 2 
+ s (1 − u 1 ) A 

)] 
, 

here we used the fact that e 1 P 1 (t) = e 2 P 2 (t) . The corresponding

reference for plant 1 along the trajectory is 

u 1 

= 

e 2 K 2 (sAe 1 K 1 + c 2 e 1 P 1 r 1 + e 2 r 1 (P 1 − K 1 )) − e 1 K 1 r 2 (c 1 e 2 P 1 + e 1 P 1 − e 2 K 2 ) 

sAe 2 K 1 K 2 (e 1 + e 2 ) 
. 

With this preference for plant 1, plant population dynamics in

he sliding regime are described by the logistic equation 

dP 1 
dt 

= 

e 1 (r 1 + r 2 + sA ) 

e 1 + e 2 

×
[

1 −
(

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

e 2 K 1 K 2 (r 1 + r 2 + sA ) 

)
P 1 

]
P 1 , (A.20) 

ith equilibrium P̄ 1 corresponding to E S = ( ̄P 1 , e 1 /e 2 ̄P 1 ) . This shows

hat equilibrium E S is locally stable, because trajectories close to

his equilibrium are attracted from both sector I and II toward the

witching line ( Table A.1 ) and they converge along the switching

ine to the equilibrium. 
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Table A.2 

Classification of all possible stable equilibria of model (1) with adaptive animal behavior for all generic parameter cases. 

Interacting conditions Position of isoclines intersections along the switching line Position of isoclines intersections along P 1 and P 2 axes 

k 1 > E 2 , k 2 > E 1 k 1 > E 2 , k 2 < E 1 k 1 < E 2 , k 2 > E 1 k 1 < E 2 , k 2 < E 1 

s = −1 c 1 c 2 < 1 p < q < b < a E I ( Fig. 5 f) E 1 ( Fig. 5 c) ∅ ∅ 
b < a < p < q E II ( Fig. 5 h) ∅ E 2 ( Fig. 5 g) ∅ 
p < b < a < q E S ∅ ∅ ∅ 
b < p < q < a E S ∅ ∅ ∅ 
p < b < q < a E S ∅ ∅ ∅ 
b < p < a < q E S ( Fig. 5 i) ∅ ∅ ∅ 

c 1 c 2 > 1 p < q < b < a ∅ E 1 ( Fig. 6 c) ∅ {E 1 , E 2 } ( Fig. 6 b) 

b < a < p < q ∅ ∅ E 2 ( Fig. 6 g) {E 1 , E 2 } ( Fig. 6 d) 

p < b < a < q E S {E S , E 1 } ( Fig. 6 f) {E S , E 2 } {E S , E 1 , E 2 } ( Fig. 6 e) 

b < p < q < a E S ( Fig. 6 i) {E S , E 1 } {E S , E 2 } {E S , E 1 , E 2 } 

p < b < q < a E S {E S , E 1 } {E S , E 2 } {E S , E 1 , E 2 } 

b < p < a < q E S {E S , E 1 } {E S , E 2 } ( Fig. 6 h) {E S , E 1 , E 2 } 

s = 1 c 1 c 2 < 1 q < p < a < b E I ( Fig. 7 f) E 1 ( Fig. 7 c) ∅ ∅ 
a < b < q < p E II ( Fig. 7 h) ∅ E 2 ( Fig. 7 g) ∅ 
q < a < b < p {E I , E II } {E II , E 1 } {E I , E 2 } {E 1 , E 2 } ( Fig. 7 a) 

a < q < p < b {E I , E II } ( Fig. 7 e) {E II , E 1 } {E I , E 2 } {E 1 , E 2 } 

q < a < p < b {E I , E II } {E II , E 1 } ( Fig. 7 b) {E I , E 2 } {E 1 , E 2 } 

a < q < b < p {E I , E II } {E II , E 1 } {E I , E 2 } ( Fig. 7 d) {E 1 , E 2 } 

c 1 c 2 > 1 q < p < a < b ∅ E 1 ( Fig. 8 c) ∅ {E 1 , E 2 } ( Fig. 8 b) 

a < b < q < p ∅ ∅ E 2 ( Fig. 8 g) {E 1 , E 2 } ( Fig. 8 d) 

q < a < b < p ∅ ∅ ∅ {E 1 , E 2 } 

a < q < p < b ∅ ∅ ∅ {E 1 , E 2 } 

q < a < p < b ∅ ∅ ∅ {E 1 , E 2 } 

a < q < b < p ∅ ∅ ∅ {E 1 , E 2 } ( Fig. 8 a) 
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Second, we consider stability of E S for mutualisms when s = 1 .

Table A.1 shows that the overlap segment of the two isoclines re-

pels nearby trajectories, equilibrium E S is unstable. Moreover, tra-

jectories that start at the overlap of the two plant generalized iso-

clines are not uniquely defined, because they can leave this seg-

ment of the switching line either to sector I, or to sector II. 

Appendix B. Effect of parameters on equilibria 

Using (7) and (8) for sector I, equilibrium densities at E I 

(13) take the form 

ˆ P 1 = 

H 1 − c 2 K 2 

1 − c 1 c 2 
, ˆ P 2 = 

K 2 − c 1 H 1 

1 − c 1 c 2 
, 

where H 1 = K 1 (1 + 

sA 
r 1 

) . Thus, ∂ ̂  P i /∂r 2 , ∂ ̂  P i /∂e 1 , ∂ ̂  P i /∂e 2 (i = 1 , 2) are

all zero, and 

∂ ̂  P 1 
∂r 1 

= 

−sK 1 A 

r 2 
1 
(1 − c 1 c 2 ) 

, 
∂ ̂  P 2 
∂r 1 

= 

sc 1 K 1 A 

r 2 
1 
(1 − c 1 c 2 ) 

, 

∂ ̂  P 1 
∂A 

= 

sK 1 

r 1 (1 − c 1 c 2 ) 
, 

∂ ̂  P 2 
∂A 

= 

−sK 1 c 1 
r 1 (1 − c 1 c 2 ) 

, 

∂ ̂  P 1 
∂K 1 

= 

1 

1 − c 1 c 2 

(
1 + 

sA 

r 1 

)
, 

∂ ̂  P 2 
∂K 1 

= 

−c 1 
1 − c 1 c 2 

(
1 + 

sA 

r 1 

)
, 

∂ ̂  P 1 
∂K 2 

= 

−c 2 
1 − c 1 c 2 

, 
∂ ̂  P 2 
∂K 2 

= 

1 

1 − c 1 c 2 
, 

∂ ̂  P 1 
∂c 1 

= 

c 2 ̂  P 1 
1 − c 1 c 2 

, 
∂ ̂  P 2 
∂c 1 

= 

− ˆ P 1 
1 − c 1 c 2 

, 

∂ ̂  P 1 
∂c 2 

= 

− ˆ P 2 
1 − c 1 c 2 

, 
∂ ̂  P 2 
∂c 2 

= 

c 1 ̂  P 2 
1 − c 1 c 2 

. 

We remark that because r 1 + sA > 0 is required for E I to be feasi-

ble, the sign of 
∂ ̂ P 1 
∂K 1 

and 

∂ ̂ P 2 
∂K 1 

is independent of 1 + 

sA 
r 1 

. Parameter

effects on E II are obtained analogously. 

At equilibrium E S (19) plant densities take the form 

P̄ 1 = e 2 G , P̄ 2 = e 1 G, 
here G = 

K 1 K 2 (r 1 + r 2 + sA ) 
K 1 r 2 (e 1 + c 1 e 2 )+ K 2 r 1 (e 2 + c 2 e 1 ) . This quantity varies with pa-

ameters as 

∂G 

∂r 1 
= 

(
K 1 

K 2 

− τ1 

){
r 2 (e 1 + c 1 e 2 ) K 1 K 

2 
2 

[ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂G 

∂K 1 

= 

{
r 1 (r 1 + r 2 + sA )(e 2 + c 2 e 1 ) K 

2 
2 

[ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂G 

∂c 1 
= −

{
e 2 r 2 (r 1 + r 2 + sA ) K 

2 
1 K 2 

[ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂G 

∂A 

= s 

{ 

K 1 K 2 

K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) 

} 

∂G 

∂e 1 
= −

{
K 1 K 2 (r 1 + r 2 + sA )(K 1 r 2 + K 2 r 1 c 2 ) 

[ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
, 

here the quantities between curly braces are positive (because

easibility of E S requires r 1 + r 2 + sA > 0 ). Thus ∂G 
∂K 1 

> 0 , ∂G 
∂c 1 

< 0 ,

nd 

∂G 
∂e 1 

< 0 . Moreover, ∂G 
∂A 

< 0 under exploitation (s = −1) and

∂G 
∂A 

> 0 under mutualism (s = 1) . Under exploitation 

∂G 
∂r 1 

> 0 be-

ause E S is feasible iff both plants are above their attraction thresh-

lds (i.e., K 1 / K 2 > τ 1 and K 2 / K 1 > τ 2 ). Conversely, ∂G 
∂r 1 

< 0 under

utualism. Since P̄ i = e j G where i, j = 1 , 2 but i � = j , we can con-

lude 

∂ ̄P i 
∂K 1 

> 0 , 
∂ ̄P i 
∂c 1 

< 0 , 
∂ ̄P i 
∂r 1 

{
> 0 exploitation 

< 0 mutualism , 

∂ ̄P i 
∂A 

{
< 0 exploitation 

> 0 mutualism , 

.e., both plant densities change in the same direction (i.e.,

 ̄P 1 /∂ ̄P 2 > 0 ) when r 1 , K 1 , c 1 , A change. Now when e 1 varies we

ave 
∂ ̄P 1 
∂e 1 

= e 2 
∂G 
∂e 1 

< 0 , but 

∂ ̄P 2 
∂e 1 

= G + e 1 
∂G 

∂r 1 
= 

e 2 K 1 K 2 (K 2 r 1 + c 1 K 1 r 2 )(r 1 + r 2 + sA ) 

[ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

hich is positive. Mutatis mutandis 
∂ ̄P 1 
∂e 2 

> 0 and 

∂ ̄P 2 
∂e 2 

< 0 . Thus,

hen e 1 or e 2 change, plant densities change in opposite directions

i.e., ∂ ̄P /∂ ̄P < 0 ). 
1 2 
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Finally the derivatives of generalist preference ū 1 (20) at E S 

re 

∂ ̄u 1 
∂r 1 

= 

{
r 2 (e 2 + c 2 e 1 ) K 1 ū 1 

r 1 [ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 

}
∂ ̄u 1 
∂K 1 

= −s 

{
r 1 r 2 K 2 (e 1 + c 1 e 2 )(e 2 + c 2 e 1 )(r 1 + r 2 + sA ) 

A [ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂ ̄u 1 
∂c 1 

= −s 

{
r 1 r 2 e 2 K 1 K 2 (e 2 + c 2 e 1 )(r 1 + r 2 + sA ) 

A [ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂ ̄u 1 
∂e 1 

= s (c 1 c 2 − 1) 

{
e 2 r 1 r 2 K 1 K 2 (r 1 + r 2 + sA ) 

A [ K 1 r 2 ( e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 
2 

}
∂ ̄u 1 
∂A 

= s 

(
K 1 
K 2 

− e 2 + c 2 e 1 
e 1 + c 1 e 2 

){
r 1 r 2 K 2 (e 1 + c 1 e 2 ) 

A 

2 [ K 1 r 2 (e 1 + c 1 e 2 ) + K 2 r 1 (e 2 + c 2 e 1 ) ] 

}
, 

here the quantities between curly braces are positive (because

easibility of E S requires r 1 + r 2 + sA > 0 ). Thus 
∂ ̄u 1 
∂r 1 

> 0 trivially.

nder exploitation (s = −1) , 
∂ ̄u 1 
∂K 1 

> 0 , and 

∂ ̄u 1 
∂c 1 

> 0 . And under mu-

ualism (s = 1) , 
∂ ̄u 1 
∂K 1 

< 0 and 

∂ ̄u 1 
∂c 1 

< 0 . The sign of 
∂ ̄u 1 
∂e 1 

depends on

nteraction type and strength of competition as follows 

∂ ̄u 1 

∂e 1 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 for exploitation & c 1 c 2 < 1 

< 0 for exploitation & c 1 c 2 > 1 

< 0 for mutualism & c 1 c 2 < 1 

> 0 for mutualism & c 1 c 2 > 1 

nd the sign of ∂ ̄u 1 /∂A depends on interaction type and the sign

f the 
K 1 
K 2 

− e 2 + c 2 e 1 
e 1 + c 1 e 2 . Since u 1 and u 2 vary in opposite directions, the

erivatives of ū 1 with respect to r 2 , K 2 , c 2 , e 2 are of opposite signs

ompared with the corresponding derivatives with respect r 1 , K 1 ,

 1 , e 1 above. 

ppendix C. Classification of equilibria 

Table A.2 summarizes our previous analyzes given in

ppendices A.1 and A.2 , and lists all feasible (i.e., non-negative)

table equilibria for system (1) under exploitation (s = −1) or

utualism (s = 1) , and weak ( c 1 c 2 < 1) or strong ( c 1 c 2 > 1) com-

etition. Empty ( ∅ ) cells indicate that no parameter combination

atisfies row or column conditions. Cells with only one equilibrium

ndicate that this equilibrium is globally stable. Cells with multiple

quilibria indicate that these equilibria are locally stable. There

re 56 non-empty cells in Table A.2 , each of them corresponding

o a unique isocline configuration. The configurations shown in

igs. 5–8 are indicated by figure number and panel. Out of these

6 configurations, there are 11 possible combinations (i.e., E 1 , E 2 ,

 I , E II , E S , { E I , E II }, { E S , E 1 }, { E S , E 2 }, { E 1 , E II }, { E 2 , E I }, { E S , E 1 , E 2 })

ith respect to stable equilibria. 

Equilibria E 1 , E 2 given in (9), (10) are boundary (i.e., monocul-

ure) equilibria for plant 1 and 2, respectively; E I , E II , E S given in

13), (17) , and (19) are interior equilibria in sector I (where u 1 = 1 ),

ector II (where u 1 = 0 ), and the switching line (where u 1 = ū 1 is

iven by (20) ), respectively. Cases are classified with respect to po-

ition of k 1 given in (A.7) and E 1 on P 1 axes, k 2 given in (A.11) and

 2 on P 2 axes, and points a, b, p, q given in (A .8), (A .6), (A .13),

A.12) along the switching line. For mutualisms ( s = 1 ), q < p and

 < b while for exploitation ( s = −1 ), p < q and b < a . We remark

hat for exploitation when A > r 1 ( A > r 2 ), point b ( p ) is in the

hird quadrant and boundary equilibrium E 1 ( E 2 ) is not feasible.

able A.2 considers all generic cases excluding those cases where

ne or more inequalities between points and parameters are re-

laced by equalities. 
ppendix D. Gradual change in preference 

Preference modeled by Eq. (5) in the main text assumes ideal

nimals that are omniscient and perfect optimizers that switch

nstantaneously on the plant that is more profitable. Now let us

onsider a more realistic animal that adjusts its plant preferences

ore gradually with changes in plant densities. This can be mod-

led by the Hill function 

 1 (P 1 , P 2 ) = 

(e 1 P 1 ) 
z 

(e 1 P 1 ) z + (e 2 P 2 ) z 
(D.1)

here the exponent z > 0 controls the steepness of preference

ransitions. As z converges to infinity, graphs of the Hill func-

ions converge to the graph of the step-like preference (5) in the

ain text. When we substitute this gradual switching function in

he Lotka–Volterra Eqs. (1) of the main text, piece-wise isoclines

hange into smooth curves. As the steepness exponent z increases

nd switching becomes more step-like, these isoclines converge to

eneralized isoclines from the main text. 

We observe (cf. Fig. A.1 here vs. Fig. 2 in the main text) that

or sufficiently large values of the Hill exponent the dynamics of

odel (1) in the main text with step-like preferences are well

pproximated by plant population dynamics where animal prefer-

nces for plants are gradual and described by (D.1) . In Fig. A.1 that

atches Fig. 2 of the main text we show a cone of intermediate

lant 1 preferences (area between 5% and 95% preference contour

ines). Increasing the Hill exponent ( z ) towards infinity collapses

he cone into the switching line ( Eq. (6) in the main text) and

n panel b the intersection of isoclines converges to E S given in

q. (19) in the main text. Isoclines in the cone converge to the seg-

ents of generalized isoclines that are in the switching line. 
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