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H I G H L I G H T S

� Predator and prey isoclines are estimated from classic Gause's experiments with protists feeding on yeast.
� It is shown that an L-shaped function fits prey isocline well.
� Such a shape of prey isocline is in agreement with predator–prey population models with a prey refuge.
� Lotka–Volterra and Rosenzweig–MacArthur models either with or without a prey refuge are parameterized by experimental data.
� Among them the one which fits data best is the Rosenzweig–MacArthur predator–prey model with a prey refuge.
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a b s t r a c t

Predator and prey isoclines are estimated from data on yeast–protist population dynamics (Gause et al.,
1936). Regression analysis shows that the prey isocline is best fitted by an L-shaped function that has a
vertical and a horizontal part. The predator isocline is vertical. This shape of isoclines corresponds with
the Lotka–Volterra and the Rosenzweig–MacArthur predator–prey models that assume a prey refuge.
These results further support the idea that a prey refuge changes the prey isocline of predator–prey
models from a horizontal to an L-shaped curve. Such a shape of the prey isocline effectively bounds
amplitude of predator–prey oscillations, thus promotes species coexistence.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Isoclines have played an important role to identify mechanisms
that regulate predator–prey coexistence (Rosenzweig and MacArthur,
1963). For the Lotka–Volterra predator–prey model, the predator
isocline is vertical and the prey isocline is horizontal which leads to
neutral oscillations in prey and predator population abundance. More
realistic models with prey negative density dependence, predator
density dependence, or non-linear functional responses lead to
non-linear or sloped isoclines that can either stabilize or destabi-
lize predator–prey population dynamics. In their seminal work,
Rosenzweig and MacArthur (1963) analyzed effects of isoclines on
predator and prey coexistence. Using graphical analysis they showed
that a prey isocline with a vertical segment effectively bounds
maximal oscillations in prey population numbers. Similarly, a predator

isocline with a horizontal segment bounds maximal oscillations in
predator numbers. Theoretical models that predict such isoclines can
arise due to optimal prey selection by predators, or prey use of a
refuge (e.g., Rosenzweig and MacArthur, 1963; Rosenzweig, 1977;
Fryxell and Lundberg, 1994; Křivan, 1998; van Baalen et al., 2001;
Brown and Kotler, 2004; Křivan, 2007, 2013).

In an attempt to falsify the Lotka–Volterra predator–prey model
Gause experimented with various predator–prey systems (Gause,
1934, 1935a; Gause et al., 1936). Fig. 39 in Gause (1934) (see also
Gause, 1935a) shows population dynamics of protist Paramecium
bursaria feeding on yeast Schizasaccharomyces pombe, and protist
Paramecium aurelia feeding on yeast Saccharomyces exiguus. Based
on these experiments Gause (1935a, p. 45) concluded that “Quite
clearly periodic fluctuations of the Lotka–Volterra type occurred”.
However, using the same data, Rosenzweig (1977) estimated a hump
shaped prey isocline and a vertical predator isocline. Such isoclines are
predicted by the Rosenzweig–MacArthur predator–prey model
(Rosenzweig and MacArthur, 1963) that assumes a negative density
dependent prey population growth and the Holling type II functional
response. In this model predator–prey population dynamics can be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

http://dx.doi.org/10.1016/j.jtbi.2015.01.021
0022-5193/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: Institute of Entomology, Biology Centre, The Czech
Academy of Sciences, Czech Republic. Tel.: þ420 38 7775365.

E-mail addresses: vlastimil.Krivan@gmail.com (V. Křivan),
anupam240@gmail.com (A. Priyadarshi).

Journal of Theoretical Biology 370 (2015) 21–26

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2015.01.021
http://dx.doi.org/10.1016/j.jtbi.2015.01.021
http://dx.doi.org/10.1016/j.jtbi.2015.01.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.01.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.01.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.01.021&domain=pdf
mailto:vlastimil.Krivan@gmail.com
mailto:anupam240@gmail.com
http://dx.doi.org/10.1016/j.jtbi.2015.01.021


destabilized by the “Paradox of Enrichment” when the environmental
carrying capacity increases above a critical threshold and predator–
prey population densities converge to a limit cycle (Rosenzweig, 1971).

To better understand whether predator–prey oscillations were of
the neutral Lotka–Volterra type, Gause with his collaborators (Gause,
1935b; Gause et al., 1936) continued experiments with P. bursaria
feeding on yeast S. exiguus. In contrast to previous experiments, there
was no aeration that would prevent yeast to sediment at the bottom of
the beaker. The authors observed that below a critical prey threshold
density all prey (yeast) sedimented and were unavailable to predators
(protists) that lived in the water column. Consequently they developed
a predator–prey model with a prey refuge. Graphical analysis of this
model predicted, in accordance with their experimental observations,
coexistence of prey and predators along a limit cycle. This is perhaps
the first example of a limit cycle in the literature on predator–prey
population dynamics. Their model was analyzed in detail by Křivan
(2011) who showed that large refuges stabilize population dynamics at
an equilibrium while smaller refuges lead to periodic oscillation in
predator and prey numbers along a limit cycle. One distinguished
feature of this model is that the prey isocline is L-shaped.

In this paper we are interested in verifying whether the data on
protists feeding on yeast from Gause et al. (1936) predict an L-shaped
prey isocline. First, we estimate the shape of isoclines directly from the
experimental data. Second, we fit several predator–prey models to the
experimental data and compare the predicted and estimated predator
and prey isoclines.

2. Direct isocline estimation from data

In this paper we use data on population dynamics of protists
(P. bursaria, squares in Fig. 1) feeding on yeast (S. exiguus, dots in Fig. 1)
from Table 3 in Gause et al. (1936). The data represent 19 population
experiments that differ in the initial predator [number of individuals/
0.5 cm3] and prey [number of individuals/0.1 mm3] densities. Each
time series consists of triples ðti; xi; yiÞ; i¼ 1;…;N where ti denotes
day, and xi (yi) is the prey (predator) density at time ti. The longest
time series 9 lasted 7 consecutive days, but other time series were
shorter. Most of the population censuses were taken in consecutive
days, but in some cases there were one or two-day gaps. Using these
data we estimate predator and prey isoclines.

Isoclines are, by definition, curves in the prey–predator phase
space, along which either prey, or predator population neither grows
nor declines (i.e., the per capita population growth rate vanishes,
Rosenzweig and MacArthur, 1963). We use this definition to estimate
isoclines directly from data by identifying predator and prey popula-
tion densities where either prey or predator derivative changes its
sign. Thus, the points on the prey isocline are estimated as those prey–
predator pairs ðxi; yiÞ (see open and solid dots in Fig. 2A) such that
either xi�1oxi and xi4xiþ1 (inwhich case xi is a local maximum), or
xi�14xi and xioxiþ1 (in which case xi is a local minimum). For
example, prey population achieves its local maximum at time 3 in
series 2 (Fig. 1, panel 2) and the corresponding prey–predator data
point is identified to lie on the prey isocline. We cluster the estimated
points for the prey isocline to two groups that we call the horizontal
(solid dots in Fig. 2A that correspond to prey–predator pairs ð20;6:5Þ,
ð27;6Þ, ð14;10:2Þ) and the vertical group (open dots in Fig. 2A that
correspond to prey–predator pairs ð0:8;13:5Þ, ð1:5;9Þ, ð0:8;9Þ, ð2;36Þ,
ð0:3;17Þ, ð1:2;12:5Þ, ð0:8;20Þ). The vertical group contains those data
points where predator population abundance decreases while the
horizontal group contains those data points where predator abun-
dance increases. For example, the second point ð27;6Þ in series 3
(Fig. 1, panel 3) belongs to the horizontal group because at time 2 the
predator population increases in abundance. The predator isocline was
estimated analogously (but without grouping the data). The estimated
data points (ð7;3Þ, ð10:5;2Þ, ð1:2;6Þ, ð1:5;9:2Þ, ð3:1;19Þ, ð1:5;22:5Þ,

ð2:5;16Þ, ð1:5;10:5Þ, ð1:2;8:5Þ, ð1;10Þ, ð2;16Þ, ð3;43Þ, ð6;44:5Þ, ð5;38Þ,
ð5;35Þ, ð0:8;31Þ) for the predator isocline are shown as squares
in Fig. 2A.

The prey isocline data (solid and open dots in Fig. 2A) suggest a
piece-wise linear approximation corresponding to the vertical and
horizontal data points. For each of these two groups we use the linear
regression function LinearModelFit of Mathematica 10.0 software
package. For the vertical group we estimate prey density (x) as a
function of predator density (y). The resulting linear fit x¼
0:56þ0:03y is insignificant (F-stat¼1.7, P-value¼0.25), so we assume
zero trend and we estimate the intercept with x axes to be x¼1.1 (t-
stat¼5.00, P-value¼0.002). The residual sum of squares of the fit is
1.9. Similarly, the linear fit for the horizontal group y¼ 13:9�0:32x is
insignificant (F-stat¼4.1, P-value¼0.3), so we assume zero trend and
we obtain the best fit y¼7.6 (t-stat¼5.7, P-value¼0.03). The residual
sum of squares of the fit is 10.5. Thus, our estimates suggest L-shaped
prey isocline with the vertex at the prey–predator point ðx; yÞ ¼
ð1:1;7:6Þ (solid line in Fig. 2A). The total residual sum of squares
obtained as the sum of the residual sum of squares for the horizontal
and vertical fit is approx. 12 (the first row of Table 2).

We also perform linear regression analysis for the predator isocline
assuming that the prey abundance is a function of predator abun-
dance. The linear regression x¼ 3:2þ0:004y is insignificant (F-
stat¼0.006, P-value¼0.9), so we assume zero slope and estimate
the predator isocline as x¼3.3 (t-stat¼4.8, P-value¼0.0002, dashed
line in Fig. 2A). The residual sum of squares for the fit is approx. 111
(the first row of Table 2).

3. Models

Gause et al. (1936) generalized the Lotka–Volterra predator–
prey model by replacing the linear functional response by a non-
linear functional response, i.e.,

dx
dt

¼ rx�yf ðxÞ
dy
dt

¼ ðef ðxÞ�mÞy: ð1Þ

Here x (y) denotes the prey (predator) density, r is the per capita
intrinsic prey population growth rate, e is the efficiency rate with
which the captured prey are converted to new predators, and m is
the predator mortality rate. In particular, Gause et al. (1936) assumed
that (i) f is a saturating function, and (ii) there exists a prey refuge
that protects xc prey. Thus, the functional response f is zero for prey
population densities that are smaller than xc (Gause et al., 1936,
Fig. 5). A prototype of such a functional response is

f ðxÞ ¼ xk

xkþxkc

λx
1þλhx

ð2Þ

where h is the handling time, λ is the predator search rate, and
parameter k models steepness of the functional response at xc
(Fig. 3). As k increases, functional response (2) tends to

f ðxÞ ¼
0 if xoxc
λx

1þλhx if x4xc

(
ð3Þ

that qualitatively agrees with the functional response shown in Fig. 5,
panel 1 in Gause et al. (1936). For positive handling times the
sigmoidal functional response (2) is of the Holling type III. When
handling time h¼0 model (1) with (3) becomes the classical Lotka–
Volterra predator–prey model either with a refuge when xc40 or
without a refuge when xc ¼ 0.

Model (1) assumes prey grow exponentially. We also consider
the case where prey growth is logistic, i.e.,

dx
dt

¼ rx 1� x
K

� �
�yf ðxÞ
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dy
dt

¼ ðef ðxÞ�mÞy: ð4Þ

When there is no refuge ðxc ¼ 0Þ, model (4) is the Rosenzweig–
MacArthur predator–prey model.

In what follows we estimate parameters for the Lotka–Volterra
model (1) and the Rosenzweig–MacArthur model (4) assuming
either that a prey refuge exists or it does not. This will allow us to
compare our estimates of prey and predator isoclines from Section 2
with these new estimates.

4. Results

Parameters for models were estimated using function Non-

linearModelFit of Mathematica 10. The results are summarized
in Table 1.

We consider five models. Models 1 and 2 are the classical Lotka–
Volterra predator–prey models (1) without any refuge and zero

handling times (i.e., we set xc ¼ h¼ 0 in functional response (2)). In
Model 1 we set r¼0.5 and m¼0.4 that are the estimates for the per
capita intrinsic prey population growth rate and the predator mortal-
ity rate taken from Gause et al. (1936, p. 10). Thus, only parameters λ
and e are estimated in this case. These estimates lead to prey isocline
y¼ r=λ¼ 8:3 and predator isocline x¼m=ðeλÞ ¼ 6:9 (Fig. 2B, black
lines). Model 2 estimates all four parameters including r and m. These
estimates lead to prey isocline y¼ r=λ¼ 6:0 and predator isocline
x¼m=ðeλÞ ¼ 3:7 (Fig. 2B, gray lines). The resulting fit is better as the
residual sum of squares (SS in Table 1) for Model 2 is much smaller
than for Model 1. Because the number of estimated parameters for
these two models is not the same, we also calculate the Akaike
Information Criterion (AIC) which is again smaller for Model 2.

Model 3 is the Lotka–Volterra predator–prey model with a prey
refuge and the refuge size xc is an additional parameter that is
estimated from data. Functional response (2) requires to set parameter
value for steepness k. We tested several values of this parameter and
our estimates show that the residual sum of squares decreases with

Fig. 1. Fit between the Rosenzweig–MacArthure model (4) with a prey refuge and experimental data on population dynamics of protists P. bursaria (squres) and yeast S.
exiguus (dots). Simulated population dynamics for protists (dashed line) and yeast (solid line) use the best fit parameters given in Table 1 (Model 5).
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increasing k (Fig. 4). Thus, we set arbitrarily k¼20, for which the
functional response (2) is shown in Fig. 3. For Model 3 the estimate of
the refuge size xc ¼ 1:97 is only marginally significant (P-value¼0.06).
When compared with Model 2 without a refuge, both the residual
sum of squares and the AIC are smaller. The corresponding isoclines
are shown in Fig. 2C.

Models 4 and 5 are for the Rosenzweig–MacArthur model (4)
either without or with a refuge. Both of these models fit data better
when compared with the Lotka–Volterra models (Table 1). Model

5 with a refuge fits data slightly better when compared with Model
4 without a refuge. Isoclines for Models 4 and 5 are shown in Fig. 2D
and E, respectively. Fig. 1 shows the fit between Model 5 and all 19
time series.

We also compare how isoclines for Models 1–5 fit the estimated
isoclines (i.e., the dots for the prey isocline and the squares for the
predator isocline in Fig. 2A). The predator isocline in Models 1–5 is a
vertical line expressed as x¼ const: Thus, we calculate the residual
sum of squares between the estimated data (squares in Fig. 2A) and

Fig. 2. Estimates of prey (solid line) and predator (dashed line) isoclines. In panel A the solid dots and the open dots are estimates of the prey isocline, and the solid squares
are estimates of the predator isocline from experimental data. The open dots correspond to those data points where predator density is decreasing, while at the solid dots the
predator density is increasing. Panels B and C show predator and prey isoclines estimated from the Lotka–Volterra model (1) without a refuge and with a refuge, respectively.
Black lines in Panel B correspond to parameters of Model 1 in Table 1 while gray lines correspond to parameters of Model 2. Panels D and E show predator and prey isoclines
estimated from the Rosenzweig–MacArthur model (4) without and with a refuge, respectively. Parameters are those given in Table 1.
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this line as
P ðxi�constÞ2 where xi is the prey density. For models that

do not assume prey refuge we calculate the residual sum of squares
between estimated points (solid and open dots in Fig. 2A) and the prey
isocline y(x) (expressed as a function of prey density x) asP ðyi�yðxiÞÞ2. For models with a prey refuge, we calculate the
residual sum of errors separately for horizontal and vertical group of
points. For the horizontal group (i.e., when x4xc) we calculateP ðyi�yðxiÞÞ2 while for the vertical group (when xoxc) we calculateP ðxi�xðyiÞÞ2 (i.e., assuming the vertical part of the prey isocline x(y)
is a function of predator abundance) and we add both these sums.
Thus, the residual sum of squares is calculated exactly the sameway as
in Section 2. Our results (Table 2) clearly show that models that
consider a prey refuge fit the estimated prey isocline much better than
models without a prey refuge.

5. Discussion

In this paper we estimate predator and prey isoclines using
classic data on protists feeding on yeast (Gause et al., 1936). First, we
estimate isoclines directly from data. These estimates suggest that
the prey isocline is an L-shaped piece-wise linear line that has a
horizontal and a vertical part (Fig. 2A, solid line) while the predator
isocline is a vertical line in the prey–predator phase space (Fig. 2A,
dashed line). Second, we parametrize the Lotka–Volterra and the
Rosenzweig–MacArthur predator–prey models either with a prey
refuge or without it which allows us to estimate the isoclines for
these models (Fig. 2B–E). Again, corresponding prey isoclines for
models that assume a prey refuge fit the estimated prey isocline
much better when compared with models that do not consider a
refuge (Table 2). Our results suggest that a prey refuge leads to prey
isoclines with a steep part at low prey densities. Such a shape of the
prey isocline effectively bounds amplitude of predator–prey oscilla-
tions, thus promotes predator and prey coexistence as observed by
Rosenzweig and MacArthur (1963).

Gause experimented extensively with various predator–prey
systems (Gause, 1934; Gause, 1935a,b; Gause et al., 1936). The data
he collected has helped us to understand mechanisms regulating
predator–prey coexistence and have been used in many analysis
(e.g. Jost and Arditi, 2000, 2001; Jost and Ellner, 2000; Nedorezov,
2012). The difference between Gause (1935a) (these results are
also reported in Gause, 1935b) and Gause et al. (1936) experiments
is the fact that in the latter experiments there was a prey refuge.
Indeed Gause (1935a,p. 45) mentions that “during the course of
experiments the yeast was prevented from settling on the bottom
of the container by passing air bubbles through the salt solution”
while Gause et al. (1936, p. 11) mention “it can be seen that a
certain threshold concentration of yeast cells sedimenting on the
bottom and elsewhere cannot be destroyed by predators…”. Thus,
in these latter experiments, prey, when at low densities, were in a
refuge and we use these experimental data to test for the effects a
refuge has on isoclines.

Fig. 3. Functional response (2). Panel A shows the functional response for the
Lotka–Volterra model (h¼0) with a refuge. Parameters are those from Table 1,
Model 3. Panel B shows the functional response for the Rosenzweig–MacArthur
model with a refuge. Parameters are those from Table 1, Model 5. The steepness of
the functional response is in both cases k¼20.

Table 1
Estimated parameters and standard errors. SS is the residual sum of squares, AIC is the Akaike Information Criterion. N.e. is not estimated. Numbers typeset in roman are
significant (P-value o0:05), the value in italics is marginally significant (P-value¼0.06).

Model r m λ e h K xc SS AIC

1. The Lotka–Volterra 0.5 (n.e.) 0.4 (n.e.) 0.0670.003 0.9770.06 — — — 6353 932
model (1) with r¼0.5 and m¼0.4
2. The Lotka–Volterra model (1) 0.2470.04 0.1270.02 0.0470.004 0.8170.10 — — — 2148 785

3. The Lotka–Volterra model (1) 0.2370.04 0.1270.02 0.0470.004 0.8270.1 — — 1.9771.05 2101 784
with refuge
4. The Rosenzweig–MacArthur 0.4470.06 0.2370.03 0.1470.02 1.2370.12 1.4370.13 33.073.46 — 1330 722
model (4) without refuge
5. The Rosenzweig–MacArthur 0.4470.06 0.2370.02 0.1470.03 1.2670.11 1.4870.14 32.473.33 1.3170.31 1291 720
model (4) with refuge

Fig. 4. Dependence of the residual sum of squares for the Lotka–Volterra predator–
prey model with a refuge on parameter k.
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While the predator isocline is easy to estimate from experi-
mental data because the data suggest that it is a vertical line (see
squares in Fig. 2A), estimating the prey isocline is more compli-
cated. The data suggest that the prey isocline can be approximated
as an L-shaped function (see dots in Fig. 2A) with a horizontal
(solid dots) and a vertical segment (open dots). The problem here
is that if the isocline has both horizontal and vertical segments, it
cannot be described as a function of a single variable (i.e., either as
a function y(x) of prey density only, or as a function x(y) of
predator density only). This makes difficult to use software
packages for piece-wise linear regression (e.g., package “segmen-
ted” in R), as these assume that the estimated object is a function.
Here we cluster the estimated data points for the prey isocline into
two groups, one that describes the “horizontal” part and the other
that describes the “vertical” part of the prey isocline. The linear
regression fit of the horizontal part assumes this part of the prey
isocline to be a linear function of prey density while the vertical
part of the prey isocline is a linear function of predator density.
Neither of these two fits shows a significant trend so the resulting
best fit of the prey isocline is L-shaped with a vertical and a
horizontal part (Fig. 2A). Such a shape agrees with theoretical
predictions for the Lotka–Volterra model (1) with a prey refuge
(Křivan, 2011, Fig. 2C and D).

Using experimental data on protists feeding on yeast (Gause,
1935a), Rosenzweig (1977) estimated prey and predator isoclines
graphically. His analysis predicted a hump shaped prey isocline
and vertical predator isocline. Such isoclines agree with the
Rosenzweig–MacArthur predator–prey model (Rosenzweig and
MacArthur, 1963; Rosenzweig, 1971). In this paper we estimate
model parameters for both the Lotka–Volterra model (1) and the
Rosenzweig–MacArthur (4) model either with or without a prey
refuge. The resulting parameter estimates are given in Table 1
together with the residual sum of squares and the Akaike Infor-
mation Criterion (AIC). The AIC is often used to compare several
models that differ in the number of parameters. Models 1–3 are
the Lotka–Volterra models either without refuge (Models 1 and 2),
or with a refuge. Model 1 estimates only two parameters while the
prey per capita population growth parameter r¼0.5 and the
predator per capita mortality rate m¼0.4 were taken from Gause
et al. (1936). Compared to Model 2 that estimates all four
parameter, Model 1 fits experimental data poorly (Table 1). It
may be that because the parameters r and m were measured in a
single species experiments, these values change when both pre-
dators and prey are together. Model 3 estimates also the refuge
size xc. For this we have to define steepness of the functional
response k in (2) at the refuge size. Dependence of the residual
sum of squares on parameter k (Fig. 4) shows that as the steepness
of the functional response increases, the fit gets better. As we
could not fit k as another unknown parameter, we chose arbitrarily
k¼20 in this paper.

Our results show that the Rosenzweig–MacArthur model (4)
fits data better when compared with the Lotka–Volterra model
(Table 1) as both the residual sum of squares as well as the AIC are
smaller. The Rosenzweig–MacArthur model with prey refuge
(Model 5 in Table 1) fits the experimental data best. Fit between
model predictions and experimental data is shown in Fig. 1. Fit
between isoclines for models considered in this paper and esti-
mated isoclines is shown in Table 2. These results show anew that
models that consider a prey refuge fit the estimated prey isocline
much better when compared to models without a refuge.

Our results show that a prey refuge strongly influences the
shape of prey isocline estimated from experimental data. More-
over, the observed prey isocline agrees with predictions of
theoretical predator–prey models that consider a prey refuge
(eg., Rosenzweig and MacArthur, 1963; Křivan, 2011). Because
the prey refuge manifests at low prey population densities, it
can be difficult to identify effects of prey refuge in experimental
predator–prey data unless these contain enough points at low
prey densities. Because refuges can be also behavioral (e.g., due to
prey switching by predators or changes in prey behavior under
predation risk, Brown and Kotler, 2004; Křivan, 2013) prey
isoclines with a vertical part should be ubiquitous in nature.
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same as those in Table 1. SS denotes the residual sum of squares.
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The Rosenzweig–MacArthur Model
5 with refuge

19 148
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