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H I G H L I G H T S

� Effect of dispersal on (marine) protected areas functioning is studied.
� Dispersal modes studied are either density independent, or density dependent and in direction of higher fitness.
� Density independent dispersal is either balanced, or unbalanced.
� Results show that dispersal influences both the maximum sustainable yield and population equilibrium abundance.
� Dispersal also decreases population abundance when compared with the same system without dispersal.
� Dilemma caused by creation of protected areas (i.e., increased population abundance vs. decreased profit) are dispersal dependent.
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a b s t r a c t

Effects of density dependent as well as independent dispersal modes between a harvested patch and a
protected area on the maximum sustainable yield and population abundance are studied. Without
dispersal, the Gordon-Schaefer harvesting model predicts that as the protected area increases,
population abundance increases too but the maximum sustainable yield (MSY) decreases. This article
shows that dispersal can change this prediction. For density independent balanced and fast dispersal,
neither the MSY, nor population abundance depends on the protected area. For fast and unbalanced
dispersal both the MSY and equilibrium population abundance are unimodal functions of the protected
area size. For density dependent dispersal which is in direction of increasing fitness predictions depend
on whether individuals react to mortality risk in harvested patch. When animals disregard harvesting
risk, the results are similar to the case of density independent and balanced dispersal. When animals do
consider harvesting risk, the results are similar to the case without dispersal. The models considered also
show that dispersal reduces beneficial effect of protected areas, because population abundance is smaller
when compared with no dispersal case.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Exploitation of renewable resources are commonly practiced in
fishery, forestry and wildlife management. Extensive and unregu-
lated harvesting of marine species leads to the depletion of several
commercial fish stocks. Bioeconomic modeling (Clark, 1976) pro-
vides theoretical underpinnings for scientific management of renew-
able resources. One approach to prevent overexploitation is creation
of protected areas where harvesting is prohibited. Protected areas
should increase fish abundance and protect biodiversity and ecosys-
tem structure (Beverton, 1953; Gordon, 1954). However, creation of
protected areas leads to a dilemma, because the Gordon-Schaefer
bioeconomic model (Clark, 1976) predicts reduction of the maximum

sustainable yield (MSY). More sophisticated models suggest that
optimal spatial management can increase both MSY as well as the
resource standing stock (Neubert and Herrera, 2008). These models
often assume that dispersal between patches is density independent
(e.g., Takeuchi, 1996; Kar and Matsuda, 2008). However, it is
known that density independent dispersal is not evolutionarily
stable (Hastings, 1983) unless dispersal rates are balanced in the
sense that patches are occupied up to their carrying capacity
(McPeek and Holt, 1992; Holt and Barfield, 2001). Density dependent
models of refuge use were also studied in the literature (e.g., Ives and
Dobson, 1987; Sih, 1987; Ruxton, 1995; Křivan, 1998; Grüss et al.,
2011; Křivan, 2013; Takashina and Mougi, 2014). These models reflect
empirical observations that prey dispersal is a function of patch
payoffs (Sih, 1980, 1986; Lima and Dill, 1990; Peacor and Werner,
2001; Brown and Kotler, 2004).

Fretwell and Lucas (1969) introduced the ideal free distribution
(IFD) under which animals redistribute between patches so that all
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occupied patches have the same payoff that is larger than or equal
to payoffs in unoccupied patches. Thus, only dispersal patterns
that lead to the IFD can be evolutionarily stable (Cantrell et al.,
2010, 2012). Cressman and Křivan (2006) proved that when patch
payoffs are negatively density dependent, the IFD is an evolutio-
narily stable strategy of the habitat selection game (Křivan et al.,
2008). The IFD assumes that individuals have a perfect knowledge
of patch qualities and they are free to settle in any patch they

want. Although these assumptions are not realistic under many
circumstances, it is interesting that experimental and empirical
work often predicts distributions that are close to the IFD (for a
critical review see Kennedy and Gray, 1993). In particular, fish
distributions have been observed to follow the IFD closely (e.g.
Milinski, 1979; Berec et al., 2006; Haugen et al., 2006). Conse-
quences of dispersal on refuge functioning was reviewed in Gerber
et al. (2003) and Grüss et al. (2011). Both these reviews make clear

Fig. 1. Left panels show dependence of the sustainable yield (assuming environmental carrying capacities K1 ¼ 150 and K2 ¼ 50) on harvesting effort (H). Middle panels
show the maximum sustainable yield (MSY), and the right panels show overall equilibrium population size at the optimal harvesting effort as a function of the
environmental carrying capacity of the refuge (K2) when total environmental carrying capacity is K¼200. Panels A cover the following cases: (i) no dispersal between
patches, (ii) fast density and harvest dependent distributional dynamics, and (iii) slow density and harvest dependent distributional dynamics. Panels B assume fast and
density independent random dispersal (with corresponding distribution u1 ¼ u2 ¼ 0:5). Panels C cover the following cases: (i) balanced and density independent dispersal
dynamics, (ii) fast density dependent distributional dynamics, and (iii) slow density dependent distributional dynamics. Panels D show results for density independent
dispersal that operates on the same time scale as population dynamics (i.e., δ¼ 1, d12 ¼ d21 ¼ 1 in model (1)). Other parameters used in simulations: r¼1.
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that dispersal can have very large effects on the impact of marine
reserves. A general conclusion from these surveys of existing
models and empirical knowledge is that refuges provide less
benefit for highly movable species when compared to those that
do not move, or move very little.

In this article we contrast density dependent vs. density
independent dispersal modes. In particular, we focus on density
dependent dispersal which assumes that animals move from the
patch with a lower payoff to the patch with a higher payoff.
We consider patch payoffs that are either density dependent and
harvest independent, or density and harvest dependent. To ana-
lyze the resulting models we consider two different time scalings.
Either population dynamics operate on a much (infinitely) slower
time scale when compared with distributional dynamics or
evolution of distributional dynamics is much slower when com-
pared with population dynamics.

2. Models with density independent dispersal

We consider a single population in an environment consisting
of two patches. The first, open patch, is the harvested area (of size A1)
while the second patch (of size A2) is protected. The environmental
carrying capacity κ of the whole area ðA¼ A1þA2Þ, expressed as the
number of fish per unit area, is assumed to be fixed. We assume that
the population grows logistically with the uniform per capita
population growth rate parameter r and patch specific environmen-
tal carrying capacity Ki ¼ κAi; expressed as the number of fish per
patch. Individuals are free to disperse between the two adjacent
patches. Harvesting in the open patch 1 is described by the Gordon-
Schaefer model (Schaefer, 1991; Clark, 1976 with the catchability
coefficient q set to 1). Dispersal–population dynamics are (Kar and
Matsuda, 2008)

dx1
dt

¼ x1r 1� x1
K1

� �
�Hx1�δðd12x1�d21x2Þ

dx2
dt

¼ x2r 1� x2
K2

� �
�δðd21x2�d12x1Þ ð1Þ

where xi is population abundance in patch i, H is the harvest effort, dij
(i,j¼1,2) is the probability of dispersing from patch i to patch j, and δ
is the propensity of individuals to disperse. We start our analysis of
model (1) with the simplest case where animals do not disperse (e.g.,
animals are sedentary).

2.1. Animals do not disperse

The case where animals do not disperse corresponds to setting
δ¼0 in model (1). Population dynamics (1) then simplify to the
classic Gordon-Schaefer harvesting model in the open patch with
population growing logistically in the protected patch 2, i.e.,

dx1
dt

¼ rx1 1� x1
K1

� �
�Hx1;

dx2
dt

¼ rx2 1� x2
K2

� �
: ð2Þ

Here x1 and x2 is the population abundance in the harvested patch
and in the refuge, respectively. The classical result (Clark, 1976)
shows that provided r4H, population dynamics converge to
equilibrium

ðx1; x2Þ ¼
K1ðr�HÞ

r
;K2

� �
ð3Þ

with total population abundance

x¼ K�HK1

r
; ð4Þ

where K ¼ K1þK2. The sustainable yield in the open patch is

Y ¼Hx1 ¼HK1 1�H
r

� �
; ð5Þ

see Fig. 1A (left panel). This yield maximizes at harvest effort

Hn ¼ r
2
: ð6Þ

Substituting expression for Hn in (3) gives the population equili-
brium under optimal harvesting ðxn1; xn2Þ ¼ ðK1

2 ;K2Þ. Thus, the overall
equilibrium population abundance is

xn ¼ K1

2
þK2 ¼ K�K1

2
ð7Þ

and the maximum sustainable yield (MSY) at this population
equilibrium is

Yn ¼ rK1

4
: ð8Þ

Fig. 1A (middle panel) shows that as the protected area increases
(i.e., K2 increases) and the harvested area decreases, the MSY (8)
linearly decreases and the overall equilibrium population size (7)
linearly increases (Fig. 1A, right panel) up to the overall environ-
mental carrying capacity K when all habitat is protected. These
patterns clearly express the dilemma: Creating a protected area
decreases the MSY (i.e., fishermen profit), but increases the overall
population abundance. In the next sections we show that dispersal
can change this antagonistic prediction.

2.2. Density independent and fast dispersal

If u1 ¼ x1=x and u2 ¼ x2=x is the population distribution
between patches, from model (1) population dynamics for the
total population abundance ðx¼ x1þx2Þ is
dx
dt

¼ ru1x 1�u1x
K1

� �
�Hu1xþru2x 1�u2x

K2

� �
: ð9Þ

When dispersal is fast (i.e., δ in model (1) is great) population
distribution tracks instantaneously current population abundance.
This means that at each population abundance, population dis-
tribution will be at an equilibrium that is obtained by solving
equation

d12x1�d21x2 ¼ xðd12u1�d21u2Þ ¼ 0 ð10Þ
together with constraint u1þu2 ¼ 1. This yields density indepen-
dent distribution

u1 ¼
d21

d12þd21
; u2 ¼

d12
d12þd21

: ð11Þ

Model (9) with distribution (11) is much easier to analyze when
compared to model (1). Provided harvest effort is not too high and
satisfies

Ho r
u1

; ð12Þ

negatively density dependent model (9) has a an asymptotically
stable equilibrium

x¼ K1K2ðr�Hu1Þ
rðK2u2

1þK1u2
2Þ
: ð13Þ

The sustainable yield (Fig. 1B, left panel)

Y ¼Hu1
K1K2ðr�Hu1Þ
rðK2u2

1þK1u2
2Þ

ð14Þ

maximizes at harvesting effort

Hn ¼ r
2u1

: ð15Þ
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At this optimal harvesting effort population equilibrium is positive
and equal to

xn ¼ K1K2

2ðK2u2
1þK1u2

2Þ
ð16Þ

(Fig. 1B, right panel) and the MSY at this equilibrium is

Yn ¼Hnu1xn ¼
K1K2r

4ðK1u2
2þK2u2

1Þ
; ð17Þ

Fig. 1B, middle panel. In contrast to the previous case of no
dispersal, the MSY and the population equilibrium (13) are not
monotone functions of the protected area size. Instead, there exists
an optimal refuge size

Kn

2 ¼ Ku2 ð18Þ
at which both the MSY and the population abundance are max-
imized. We note that at the optimal protected area size Kn

2 ,
Kn

1 ¼ u1K , the MSY equals to rK=4 and the equilibrium population
abundance is K=2.

We remark that for higher harvesting efforts that do not satisfy
inequality (12) the population is overexploited and goes extinct.
This is because due to the open patch is depleted, i.e., x1 ¼ 0 and
due to fast dispersal ðx1 ¼ u1xÞ the overall population abundance
must equal zero too.

2.3. Balanced dispersal

In contrast with the case of no dispersal, the equilibrium popula-
tion abundance (13) for the fast dispersal between patches as a
function of the refuge size (provided we assume that K ¼ K1þK2 is
fixed) is generically a hump-shaped curve (qualitatively similar to
Fig. 1B, right panel) that increases from 0 when K2 ¼ 0, reaches its
maximum and decreases to 0 again when K2 ¼ K . In other words,
when either the refuge or the open patch is small, the overall
population abundance will be small too. This is the consequence
of the mismatch between dispersal rates and environmental
carrying capacities. For example, let us consider random dispersal
(i.e., d12 ¼ d21 ¼ 0:5) and a refuge that is smaller relative to the open
patch (i.e., K2 is smaller than K1). Thus, the refuge will be over-
populated due to influx of animals from the open patch which leads
to a negative population growth rate in the refuge. In fact, for a
fixed distribution, the patch that satisfies Ki=Koui acts as a sink
(Holt, 1997; Doncaster et al., 1997; Diffendorfer, 1998).

Kar and Matsuda (2008) assumed that dispersal was inversely
proportional to patch carrying capacities, i.e.,

d12 ¼
1
K1

and d21 ¼
1
K2

: ð19Þ

Without harvesting, these dispersal rates correspond to
balanced dispersal (McPeek and Holt, 1992; Holt and Barfield,
2001). Under balanced dispersal animal equilibrium population
abundances in the two patches are the same as if there was no
dispersal at all (i.e., xn1 ¼ K1 and xn2 ¼ K2 when H¼0). Thus, without
harvesting and at the population equilibrium, both patches pro-
vide zero payoff (measured as the per capita population growth
rate) and the population distribution corresponds to the IFD.
When patches differ only in their area population distribution
under balanced dispersal will match patch area distribution.
Therefore, balanced dispersal is an important model that assumes
patch occupancy is proportional to the patch area.

Under balanced dispersal population distribution matches dis-
tribution of environmental carrying capacities

ui ¼
Ki

K
; i¼ 1;2: ð20Þ

Substituting this distribution in population equilibrium (13) gives
the overall population abundance (4). Substituting (20) in (14) we

obtain that the corresponding sustainable yield

Y ¼HK1 1�HK1

rK

� �
ð21Þ

(Fig. 1C, left panel) maximizes at harvesting effort

Hn ¼ Kr
2K1

: ð22Þ

The MSY is

Yn ¼ rK
4

ð23Þ

(Fig. 1C, middle panel) and the corresponding population equili-
brium is

xn ¼ K
2
; ð24Þ

(Fig. 1C, right panel). We observe that under balanced dispersal,
the MSY and the corresponding population abundance are inde-
pendent of the refuge size. Thus, in the case of balanced dispersal
when individuals do not react to increased harvest risk in the open
patch, there is no dilemma. In fact, creation of protected area does
not influence neither the MSY nor the population abundance.

The prediction that the MSY does not depend on the open
patch environmental carrying capacity is somewhat counterintui-
tive, because even if the open patch is very small, the MSY should
be the same as if there was no protected area. The reason is that as
the open patch decreases, the optimal harvest effort (22) should
increase. Thus, when the open patch is too small, the harvest effort
is unrealistically high. In reality, the MSY starts to decrease once
the high harvest rates (22) cannot be met.

2.4. Density independent dispersal when distributional
and population dynamics operate on similar time scales

Now we want to compare our predictions for fast animal
dispersal with predictions obtained from model (1) without
assuming fast dispersal. Takeuchi (1996) proved that when an
interior equilibrium of model (1) exists, it is globally asymptoti-
cally stable for any density independent dispersal rates. Although
computer algebra software such as Mathematica do calculate the
interior equilibrium for model (1), the resulting formula is too
complex for further analysis. Fig. 1D shows numerical results when
population and dispersal dynamics operate on the same time scale
(i.e., δ¼1 in model (1)). This is an intermediate case between no
dispersal (δ¼0, Fig. 1A) and infinitely fast density independent
dispersal (δ-1, Fig. 1B). Numerical simulations show that the
dilemma caused by creating a protected area diminishes as
dispersal speed increases. Indeed, the mismatch between the
MSY and the maximum population abundance is maximal when
there is no dispersal (Fig. 1A). In this case the MSY maximizes
when no protected area exists, while the population abundance
maximizes when the whole habitat is protected (i.e., when
harvesting ceases). When dispersal is infinitely fast, no dilemma
exists because the MSY and the population size are maximized at
the same protected area size (Fig. 1B for unbalanced dispersal).
This shows that as dispersal speed increases, the dilemma gets
weaker. For example, Fig. 1D shows that for δ¼1 the MSY
maximizes at approx. K2¼133.3 while the equilibrium population
size maximizes at approx. K2¼108.5.

Fig. 2 compares unbalanced dispersal (left panels) with
balanced dispersal (right panels) as a function of dispersal speed
(δ). Using Mathematica we calculated symbolically equilibrium
population abundance. The resulting formulas are very complex.
Then we numerically calculated the harvest effort that maximizes
the yield in the open patch. Using this optimal harvest effort we
calculated the maximum sustainable yield and the population
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equilibrium. For no dispersal (δ¼0) the MSY and the population
abundance in Fig. 2 are those shown in Fig. 1, panels A when
K2 ¼ 25. For large dispersal rates the values in Fig. 2, left panels for
unbalanced dispersal (right panels for balanced dispersal) con-
verge to those shown in Fig. 1, panels B (panels C).

3. Models with density dependent dispersal

So far we have considered density independent dispersal by
assuming that dispersal rates between the open patch and the
protected patch are independent of population abundance. Now
we consider density dependent dispersal with dispersal rates
depending on population numbers (e.g., Takashina and Mougi,
2014). We also assume that animals adjust their dispersal on patch
occupancy and/or harvest risk in the open patch and they do it in
the way that increases their fitness. Animal fitness is calculated as
the average patch payoff measured by the per capita population
growth rate. We consider two cases of density dependent
dispersal: (i) fast distributional dynamics that track current
population densities, or (ii) slow distributional dynamics that
tracks current population distribution. These two cases describe
two ends of spectra: Either distributional dynamics run on an
infinitely faster time scale than population dynamics, or popula-
tion dynamics run on an infinitely faster time scale than distribu-
tional dynamics. We will ask whether these two opposite time
scalings lead to the same qualitative predictions. It is likely that if
they do, the intermediate cases where time scales are not such
strictly separated will be qualitatively similar. Finally we also
consider population-dispersal dynamics (1) when dispersal speed
is intermediate.

3.1. Fast density dependent and harvest independent distributional
dynamics

In this section we consider density dependent dispersal with
individuals dispersing preferentially to the patch with the higher

payoff. The payoff in the harvested patch is V1 ¼ rð1�u1x
K1
Þwhile the

payoff in the refuge is V2 ¼ rð1�u2x
K2
Þ. In other words we assume

that animals adjust their dispersal to patch quality but they
disregard harvest mortality in the open patch. Fitness of an
individual that spends proportion vi of its lifetime in patch i when
population distribution is ðu1;u2Þ is defined as the average payoff

Wðv1;u1Þ ¼ rv1 1�u1x
K1

� �
þrv2 1�u2x

K2

� �
: ð25Þ

The evolutionarily stable distribution for this fitness function is
called the ideal free distribution (IFD; Fretwell and Lucas, 1969;
Křivan et al., 2008). At the IFD patch payoffs must be the same
V1 ¼ V2 which yields (Křivan et al., 2008)

u1 ¼
K1

K
: ð26Þ

The IFD for fitness function (25) is independent of the population
abundance, and both patches are always occupied. Substituting
(26) in model (9) leads to population dynamics

dx
dt

¼ x
rðK�xÞ�HK1

K
: ð27Þ

For low harvest rates satisfying HorK=K1 population abundance
converges to equilibrium (4), with the corresponding sustainable
yield (21), the MSY (23), and the corresponding equilibrium
population abundance (24) that are identical to balanced and
density independent dispersal (Fig. 1C). Thus, both population
equilibrium xn as well as the MSY are independent of the harvest
effort exactly as in the case of balanced and density independent
dispersal.

3.2. Fast density and harvest dependent distributional dynamics

Now we assume that the payoff in the open patch is harvest
independent, i.e.,

V1 ¼ r 1�u1x
K1

� �
�H ð28Þ
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Fig. 2. Left panels show dependence of the overall equilibrium population abundance and the maximum sustainable yield (MSY) on dispersal speed δ in model (1) for
unbalanced dispersal with equal patch preferences ðd12 ¼ d21 ¼ 1Þ and the refuge size set to K2 ¼ 25. Right panels assume balanced dispersal rates d12 ¼ r=K1 and d21 ¼ 1=K2.
Other parameters used in simulations: r¼ 1, K1 ¼ 175.
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and in the protected patch V2 ¼ rð1�u2x
K2
Þ. Fitness of an individual

with strategy ðv1; v2Þ when population distribution is ðu1;u2Þ is then

Wðv1;u1Þ ¼ rv1 1�u1x
K1

� �
�Hv1þrv2 1�u2x

K2

� �
: ð29Þ

This fitness assumes that individuals react to harvest mortality in
the open patch 1. Solving the equation V1 ¼ V2 we obtain the IFD

u1 ¼
K1ðrx�HK2Þ

rKx if xZK2H
r

0 if xoK2H
r :

8<
: ð30Þ

Thus, when at low population densities, individuals occupy prefer-
entially the refuge because there is no mortality due to harvesting
and density dependence is low there. However, when the overall
population abundance meets the threshold K2H=r, the payoff in
unpopulated open patch equalizes with the payoff in the refuge,
and, as the population abundance further increases, both patches
get occupied.

Population dynamics (9) at the IFD (30) are

dx
dt

¼
xðrðK�xÞ�HK1Þ

K if xZK2H
r

rx 1� x
K2

� �
if xoK2H

r :

8<
: ð31Þ

To analyze equilibria of model (31) we consider two cases.
When harvest rate in the open patch is low ðHorÞ both patches
are occupied at the population equilibrium

x¼ K�HK1

r
ð32Þ

and the population distribution among patches is

u1 ¼
K1ðr�HÞ
Kr�HK1

: ð33Þ

The sustainable yield at this population equilibrium (5), the MSY
(8) and the corresponding population equilibrium (7) are identical
to the case of no dispersal between patches (Fig. 1A). Here we
again observe the dilemma: increasing the refuge size decreases
the MSY, but increases population abundance.

When harvest rate in the open patch is high ðH4rÞ all
individuals occupy protected patch 2 where equilibrium popula-
tion abundance is K2 and the harvest rate drops to 0. We observe
that in contrast to the case of density independent dispersal,
population survives in the protected patch despite that there are
no individuals in the open patch.

3.3. Slow density dependent and harvest independent distributional
dynamics

In contrast to the previous two sections, we assume now that
animals adjust their patch preferences in the direction of a higher
fitness very slowly when compared to population dynamics. In
fact, we consider evolution of dispersal rates by assuming that
equilibrium population abundance tracks current population dis-
tribution. We start our analysis by assuming that harvest rate is
not too high and satisfies Hor=u1 at current population distribu-
tion ðu1;u2Þ. Then model (9) has a globally stable population
equilibrium (13). Fitness of an individual that spends proportion
vi of its lifetime in patch i when population distribution is ðu1;u2Þ,
is given by (25). This fitness assumes that animals do not react to
harvest mortality. The evolution of distribution is then described
by the canonical equation of adaptive dynamics (e.g., Dercole and
Rinaldi, 2008; Metz, 2012)

du1

dt
¼ kðu1Þ

∂Wðv1;u1Þ
∂v1

v1 ¼ u1 ¼ kðu1Þ
ðr�Hu1ÞðK1�Ku1Þ

K1u2
2þK2u2

1

����� ð34Þ

where k is a non-negative function measuring the speed of adapta-
tion (we assume that kð0Þ ¼ kð1Þ ¼ 0) and the partial derivative is

evaluated at the population equilibrium (13). Distributions r=H and
K1=K are (non-trivial) equilibria of model (34). First, we assume
that HorK=K1. Then equilibrium distribution u1 ¼ K1=Kor=H is
asymptotically stable because at this equilibrium distributional
dynamics (34) are negatively frequency dependent. At this distribu-
tion, population equilibrium is x¼ K�HK1

r . The sustainable yield at
this equilibrium (21), the MSY (23) and the corresponding popula-
tion abundance (24) are identical to the case of balanced and
density independent fast dispersal (Fig. 1C).

Second, if the harvest rate is high, i.e., rK=K1oH, then the other
equilibrium u1 ¼ r=H of (34) is locally stable. However, at this
distributional equilibrium population is globally depleted.

3.4. Slow density and harvest dependent distributional dynamics

Now we assume that animals react not only to patch quality
but also to harvest risk, i.e., fitness of an individual that spends
proportion vi of its lifetime in patch iwhen population distribution
is ðu1;u2Þ is given by (29). The corresponding canonical equation of
adaptive dynamics is

du1

dt
¼ K1ðr�HÞþðHK1�KrÞu1

K1u2
2þK2u2

1

: ð35Þ

Assuming that Hor, the distributional equilibrium of the canonical
equation (35)

u1 ¼
K1ðr�HÞ
Kr�HK1

ð36Þ

is positive and asymptotically stable (since Hor implies HorK=K1

as K1oK). The population equilibrium at this distribution is

x¼ K�HK1

r
: ð37Þ

The sustainable yield at this equilibrium (4), the MSY (8) and the
corresponding population abundance (24) are identical to the case
of fast density and harvest dependent distributional dynamics
(Fig. 1A). Again, the dilemma arises in this case.

3.5. Distributional and population dynamics operate on similar
time-scales

If distributional and population dynamics operate on similar
time scales, we need to specify dependence of dispersal rates on
population abundance in model (1). A strategic model that
assumes density and harvest dependent dispersal in the direction
of increasing fitness can be described by the following population–
dispersal dynamics (Cressman and Křivan, 2013)

dx1
dt

¼ x1f 1ðx1Þ�Hx1þδ
x1x2
x1þx2

ðf 1ðx1Þ�H� f 2ðx2ÞÞ;
dx2
dt

¼ x2f 2ðx2Þþδ
x1x2
x1þx2

ðf 2ðx2Þ� f 1ðx1ÞþHÞ: ð38Þ

The interior population equilibrium of this model is the same as
for model (2) with no dispersal and Appendix A shows that it
is locally asymptotically stable independently of dispersal
speed whenever population growth in both patches is negatively
density dependent (i.e., f i

0o0 ). In particular, this holds when
f iðxiÞ ¼ rð1�xi=KiÞ as we have assumed in this article.

4. Discussion

In this article we study effects of dispersal modes between a
harvested patch and an unharvested protected area (refuge) on the
maximum sustainable yield and equilibrium population abundance.
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Creation of protected areas (e.g., marine protected area) is believed
to lead to a dilemma (Gordon, 1954): it decreases the maximum
sustainable yield while it increases population abundance. The
Gordon–Schaefer harvesting model without any dispersal makes
such a prediction (Fig. 1A). In this article we show that dispersal can
change these trends. In particular, the dilemma does not arise when
dispersal between patches is fast and density independent (Fig. 1B),
or dispersal is either fast or slow and in the direction of a higher
fitness when animals disregard harvest mortality risk (Fig. 1C).
When animals adaptively react to harvesting mortality in the open
patch, the maximum sustainable yield and the corresponding
population abundance are the same as in the case of no dispersal
(Fig. 1A).

To analyze the effects of dispersal modes on effectiveness of
protected areas we assume time scale separation between dis-
tributional and population dynamics. Such scaling is useful as it
allows for mathematical analysis of models that are otherwise
difficult or impossible to analyze. In particular, if dispersal operates
on the fast time scale, the two population-dispersal equations are
reduced to a single differential equation that describes the overall
population dynamics. In the case when distributional dynamics
are slow, the resulting model for population distribution is
described by the canonical equation of adaptive dynamics (e.g.,
Dercole and Rinaldi, 2008; Metz, 2012). In both cases the resulting
equations are easy to analyze.

In the case of density independent and (infinitely) fast dispersal
between the open patch and the protected patch we show that the
maximum sustainable yield and the corresponding population
abundance are unimodal curves of the refuge size (Fig. 1B,
Table 1). Both these curves are maximized at the same refuge
size, so if a protected area of that size can be established, there will
be no trade-off between maximizing sustainable yield and the
equilibrium population abundance. In general, the optimum
refuge size depends on animal patch preferences.

When dispersal is balanced (McPeek and Holt, 1992; Holt and
Barfield, 2001; Cressman and Křivan, 2013), i.e., population dis-
tribution matches patch environmental carrying capacities, the
MSY and the overall population abundance are independent of the
refuge size (Fig. 1C, Table 1). This counterintuitive prediction
depends on the fact that the optimal harvest effort is inversely
proportional to the open patch environmental carrying capacity.
Thus, when the open patch becomes too small, the optimal harvest
effort cannot be met and the MSY will eventually decrease.

We also consider density dependent dispersal rates. In this case
we assume that distributional dynamics are either very fast so that at
each population abundance, the population distribution is at an
equilibrium, or very slow so that at each population distribution, the
population abundance is at an equilibrium. Both of these approaches
assume that the net dispersal is in the direction of increasing fitness.

We define animal fitness as the average patch payoff and we assume
two possibilities: Either dispersal is only density dependent, or it is
both density and harvest dependent. In the former case animals
disregard mortality risk associated with harvesting, while in the
second case harvesting mortality risk is a part of fitness. Both these
approaches assume negative density dependent patch payoffs. It is
interesting to note that whether distributional dynamics are fast or
slow does not influence the optimal harvest rate, the MSY and the
corresponding population equilibrium (Table 1). This suggests that
even when time scales are not so strictly separated, the results will
be qualitatively similar. What does matter is the choice of the fitness
function. If the fitness function disregards harvest mortality in the
open patch, results are the same as in the case of the fast balanced
density independent dispersal (Fig. 1C, Table 1). In this case no
dilemma associated with creation of a protected area arises. When
harvest mortality in the open patch is included in the fitness,
predictions are identical to those of the classical Gordon–Schaefer
harvesting model (Fig. 1A, Table 1). In this case there is a strong
trade-off between the MSY and the population abundance.

We also study the general case where no time-scale separation
between distributional and population processes is assumed. In
the case of density independent dispersal the expression for
population equilibrium is too complicated for mathematical ana-
lysis and we used numerical simulations (such as those shown in
Fig. 1D for the case δ¼1). These dependencies are intermediate
cases between no dispersal (Fig. 1A) and infinitely fast dispersal
(Fig. 1B). As dispersal speed increases, the dilemma gets weaker
when compared to the case of no dispersal because the MSY
and the population equilibrium will be maximized at inter-
mediate protected area sizes. This we see in Fig. 1D where the
MSY maximizes at K2 ¼ 133 and the population abundance at
K2 ¼ 108. As dispersal rates converge to infinity, these two points
of maxima converge to the same value. Dependence of equilibrium
population abundance and the MSY on the dispersal speed is
shown in Fig. 2. Left panels show results for unbalanced dispersal,
while the right panels assume balanced dispersal between
patches.

A general predictions from our models is that all types of
dispersal considered in this article diminish the positive effect of
the protected area on population abundance when compared with
the case of no dispersal (cf. right panels in Fig. 1A vs. B–D). This
result corresponds to similar predictions that marine protected
areas will provide fewer benefits to populations that disperse
more (Gerber et al., 2003; Grüss et al., 2011). On the other hand,
the MSY can be either larger or smaller when animals disperse
depending on the refuge size (cf. middle panels in Fig. 1A vs. B–D).
However, to achieve a larger MSY under animal dispersal, the
protected area must be large enough, which may be difficult to
achieve in reality.

Table 1
Overview of model results.

Dispersal MSY Yn Equilibrium Panel in
Population Size xn Fig. 1

No dispersal (Section 2.1)
Fast density and harvest dependent dispersal (Section 3.2) rK1

4
K�K1

2
A

Slow density and harvest dependent dispersal (Section 3.4)

Density independent and fast dispersal (Section 2.2) K1K2r
4ðK1u2

2þK2u2
1Þ

K1K2

2ðK2u2
1þK1u2

2Þ
B

Balanced density independent dispersal (Section 2.3)
Fast density dependent and harvest independent dispersal (Section 3.1) rK

4
K
2

C

Slow density dependent and harvest independent dispersal (Section 3.3)
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Appendix A. Stability of the interior equilibrium for model
(38)

The Jacobian matrix evaluated at the interior equilibrium
(f 1ðx1Þ ¼H1 and f 2ðx2Þ ¼ 0) is

J ¼
ðx1þδ x1x2

x1 þx2
Þf 1 0ðx1Þ �δ x1x2

x1 þx2
f 2

0ðx2Þ

�δ x1x2
x1 þx2

f 1
0ðx1Þ�2δ x22

ðx1 þx2Þ2
H ðx2þδ x1x2

x1 þx2
Þf 2 0ðx2Þ�2 Hδ x21

ðx1 þx2Þ2
:

0
B@

1
CA

As we assume f i
0o0, the trace of matrix

trJ ¼ �2x21δHþðx1þx2Þðx1ðx1þx2þx2δÞf 1 0ðx1Þþx2ðx1þx2þx1δÞf 2 0ðx2ÞÞ
ðx1þx2Þ2

is negative and the determinant of J

det J ¼ x1ðx2ðx1þx2Þ3ð1þδÞf 1 0ðx1Þf 2 0ðx2Þ�2δHðx21ðx1þx2þx2δÞf 1 0ðx1Þþx32δf 2
0ðx2ÞÞÞ

ðx1þx2Þ3

is positive. Thus, the interior equilibrium, provided it exists, is
locally asymptotically stable independently of dispersal speed.
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