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Leslie model for predatory gall-midge population
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Abstract

A Leslie matrix model for predatory gall-midge is constructed. From the model we estimate the stable age
distribution which is important when the gall-midge is used in biological control. We compare the two common
parametrizations of Leslie matrix., i.e. the flow-birth and the pulse-birth projections. We show that both parametriza-
tions lead for the given data set to practically the same results. Then we study the optimal gall-midge introduction
scheme which leads quicker to the stable age distribution if only certain instars can effectively be introduced. This is
also important, because in biological control we need to minimize the time that a population needs to reach the stable
age distribution. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The basic population growth law says that a
population which is not limited, grows exponen-
tially. However, the exponential growth law as-
sumes homogeneous and non-structured
populations. For age-structured populations
(which are typical for insects with various devel-
opmental stages and instars) demographic effects
will lead to some additional fluctuations unless
the population is in a stable age distribution.
Thus, when dealing with structured populations
we have either to take into account that the

population growth may not be exponential, or we
have to assume that the population has already
reached a stable age distribution because then it
grows exponentially. Structured populations can
be modelled either by discrete models, i.e. Leslie
matrices (Roughgarden, 1979; Caswell, 1989a,b,
1996; Selhorst et al., 1991), or by continuous
models, i.e. Gurtin–MacCamy model (Roughgar-
den, 1979). In this paper we will use the discrete
approach based on Leslie matrices which are con-
structed from life tables. There exist several possi-
ble parametrizations of the model with different
predictions. Caswell (1989b) defines two main
types of model parametrization: birth-flow and
birth-pulse models. The birth-flow model assumes
that animals reproduce continuously in each age
class, while the birth-pulse model assumes that
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reproduction occurs at certain fixed times only.
Since gall-midges reproduce continuously in
nights, and they do not reproduce during the day,
neither of the two parametrizations match exactly
this situation. For this reason we will use both
parametrizations to see possible differences.

Since the beginning of the 1970s, the predatory
midge Aphidoletes aphidimyza has been used for
biological aphid control in greenhouses. For suc-
cessful biological pest control based on the
method ‘pest-in-first’ it is important to know
whether midge populations reach naturally stable
age distributions, how long does it take to reach
stable age distributions, and what is the stable age
distribution. Knowing that gall-midge population
tends naturally to a stable age distribution may
still not be enough from a practical point of view,
especially if the time to reach the stable age
distribution is too long. In this case we may ask
how the bioagent should be introduced into the
environment in such a way which reduces the time
necessary for reaching approximately stable age
distribution. Of course, if we can introduce a
predator population which has already stable age
distribution, then this time would be zero and this
introduction pattern would be optimal. However,
from practical point of view this cannot be done,
because technically only certain age classes can
effectively be introduced. Therefore, we ask: how
can we optimize introduction of predators in or-
der to approach stable age distribution as closely
as possible in a given time? In this paper we
propose one possible schedule for gall-midge pop-
ulation which is based on the assumption that
only pupae in the cocoons will be introduced.
However, the proposed scheme, which is based on
quadratic optimization, can also be used for dif-
ferent age classes and populations.

2. Parametrization of the model

We will consider four insect developmental
stages: egg, larvae, pupae and adult. Each of these
four stages lasts for di(i=1, 2, 3, 4) days. The age
of each individual is measured in days since the
egg was layed. The census for gall-midge popula-
tion was made at midday. Gall-midges reproduce

during nights only and we will assume that they
reproduce between 8 p.m. and 4 a.m. Age class i,
(i=1,…, s) contains all individuals whose age is
between i−1 and i. For adults the probability of
surviving till age a is l(a) (l(0)=1), and mi is the
expected number of female offsprings for a female
in age class i.

Following Caswell (1989b) we have the follow-
ing estimates for the probability that an individual
in age class i will survive from time t to t+1:

Pi
f=

l(i)+l(i+1)
l(i−1)+l(i)

, Pi
p=

l(i+0.5)
l(i−1+0.5)

,

i=1,…, s.

Here the superindex f refers to the birth-flow
model while p refers to the birth-pulse model. We
note that l(a) is approximated from the available
data by a piecewise linear approximation.

From the life tables a Leslie matrix which de-
scribes the growth of structured populations is
constructed in the following way. Let Ni(t) denote
the abundance of individuals at time t (measured
in days) which are in the age class i and let
N(t)= (N1(t),…, Ns(t)) denote the composition of
the population. Fecundity of females in the age
class i is estimated by (Caswell, 1989b)

Fi
f=l(0.5)

mi+pimi+1

2
, Fi

p=l(0.5) (Pi
p)0.5mi.

Then the Leslie matrix which corresponds to
the change of the population structure in one day
has the following form:

L=

Á
Ã
Ã
Ã
Ã
Ã
Ä

F1 , F2 , F3 , F4 , ··· , Fs

P1 , 0 , 0 , 0 , ··· , 0

0 , P2 , 0 , 0 , ··· , 0

0 , 0 , P3 , 0 , ··· , 0

� , � , � , � , � , � ,

0 , 0 , 0 , 0 , Ps−1 , 0

Â
Ã
Ã
Ã
Ã
Ã
Å

, (1)

where we dropped the superindex. The population
dynamics is described by

N(t+1)=LN(t)

with L=L f or L=Lp depending on which
parametrization we choose. The stable age distri-
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bution exists if the largest real eigenvalue of the
Leslie matrix is larger than is the absolute magni-
tude of other eigenvalues (Caswell, 1989b). As test
data we took life tables for the Sankt Petersburg
gall-midge population (Havelka and Zemek,
1999), see Table 1. The condition for reaching
stable age distribution was satisfied for this set of
data. The stable age distribution is given by the
eigenvector of the Leslie matrix which corre-
sponds to the largest real eigenvalue l of L. When

the population reaches stable age distribution, it
will grow exponentially with the intrinsic growth
rate parameter r which is given by

r= ln l.

For the Sankt Petersburg population the stable
age distributions corresponding to the two model
parametrizations are given in Table 1. The corre-
sponding growth rates are r f=1.23774 and rp=
1.22915. We see that the differences between the

Table 1
Stable age distributionsa

Age (days)Age class StablepInstar Stable fSurvivalNatality

1 0.208596 0.2031130–1 0Eggs 1
0.92 0.161651 0.1585022 1–2 0

Larvae 0.1259570.12756802–33
0.1026520 0.1020643–44
0.08260 0.08270245 4–5 0

6 5–6 0 0.066466 0.0670125
0.05429830.0534827 0.91606–7

8 7–8Pupae 0 0.04357580.042623
0.03363 0.03462268–9 09

10 9–10 0 0.02749320.02652
0.021818711 10–11 0 0.0209
0.01730440.016461011–1212

0.012956 0.013715012–1313
013–14 0.0101914 0.0108625

0.008008715 0.0085968914–15 0 0.7348

16 0.0060118 0.006498415–16 0Adults 0.65
0.004963170.00455960.656.7616–1717

0.61 0.0036838 0.0040378917–1818 16.34
0.6 0.0028847 0.0031840417.1618–1919

19–20 13.92 0.5620 0.0022381 0.00248765
11.8220–21 0.001940250.001733521 0.5

0.001442450.00127980.4513.321–2222
0.0010517523 22–23 12.91 0.43 0.00092669

0.0006935324 0.00079262823–24 8.39 0.38
0.0005157525 0.00059356424–25 6.82 0.35

0.0004352130.000375530.325.9725–2626
0.25 0.00027847 0.00032497427 26–27 5.23

0.0002249290.00019140.233.627–2828
0.000130220.181.75 0.00015410228–2929

0.13 0.000089866 0.00010708930 29–30 2.36
31 30–31 1.62 0.1 0.000054896 0.0000658749

1.6831–3232 0.00003976320.0000329060.03
33 0.000015027 0.000018284932–33 0.020.72

0 00033–3434

a Life tables for a gall-midge population and stable age distributions corresponding to two different parametrizations of the Leslie
matrix
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Fig. 1. Stable age distributions for the Sankt Petersburg gall-
midge population computed by using flow-birth projection
(2) and pulse-birth projection (�).

but during maximum k days. Let u be a vector
which consists only of zeros and ones. If ui=1
then it means that the animals of age class i are
suitable for introduction while ui=0 means that
animals of this age class are not introduced. Every
day we will introduce a certain (yet unknown)
amount of animals and we want to do this for
maximum of k days. Using the Leslie model
which now becomes

N( j+1)=LN( j)+aju, j=0,…, k−1,

we get that after k days the composition of the
population will be

N(k)=a0Lku+a1Lk−1u+ ···+aku.

Here coefficient aj\0 denotes the number of
individuals released at day j. In general we cannot
find these coefficients so that N(k) has stable age
distribution but we may estimate these coefficients
in such a way that the quadratic difference of
N(k) from the stable age distribution is mini-
mized, i.e.

%
s

i=1

(Ni(k)−Si)2�min,

where (S1,…, Ss) denotes the stable age distribu-
tion. For example, assuming that we want to
introduce only cocoons (i.e. individuals of age
class 8–15 for Sankt Petersburg population) for

two parametrizations of the Leslie model are from
any practical point of view negligible for this
particular data set. The stable age distribution
gives the proportion of every age class in the total
population, see Fig. 1. We see that differences
resulting from the two parametrizations of the
Leslie matrix have only negligible effect on the
stable age distribution.

3. Optimal predator introduction

Demographic fluctuations which are due to age
structure may cause deviations from the exponen-
tial growth rate after the predator population is
introduced. These fluctuations could be elimi-
nated by introducing population which has al-
ready stable age distribution, but this can be
technically impossible. For example, in the case of
gall-midge population, pupae in the cocoons are
technically easily introduced into greenhouses.
Therefore, it will take same time before the popu-
lation will reach stable age distribution. In Fig. 2
the heavy line corresponds to the case where all
age classes of pupae (i.e. age classes 8–15) are
introduced in the same numbers into the environ-
ment. We see, that this schedule leads to long
term oscillations in population numbers. Since the
time to reach approximately stable age distribu-
tion may be quite long, we may try to speed up
reaching the stable distribution. Our strategy will
be to introduce animals of only certain age classes

Fig. 2. In this figure the logarithm of the total population is
shown. The heavy line describes the growth of a typical
population which shows fluctuations due to demographic ef-
fects. After some time these fluctuations are vanishing and
population grows exponentially. The dashed line shows the
population growth when the population is introduced into
environment in the optimal way as described in the paper.
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maximum of 10 days we found using MATLAB
procedure for quadratic optimization with state
constraints the following optimal introduction
schedule: 1st day introduce 20 cocoons, 5th day
introduce two cocoons, and 10th day introduce
two cocoons. It is clear from Fig. 2 that using this
procedure we reduce fluctuations in gall-midge
population densities and we speed up the conver-
gence to the stable age distribution.

4. Conclusions

In this paper we derived a discrete-time model
for description of a gall-midge population growth.
Leslie matrix population models depend on their
parametrization. The two mainly used
parametrizations are so called birth-flow, and
birth-pulse parametrizations (Caswell, 1989b).
The birth-flow model assumes that birth occurs
continuously over the time interval, while birth-
pulse models assume that reproduction is concen-
trated in short breeding periods. Since gall-midge
as many other insect populations reproduce con-
tinuously in nights, neither of the two
parametrizations applies. For this reason we com-
pared predictions obtained from the two models
by using a gall-midge life history data. The stable
age distributions based on the two models are
practically identical, see Fig. 1. The difference in
the intrinsic growth rate parameters is also very
small. Thus we may conclude that for the gall-
midge population under the study the differences
between the two parametrizations of the Leslie
matrix are negligible. Since the aim in biological
control is to introduce predator population which

will grow exponentially, we also studied how the
gall-midge should be introduced in an optimal
way. Optimality here means that after the intro-
duction the gall-midge population will have ap-
proximately stable age distribution. Using
quadratic optimization we showed that this goal
can be achieved by consecutive introduction of
certain age classes in a relatively short time, see
Fig. 2.
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