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a b s t r a c t 

Game theoretic models of evolution such as the Hawk–Dove game assume that individuals gain fitness 

(which is a proxy of the per capita population growth rate) in pair-wise contests only. These models as- 

sume that the equilibrium distribution of phenotypes involved (e.g., Hawks and Doves) in the population 

is given by the Hardy–Weinberg law, which is based on instantaneous, random pair formation. On the 

other hand, models of population dynamics do not consider pairs, newborns are produced by singles, 

and interactions between phenotypes or species are described by the mass action principle. This arti- 

cle links game theoretic and population approaches. It shows that combining distribution dynamics with 

population dynamics can lead to stable coexistence of Hawk and Dove population numbers in models 

that do not assume a priori that fitness is negative density dependent. Our analysis shows clearly that 

the interior Nash equilibrium of the Hawk and Dove model depends both on population size and on 

interaction times between different phenotypes in the population. This raises the question of the appli- 

cability of classic evolutionary game theory that requires all interactions take the same amount of time 

and that all single individuals have the same payoff per unit of time, to real populations. Furthermore, 

by separating individual fitness into birth and death effects on singles and pairs, it is shown that stable 

coexistence in these models depends on the time-scale of the distribution dynamics relative to the popu- 

lation dynamics. When explicit density-dependent fitness is included through competition over a limited 

resource, the combined dynamics of the Hawk–Dove model often lead to Dove extinction no matter how 

costly fighting is for Hawk pairs. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Game theoretic models (e.g., the Hawk–Dove game;

Maynard Smith and Price, 1973 ) assume that all individuals

instantaneously and randomly pair, and each interaction has the

same duration. These assumptions lead to the distribution of

pairs that is given by the Hardy–Weinberg (HW) principle (see,

for example, Eq. (2) below). K ̌rivan and Cressman (2017) (see

also Zhang et al., 2016 ) considered a more general situation

where interaction times between different strategies can take

different amounts of time. They assumed that all individuals pair

immediately so there were no singles. 
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In this article, we do not assume instantaneous pairing, but

onsider random pair formation among singles based on the mass

ction principle instead. Thus, the population consists both of sin-

le individuals and paired individuals and we study distributional

ynamics of pairs and singles assuming that the overall population

umbers of each strategy are fixed. Together with distributional

ynamics we also consider population dynamics that model how

he numbers of each strategy evolve in two-strategy games. 

In Section 2 , we start with the replicator equation ( Taylor and

onker, 1978 ) that has often been used in the context of evolution-

ry modeling. Replicator dynamics assume that a strategy’s growth

ate is given by its average payoff (fitness). The standard approach

lso assumes that individuals meet at random (which implicitly

eans that all interaction times must be the same) and that payoff

s density independent since it is given by this pairwise interac-

ion. The replicator equation for two-strategy games then predicts

hat the frequencies of strategies in the population will converge

o an evolutionarily stable strategy (ESS) of the game and that the

https://doi.org/10.1016/j.jtbi.2018.07.003
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1 Note that H (respectively D ) is used to denote the Hawk (respectively, Dove) 

strategy as well as the number of Hawks (respectively, Doves). The meaning will be 

clear from the context in which it appears. 
verall population will grow (or decay) exponentially thereafter

 Cressman, 2003; Hofbauer and Sigmund, 1998 ). These two proper-

ies are captured by saying that replicator dynamics are frequency

ependent but density independent. Section 2 generalizes the stan-

ard replicator equation to the case where interaction times de-

end on strategies and singles get some (density independent) fit-

esses too. We show that the replicator equation can now lead to

table equilibria at finite, positive population size. We document

volutionary outcomes where both strategies coexist at the equi-

ibrium using generalizations of the Hawk–Dove model and distri-

utional dynamics that evolve on a faster time scale compared to

he replicator equation. In other words, it is no longer necessary to

ssume a priori density dependent fitnesses to obtain coexistence. 

Section 3 considers the effect on the stable evolutionary out-

ome when distributional and population dynamics operate on a

ommensurable time scale. To do so, the combined dynamics must

odel how payoffs translate into changing numbers of singles and

airs. Specifically, we assume that payoffs to singles only influence

he number of singles whereas payoffs to pairwise interactions are

nterpreted in terms of birth and death rates of the individuals

n the pair and any newborns increase the number of singles. It

s shown that non-zero death rates when in pairs alter the sta-

le evolutionary outcome in the combined dynamics. In fact, for

ur generalized Hawk–Dove game, we find that the stable coexis-

ence equilibrium when distributional dynamics are fast can disap-

ear altogether when time scales are similar and, in such cases the

oves go extinct. 

Combining distributional and evolutionary dynamics suggests a

atural way to extend the Hawk–Dove game to a model of com-

etition over a limited resource. Section 4 develops such a model

here the resource is a fixed number of breeding sites that are

vailable to be occupied either by singles or by interacting pairs

nd any other singles are searching for sites. Fitnesses are now

utomatically density dependent. Although the state space of the

esulting dynamical system becomes quite large in this complex

odel, we show that the underlying density dependence drives

oves to extinction when reasonable assumptions on the system

arameters are made. 

Through the models of Sections 2 –4 , we show how implicit and

xplicit density dependence arises naturally when population and

volutionary models are integrated. The Discussion ( Section 5 ) ex-

ands further on this theme by emphasizing how the Hawk–Dove

ame, originally developed to model the frequency evolution of ag-

ressive behavior in a biological species, can serve to understand

he effects of competition on the combined evolutionary and pop-

lation outcome. 

. Evolutionary games when distribution dynamics are 

ndependent of fitness 

In this section, we generalize the replicator dynamics to the

ase where interaction times between strategies are not the same

nd there is time needed for pair formation. 

.1. Distributional dynamics, fitness, and Nash equilibrium 

In what follows we consider symmetric, two-strategy games

ith strategies denoted as H and D (motivated by, but not limited

o, the Hawk–Dove model that we use throughout this article) and

ayoff matrix 

( H D 

H πHH πHD 

D πDH πDD 

)
. (1) 

These payoffs to the row player result from pairwise interactions 

etween players. Classic evolutionary game theory interprets the
ayoffs as changes in individual fitnesses due to an interaction. To

alculate fitness, one then needs to describe the distribution of in-

eracting pairs in the population. 

The classic approach assumes that individuals immediately and

andomly pair. The equilibrium of the pair formation process is

hen given by Hardy–Weinberg distribution 

 HH = 

H 

2 

2 N 

, n HD = 

HD 

N 

, n DD = 

D 

2 

2 N 

(2)

here n ij is the number of ij pairs ( i, j = H, D ), H = 2 n HH + n HD ,

nd D = 2 n DD + n HD , where H is the number of Hawks, D is the

umber of Doves, and N = H + D is the population size. 1 In mixed

airs, we do not distinguish between HD and DH pairs, i.e., n HD 

onsists of all mixed pairs. Assuming that the distribution of pairs

s at its Hardy–Weinberg equilibrium, the expected payoffs per in-

eraction to a Hawk and to a Dove are 

�H = 

2 n HH 

H 

πHH + 

n HD 

H 

πHD = 

H 

N 

πHH + 

D 

N 

πHD , 

�D = 

n HD 

D 

πDH + 

2 n DD 

D 

πDD = 

H 

N 

πDH + 

D 

N 

πDD . 

(3) 

nderlying the Hardy–Weinberg distribution and the resulting ex-

ected payoffs given in (3) is an assumption that interactions take

he same amount of time in order that all individuals are available

o randomly pair (see the pair formation dynamics (7) below when

ndividuals instantaneously pair). Although the effect of interaction

ime is not generally included in classic evolutionary game theory

odels, it is important for us here since we will relax the assump-

ion that all interactions take the same amount of time for the re-

ainder of this article. 

Following K ̌rivan and Cressman (2017) , we introduce the (sym-

etric) interaction time matrix 

( H D 

H τHH τHD 

D τHD τDD 

)
(4) 

here τ ij is the average interaction time an ij pair takes (with all

’s positive). Furthermore, contrary to classic evolutionary game

heory, we will not assume that all individuals instantaneously

air, i.e., we consider singles in the population. The problem of

nding the distributional equilibrium of pairs and singles is then

uch more complex when compared to the Hardy–Weinberg dis-

ribution (2) . 

Let n H and n D denote the numbers of singles in the population.

onsider the distributional dynamics of pairs and singles 

dn H 

dt 
= −λn 

2 
H − λn H n D + 2 

n HH 

τHH 

+ 

n HD 

τHD 

dn D 

dt 
= −λn 

2 
D − λn H n D + 2 

n DD 

τDD 

+ 

n HD 

τHD 

dn HH 

dt 
= −n HH 

τHH 

+ 

λ

2 

n 

2 
H 

dn HD 

dt 
= −n HD 

τHD 

+ λn H n D 

dn DD 

dt 
= −n DD 

τDD 

+ 

λ

2 

n 

2 
D 

(5) 

hat leaves the number of Hawks and Doves unchanged. These dy-

amics model a pair formation process (see also Mylius, 1999 ) that
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2 These equal payoffs to singles can be considered a type of strategy-independent 

background fitness ( Cressman, 1992 ) that does not affect the evolutionary outcome 

since it is selectively neutral. From this perspective, πH � = πD is a form of hetero- 

geneity in background fitness (see also Hauser et al., 2014 ) that alters the evolu- 

tionary outcome to (11) . 
is based on the mass action law whereby single individuals meet

at random with encounter (or pairing) rate λ. The 2’s and 1/2’s

in these equations relate to the fact that two single individuals

appear when a pair disbands and that two singles produce one

pair when they meet, respectively. Appendix A shows that, given H

and D , there exists a unique distributional equilibrium of (5) . This

distributional equilibrium can be obtained using computer algebra

software ( Appendix F ), but it is too complicated for analysis. We

observe that at the distributional equilibrium we have a general-

ized Hardy–Weinberg distribution 

n HH = 

1 

2 

λτHH n 

2 
H , n HD = λτHD n H n D , n DD = 

1 

2 

λτDD n 

2 
D . (6)

If individuals instantaneously pair (i.e., λ converges to infinity

in distributional dynamics (5) ), the pair dynamics are described by

K ̌rivan and Cressman (2017) 

dn HH 

dt 
= −n HH 

τHH 

+ 

(
2 n HH 

τHH 
+ 

n HD 

τHD 

)2 

4 

(
n HH 

τHH 
+ 

n HD 

τHD 
+ 

n DD 

τDD 

)

dn HD 

dt 
= −n HD 

τHD 

+ 

2 

(
2 n HH 

τHH 
+ 

n HD 

τHD 

)(
n HD 

τHD 
+ 

2 n DD 

τDD 

)
4 

(
n HH 

τHH 
+ 

n HD 

τHD 
+ 

n DD 

τDD 

)

dn DD 

dt 
= −n DD 

τDD 

+ 

(
n HD 

τHD 
+ 

2 n DD 

τDD 

)2 

4 

(
n HH 

τHH 
+ 

n HD 

τHD 
+ 

n DD 

τDD 

) . 

(7)

Provided all τ ’s are the same, the above pair dynamics converge to

the Hardy–Weinberg distributional equilibrium (2) . 

We define individual fitness as average payoff per unit of time.

Assuming that singles gain payoff πH and πD (these payoffs can

be positive, negative, or zero) per unit of time, while individual i

in pair ij gains payoff π ij per interaction when the pair disbands

(and so payoff π ij / τ ij per unit of time), the fitnesses for the two

phenotypes are now 

�H = 

2 n HH 

H 

πHH 

τHH 

+ 

n HD 

H 

πHD 

τHD 

+ 

n H 

H 

πH , 

�D = 

2 n DD 

D 

πDD 

τDD 

+ 

n HD 

D 

πDH 

τHD 

+ 

n D 

D 

πD . 

(8)

We now analyze the game that consists of the Hawk and Dove

strategies together with their fitnesses (8) evaluated at the unique

equilibrium distribution of (5) . Substituting equilibrium distribu-

tion of pairs (6) in the equation for an interior Nash equilibrium

(NE) �H = �D and into the total population size N = n H + n D +
2 n HH + 2 n HD + 2 n DD leads to the following system of equations 

n H λπHH + n D λπHD + πH 

n H λτHH + n D λτHD + 1 

= 

n D λπDD + n H λπDH + πD 

n D λτDD + n H λτHD + 1 

(9)

and 

n H (n H λτHH + n D λτHD + 1) + n D (n D λτDD + n H λτHD + 1) = N. 

(10)

Eqs. (9) and (10) are difficult to solve analytically as these are two

quadratic equations in n H and n D . 

However, when all τ ’s are the same and equal to τ , there is at

most one interior NE and it is given by 

n H = 

(πDD − πHD )( 
√ 

4 λNτ + 1 − 1) + 2 τ ( πD − πH ) 

2 λτ ( πDD − πDH − πHD + πHH ) 

and 

n D = 

(πHH − πDH )( 
√ 

4 λNτ + 1 − 1) + 2 τ ( πH − πD ) 

2 λτ ( πDD − πDH − πHD + πHH ) 
hen both these expressions are positive. In this case, the propor-
ion of Hawks in the population at NE is given by 

p H = 

H 

N 

= 

πDD − πHD 

πDD − πDH − πHD + πHH 

+ 

( πD − πH ) 
(√ 

4 λNτ + 1 + 1 
)

2 λN( πDD − πDH − πHD + πHH ) 
. 

(11)

n particular, the NE depends on population size when there are

ayoffs to singles. This contrasts with the classic result of evolu-

ionary game theory whereby the strategy proportion at NE de-

ends only on the payoff matrix and not on N . On the other hand,

n the special case where the payoff to singles for both strate-

ies are the same (i.e., πH = πD ), 
2 we recover the classic result

 Hofbauer and Sigmund, 1998 ) of matrix game theory with two

trategies and equal interaction times where the NE proportion of

awks is 

p H = 

πDD − πHD 

πDD − πDH − πHD + πHH 

. 

In the following example, our analysis of the Hawk–Dove model

ith standard payoff matrix shows clearly that, in general, interior

E depend both on population size and on interaction times. This

aises the question of the applicability of classic evolutionary game

heory to real populations. In particular, the classic results require

hat all interactions take the same amount of time and that all sin-

le individuals have the same payoff per unit of time. 

xample 1. The Hawk–Dove model (e.g., K ̌rivan and Cressman,

017; Maynard Smith and Price, 1973 ) has payoff matrix 

( H D 

H V − C 2 V 

D 0 V 

)
(12)

here 2 V > 0 is the benefit of winning the contest (this can be in-

erpreted as, e.g., the value of the contested resource) and C > 0 is

he individual cost of the fight that each contestant bears (i.e., the

otal cost for both individuals is 2 C ). When two Hawks interact, the

verage payoff is thus (2 V − 2 C) / 2 . If singles payoffs are the same

 πH = πD ) so that differences in payoffs are through pairwise inter-

ctions only and all interactions take the same time, then for C > V

rom formula (11) we get the NE p H = V/C, which is independent

f N . This is the unique evolutionarily stable strategy (ESS) of the

lassic matrix game (12) ( Fig. 1 A). When C < V , all Hawks is the

nly NE (it is also an ESS). 

If all interactions take the same time τ and πH � = πD , then the

roportion of Hawks (11) at an interior NE is given by 

p H = 

V 

C 
− ( πD − πH )( 

√ 

4 λNτ + 1 + 1) 

2 CλN 

(13)

nd is no longer independent of population size N . The depen-

ence of p H on λ and N is illustrated in Fig. 1 , left panels. When

otal population N tends to infinity, the proportion of Hawks con-

erges to V / C as in the classical case. When πD > πH , we see from

13) that p H decreases with smaller λ and N ( Fig. 1 , panels A, C,

, G) and larger τ . On the other hand, when πD < πH , we observe

he opposite effect as seen in Fig. 1 , Panel I. 

When interaction times are not all the same, interior NE can

e approximated by numerically solving Eqs. (9) and (10) . The pro-

ortion of Hawks at NE are shown in the right panels of Fig. 1 as

 function of τHH when all other interaction times are 1. The top
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Fig. 1. The proportion of Hawks ( p H ) at the NE for the Hawk–Dove game parametrized by (12) as a function of population size N (left panels) and of interaction time between 

Hawks τ HH (right panels). Stable (unstable) NE are indicated by solid (dashed) curves. The left panels assume that all interaction times are the same (in particular, τHH = 1 ) 

and in the right panels the constant total population size is N = 100 . The top row assumes very fast pairing rate ( λ = 10 , 0 0 0 ), the second and fifth rows intermediate pairing 

rate ( λ = 1 ), and the third and fourth row low and very low pairing rates ( λ = 0 . 1 and λ = 0 . 007 , respectively). Since there are effectively no singles in the top row, the left 

panel gives the NE of the classic Hawk–Dove game with payoff matrix (12) and the right panel reproduces Fig. 3B in K ̌rivan and Cressman (2017) . The top three panels on 

the left (A, C, E) assume different singles payoff ( πH = −1 , πD = −0 . 5 ) whereas the top three panels on the right (B, D, F) assume equal singles payoff ( πH = −1 , πD = −1 ). 

Panels G and H assume πH = −1 and πD = −0 . 5 as in A, C, E whereas panels I and J assume πH = −0 . 5 , πD = −2 . Other parameters used in simulations: τHD = 1 , τDD = 1 , 

V = 1 , C = 2 . 
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Fig. 2. Simulations of Hawk and Dove population dynamics (16) . Left panels correspond to Example 1 ( πH = πD = −1 ) and right panels to Example 2 ( πH = πD = 1 ). Top row 

shows stream plot of singles population dynamics (18) . The middle row shows frequency of Hawks ( p H ), frequency of single individuals ( p S ) and frequency of individuals that 

are in pairs ( p P ) in the population as a function of time. The bottom row shows the total population size as a function of time. Panels C and E show two trajectories. Along 

one (black lines) the population grows to infinity, while along the other (gray) it declines to extinction. Other parameters: τHH = 1 , τHD = 1 , τDD = 1 , λ = 1 , V = 1 , C = 2 . 

Fig. 3. Dependence on single Dove payoff πD of the interior equilibrium (24) for Example 2 , which exists for πD > ( V / C ) πH . Panel A shows frequency of Hawks ( p H ), frequency 

of single individuals ( p S ) and frequency of individuals that are in pairs ( p P ) while panel B shows the total population size at the equilibrium. Other parameters are the same 

as those in Fig. 2 , right panels (i.e., τHH = 1 , τHD = 1 , τDD = 1 , λ = 1 , V = 1 , C = 2 , πH = 1 ). 
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3 This equilibrium is a NE of the game (and, generically, an ESS) if initially there 

are both Hawks and Doves present. 
4 See, however, Section 3 , where this assumption is relaxed. 
5 We note that rewriting these dynamics in analogy to (15) where we separated 

frequency dynamics from population dynamics is cumbersome now, because the 

analytic expression for the equilibrium of (5) as a function of Hawk and Dove pop- 

ulation numbers is a very complex formula (it can be calculated in Mathematica). 
ow of Fig. 1 shows the case where individuals pair almost in-

tantaneously, because pairing rate λ is high. In this case, there

re practically no singles and distributional dynamics converge to

7) . Panel B then corresponds with Fig. 3 B in K ̌rivan and Cress-

an (2017) where instantaneous pairing was assumed. When pair-

ng is not instantaneous and singles payoffs are negative but un-

qual (right panels D, F, H, J), it can be shown for the Hawk–Dove

ayoffs (12) that there is a finite threshold value such that the all

awk population is a NE if and only if fighting time τHH is above

his threshold. Moreover, panels D and J with intermediate pair-

ng rate ( λ = 1 ) document the existence of two interior NE when

HH is sufficiently large. In this case, one interior NE is stable (in-

icated by a solid curve) since �H − �D is positive (negative) just

elow (above) the curve and the other is unstable (indicated by

 dashed curve). In both panels, all Hawks is then a NE as well

ince �H > �D when p H = 1 . Panel F assumes yet lower pairing

ate and we observe complex dependence of NEs on interaction

imes between two Hawks. In particular, it shows that for short

nteraction times between Hawks, the proportion of Hawks is be-

ow V/C = 1 / 2 . As this interaction time increases, the proportion of

awks increases too, and a second NE where initially all individu-

ls are Hawks appears. For intermediate interaction times between

awks (approx. 4.9 < τHH < 9.6), the only NE is all Hawks. For yet

igher interaction times, there are again two interior NE, and the

table lower one decreases with increasing interaction time. Fi-

ally, for extremely low pairing rate and πD > πH (panels G and

), the all Dove population is a NE independent of fighting time

hen population size is small enough since almost all individuals

re singles. 

.2. Replicator and population dynamics 

The replicator equation of evolutionary game theory is based

n a population dynamics that assumes the per capita population

rowth rate of a strategy’s numbers is proportional to its payoff

 Taylor and Jonker, 1978 ). In particular, unlike Section 2.1 , total

opulation size N can change. Under the implicit assumptions of

lassical evolutionary game theory that all interactions take one

nit of time and that individuals instantaneously pair at Hardy–

einberg distribution (2) , the replicator equation is independent

f N as we will now see. First, the population dynamics becomes

dH 

dt 
= �H H 

dD 

dt 
= �D D 

(14) 

here the per capita population growth rate is equal to fitness.

oreover, by the second assumption, fitnesses are given by (3) and

o population dynamics (14) can be rewritten in terms of the pro-

ortion p H ≡ H/ (H + D ) of Hawks and the total population size

 ≡ H + D as 

dp H 
dt 

= p H (1 − p H ) 
(
�H − �D 

)
dN = �N, (15) 

dn H 

dt 
= n H 

n D λ(πD + n D λπDD + n H λπDH ) τHD − (πH + n D λπHD + n H

n D n H λ2 τ 2 
HD 

− (1 + 2 n D λτDD + n H λτHD )(1 +

dn D 

dt 
= n D 

n H λ(πH + n H λπHH + n D λπHD ) τHD − (πD + n H λπDH + n

n D n H λ2 τ 2 
HD 

− (1 + 2 n D λτDD + n H λτHD )(1 +
dt 
here � = p H �H + p D �D is the average fitness in the popula-

ion. Since �H = p H πHH + p D πHD and �D = p H πDH + p D πDD where

p D ≡ 1 − p H , the proportion of Hawks evolves according to the

eplicator equation of classic evolutionary game theory which is in-

ependent of total population size. It is well-known ( Hofbauer and

igmund, 1998 ) that every trajectory of the replicator equation

or a two-strategy game evolves to an equilibrium. 3 Depending on

hether the average fitness � in the population is positive or neg-

tive at this equilibrium, the population size will then either grow

in which case the extinction equilibrium (H, D ) = (0 , 0) is unsta-

le) or decay (the extinction equilibrium is then stable) exponen-

ially and so no positive equilibrium population size exists. Such

opulation dynamics are called density independent. 

In the remainder of this section, we generalize the population

ynamics approach to evolutionary games where the classic as-

umptions do not hold. We continue to assume that distributional

ynamics (5) operate on a fast time scale so that, in the population

ynamics (14) , the population distribution tracks instantaneously

he unique equilibrium distribution of (5) at current Hawk and

ove numbers. 4 From (6) and (8) , population dynamics (14) sim-

lify to 

dH 

dt 
= (πHH λn H + πHD λn D + πH ) n H 

dD 

dt 
= (πDH λn H + πDD λn D + πD ) n D , 

(16) 

hich can be analyzed by rewriting it as a dynamics in n H and n D 
lone. Specifically, using generalized Hardy–Weinberg distribution 

6) , Hawk and Dove population size at the distributional equilib-

ium are 

H = 2 n HH + n HD + n H = n H (n H λτHH + n D λτHD + 1) , 

D = 2 n DD + n HD + n D = n D (n D λτDD + n H λτHD + 1) . 
(17) 

alculating derivatives of H and D in (17) and substituting them

nto (16) leads to 5 

H )(1 + 2 n D λτDD + n H λτHD ) 

HD + 2 n H λτHH ) 

D )(1 + 2 n H λτHH + n D λτHD ) 

HD + 2 n H λτHH ) 
. 

(18) 

n contrast to (14) , population dynamics (18) also have non-trivial

quilibria. Here we provide conditions (proven in Appendix B ) for

heir local asymptotic stability. 

The extinction equilibrium (n H , n D ) = (0 , 0) is locally stable

hen πH < 0 and πD < 0. This can be understood intuitively by

ig. 2 , where panels C and E (gray lines) show that, as the to-

al population size decreases toward 0, the frequency of singles

 p S ≡ (n H + n D ) /N) in the population increases toward 1. For low

opulation size, individual fitness is then essentially given by the

ingles payoff, which then determine population dynamics and

ence the fate of the population. Thus, when payoffs of singles are

egative, the population will go extinct. Fig. 2 C also shows that

he frequency of Hawks ( p H ) in the population does not tend to

 / C even in the case that single Hawks and Doves have the same

ayoff (i.e., πH = πD ) and all τ ’s are equal (see the gray solid line
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6 This follows from the fact that each entry of the payoff matric (23) differs from 

the corresponding entry of (12) by the same constant V . 
in panel C). In fact, the limiting proportion of Hawks depends on

the initial conditions that determine the angle with which the cor-

responding trajectory tends to the origin in Fig. 2 , panel A. 

The black lines of Fig. 2 , panels C and E, show that, as popu-

lation size increases toward infinity, the frequency of pairs ( p P ≡
1 − p S ) in the population increases toward 1. For large populations,

it is the payoffs from interacting pairs that determine population

dynamics. For the Hawk–Dove payoff matrix (12) , the frequency of

Hawks then approaches V / C when all τ ’s are equal, independently

of the initial conditions. 

Other boundary equilibria may exist where exactly one strategy

is extinct. For instance, the Hawk only boundary equilibrium 

(n H , n D ) = 

(
− πH 

λπHH 

, 0 

)
(19)

exists if and only if πHH � = 0 and πH / πHH < 0. Moreover, it is lo-

cally stable if and only if πH > 0 and πD πHH < πH πDH . Similarly,

the Dove only boundary equilibrium 

(n H , n D ) = 

(
0 , − πD 

λπDD 

)
(20)

exists if and only if πDD � = 0 and πD / πDD < 0 and is locally stable if

and only if πD > 0 and πH πDD < πD πHD . 

Most importantly, there are payoff parameters for which the in-

terior equilibrium 

(n H , n D ) = 

(
πDD πH − πD πHD 

λ(πDH πHD − πDD πHH ) 
, 

πD πHH − πDH πH 

λ(πDH πHD − πDD πHH ) 

)
(21)

exists. It is interesting to note that equilibrium (21) is indepen-

dent of interaction times. This can also be seen from (16) where

the right hand-side is independent of interaction times and, conse-

quently, the values of n H and n D at which both Hawks and Doves

have zero growth rate are independent of interaction times too.

However, due to (17) , equilibrium numbers of Hawks and Doves

do depend on interaction times. Stability analysis of equilibrium

(21) also depends on interaction times and leads to complex ex-

pressions. Below we will analyze its stability for the Hawk–Dove

game. 

Before doing so, we observe two important effects of singles on

population dynamics (16) (or (18) ). First, when singles do not get

any payoff ( πD = πH = 0 ), then (0,0) is the only equilibrium. Sec-

ond, as the pairing rate of singles λ tends to infinity, both bound-

ary and interior equilibria tend to (0,0). These observations clearly

show that existence of non-extinction equilibria in these dynamics

depends on singles being considered. 

The important observation here is that, unlike classic evolu-

tionary game theory, generalization of replicator dynamics that in-

clude singles payoff (i.e., πH or πD ) can lead to density depen-

dence, and so to non-extinction equilibria. For this to happen it

is essential that singles receive payoffs. We note that our payoffs

(to pairs and to singles) are independent of population size un-

like the background fitness approach of Cressman (1992) where

payoffs decrease as population size increases or of Argasinski and

Broom (2013) who assume density dependent fertility rates. 

Example 1 continued. For the classic assumptions of evolution-

ary game theory applied to the parametrization of the Hawk–Dove

model (12) , the average fitness in the population at its unique NE

is 

� = 

V 

C 
(C − V ) > 0 

when C > V and � = V − C > 0 when V > C . Thus, the population

will eventually grow exponentially, i.e., there is no stable popu-

lation equilibrium. In fact, even if singles do not pair instanta-

neously, the population will eventually grow exponentially when

π = π = 0 . 
H D 
Now we consider the case where individuals do not pair in-

tantaneously, pair interaction times may differ, and singles receive

ayoff. Provided 

πH −2 πD 
λ(C−V ) 

> 0 and πD < 0, the interior population

quilibrium (21) is 

(n H , n D ) = 

(
πH − 2 πD 

λ(C − V ) 
, −πD 

V λ

)
(22)

nd the population of Hawks and Doves at this equilibrium are 

 = 

(2 πD − πH )((C − V )(πD τHD − V ) + V (2 πD − πH ) τHH ) 

(C − V ) 2 V λ

nd 

 = 

πD ((C − V )(V − πD τDD ) + V (πH − 2 πD ) τHD ) 

V 

2 (V − C) λ
. 

ppendix B gives conditions on parameters that guarantee the sta-

ility of this equilibrium. However, these conditions also imply that

or C > V the interior equilibrium is always unstable ( Fig. 2 A). In

act, since πH < 0 and πD < 0 in this panel, the extinction equilib-

ium is locally stable and we observe the Allee effect where the

opulation goes extinct when initially at low numbers, but it sur-

ives once it overcomes the extinction threshold ( Courchamp et al.,

008 ) and grows to infinity ( Fig. 2 E). 

In order to avoid this Allee effect in Example 1 whenever

here is an interior equilibrium and (0,0) is locally stable, we re-

arametrize the payoff matrix for the Hawk–Dove game as in the

ollowing example by decreasing payoffs from pairs (specifically, by

ubtracting V from each entry of (12) ). As we will see, the decrease

n population growth rates due to the fitness component based on

airs results in the stability of the interior equilibrium whenever it

xists ( Fig. 2 B and F). Thus, singles payoff can lead to stable inte-

ior equilibria for the combined replicator and population dynam-

cs. 

xample 2. The second parametrization of the Hawk–Dove model

e consider has payoff matrix 

( H D 

H −C V 

D −V 0 

)
. (23)

Here, two fighting Hawks always pay a cost C > 0, while when

 Hawk interacts with a Dove, it gets a positive payoff V , e.g., by

tealing the resource owned by its opponent. In this parametriza-

ion, the payoff a Hawk obtains when interacting with a Dove is

he same as the cost a Dove pays when interacting with a Hawk. 

For the classic assumptions of evolutionary game theory, this

arametrization as a matrix game has the same NE (and ESS) as

arametrization (12) in Example 1 . 6 On the other hand, the average

tness in the population at the unique NE is now 

= −V 

2 

C 

or C > V and � = −C for V ≥ C . Thus, the population will go extinct.

Now we consider the case where individuals do not pair instan-

aneously, pair interaction times may differ and singles have fitness

onsequences. Provided πD > 0 and C πD > V πH , the interior popu-

ation equilibrium (21) is 

(n H , n D ) = 

(
πD 

λV 

, 
CπD − V πH 

V 

2 λ

)
. (24)

t this equilibrium, the population of Hawks and Doves are 

 = 

πD (τHD (CπD − V πH ) + V (V + πD τHH )) 

V 

3 λ
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 = 

(CπD − V πH )(τDD (CπD − V πH ) + V (V + πD τHD )) 

V 

4 λ
. 

ppendix B shows that if this equilibrium exists, it is stable ( Fig. 2 ,

ight panels). Moreover, if all τ ’s are equal and πH = πD , the

quilibrium frequency of Hawks is the unique NE, p H = V/C, of

23) ( Fig. 2 D). 

On the other hand, as illustrated by the dependence of this

quilibrium on πD > 0 in Fig. 3 , p H � = V / C if the payoffs to singles

re different. From (24) , equilibrium population size increases to

nfinity as πD increases ( Fig. 3 B). Moreover, from (6) , the pro-

ortion of paired individuals converges to 1 ( Fig. 3 A, see also

ppendix F ). Interestingly, the proportion of Hawks does not con-

erge to 0 (for the parameters of Fig. 3 , the limiting proportion

s 1/3) even when the payoff πD to single Doves tends to infinity

ince most of the fitness is due to pair interactions at high popu-

ation size. 

. Distributional–population dynamics 

In the previous section, we assumed distributional dynamics

hat were independent of population dynamics. In particular, the

istributional dynamics reached its equilibrium very fast at given

trategy numbers and then the population dynamics acted on

his equilibrium distribution. However, this complete separation

f time scales need not hold. For example, perceptual constraints

 Abrahams, 1986; Berec and K ̌rivan, 20 0 0; Gray and Kennedy,

994 ) may prevent individuals from having perfect information

bout their environment, making them only locally omniscient. In

rder to model distributional and population dynamics on similar

ime scales, we split payoffs in (1) as 

πHH πHD 

πDH πDD 

)
= 

(
βHH βHD 

βDH βDD 

)
−

(
μHH μHD 

μDH μDD 

)
, (25) 

here we assume that all β ’s and μ’s are non-negative. Here we

nterpret β ’s as the part of payoff that increase fitness (e.g., birth

ate) while μ’s decrease fitness (e.g., mortality rate). For example,

HD is the expected number of offspring produced per interac-

ion by a Hawk when it interacts with a Dove. In the following

ontinuous-time distributional-population dynamics (e.g., (26) and

29) ), δ βHD 
τHD 

is then interpreted as the probability that, over a small

ime interval δ, this Hawk produces an offspring. Similarly, δ μDH 
τHD 

is

he probability the Dove dies during this time interval. 

We stress here that similarly to π ’s for pairs, all β ’s and μ’s in

25) are measured per single interaction. To express these per unit

f time, we need to divide them by the average pair duration. Then

istributional-population dynamics are described by the following

et of differential equations 7 

dn H 

dt 
= ν

(
−λn 

2 
H − λn H n D + 2 

n HH 

τHH 

+ 

n HD 

τHD 

)

+ πH n H + 2 

βHH + μHH 

τHH 

n HH + 

βHD + μDH 

τHD 

n HD 

dn D 

dt 
= ν

(
−λn 

2 
D − λn H n D + 2 

n DD 

τDD 

+ 

n HD 

τHD 

)

+ πD n D + 2 

βDD + μDD 

τDD 

n DD + 

βDH + μHD 

τHD 

n HD 

dn HH 

dt 
= ν

(
−n HH 

τHH 

+ 

λ

2 

n 

2 
H 

)
− 2 

μHH 

τHH 

n HH 

dn HD 

dt 
= ν

(
−n HD 

τHD 

+ λn H n D 

)
− μHD + μDH 

τHD 

n HD 
7 Note that it is unnecessary to write the payoff to singles as a difference (e.g., 

H = βH − μH ) since these births and deaths only affect the number of singles. 
dn DD 

dt 
= ν

(
−n DD 

τDD 

+ 

λ

2 

n 

2 
D 

)
− 2 

μDD 

τDD 

n DD . (26) 

hese equations assume that newborns are singles and that, if

 pair disbands due to mortality of one individual, the surviv-

ng individual becomes a single. For example, if a Dove paired

ith a Hawk dies, the surviving Hawk becomes a single Hawk. For

his reason there is 
μDH 
τHD 

(and not 
μHD 
τHD 

) in the equation for single

awks. Thus, we assume that one individual in a pair always sur-

ives. Parameter ν > 0 allows us to study changes in the relative

ime scales of distribution and demographic dynamics. When ν < 1

 ν > 1), then population dynamics are faster (slower) than distribu-

ional dynamics. 

For arbitrary ν , we observe that 

dH 

dt 
= 

d(2 n HH + n HD + n H ) 

dt 
= 2 

βHH − μHH 

τHH 

n HH 

+ 

βHD − μHD 

τHD 

n HD + πH n H = �H H 

nd 

dD 

dt 
= 

d(2 n DD + n HD + n D ) 

dt 
= 2 

βDD − μDD 

τDD 

n DD 

+ 

βDH − μDH 

τHD 

n HD + πD n D = �D D 

here �H and �D are given by (8) with payoff matrix (25) . That is,

tnesses derived from distributional-population dynamics (26) co-

ncide with those of Section 2 . What has changed is how these

ndividual fitnesses are divided among singles and pairs. 

At the coexistence equilibrium of (26) , the HW distribution

2) and (6) generalizes to 

 HH = 

λνn H 
2 τHH 

2 ν + 4 μHH 

, n HD = 

λνn D n H τHD 

ν + μDH + μHD 

, n DD = 

λνn D 
2 τDD 

2 ν + 4 μDD 

. 

(27) 

hese numbers now depend on fitness through the death rates

i.e., the μ’s). When μ’s are all zero, then the HW distri-

ution (27) and (6) coincide. Moreover, the equilibria for the

istributional-population dynamics (26) will then coincide with

hose of (16) . However, when some μ’s are positive, equilibrium

oints of (26) differ from those given by (16) . To illustrate these

ifferences at a stable equilibrium, we will parametrize model

26) by payoff matrix (23) because, as we saw in Example 2 , this

arametrization leads to a stable interior equilibrium of population

ynamics (18) . 

Example 2 continued. To parametrize model (26) for the

awk–Dove game given by (23) , we follow (25) and write payoff

atrix (23) as a difference of two matrices, where the first de-

cribes benefits and the second losses, e.g., 

−C V 

−V 0 

)
= 

(
0 V 

0 0 

)
−

(
C 0 

V 0 

)
. (28) 

ere the birth rate of a Hawk from an interaction with a Dove ( V )

s the same as is the death rate of a Dove when interacting with a

awk. Distributional-population dynamics (26) are then 

dn H 

dt 
= ν(−λn 

2 
H − λn H n D + 2 

n HH 

τHH 

+ 

n HD 

τHD 

) 

+ πH n H + 2 

C 

τHH 

n HH + 

2 V 

τHD 

n HD 

dn D 

dt 
= ν(−λn 

2 
D − λn H n D + 2 

n DD 

τDD 

+ 

n HD 

τHD 

) + πD n D 

dn HH 

dt 
= ν(−n HH 

τHH 

+ 

λ

2 

n 

2 
H ) − 2 

C 

τHH 

n HH 
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Fig. 4. Dependence of the stable equilibrium of model (29) for Example 2 on the relative speed of distributional dynamics to demographic dynamics. Hawks (Doves) 

abundance is shown as the solid (dashed) curve in top panels. The middle panels (C and D) show Hawk frequency. Left panels (A, C) assume relatively low payoff to single 

Doves ( πD = 1 ) and as ν increases, population abundances converge to the equilibrium shown in Fig. 2 F ( N = H + D = 6 ). Right panels (B, D) assume a higher payoff to single 

Doves ( πD = 2 . 5 ) for which both populations become arbitrarily large as ν decreases toward 0. Panel E shows the critical threshold in the ( ν , πD ) phase space, below which 

Doves go extinct and above which both Hawks and Doves coexist at positive numbers. Other parameters are the same as those used in Fig. 2 , right panels (i.e., τHH = 1 , 

τHD = 1 , τDD = 1 , λ = 1 , V = 1 , C = 2 , πH = 1 ). 
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p  
dn HD 

dt 
= ν(−n HD 

τHD 

+ λn H n D ) − V 

τHD 

n HD 

dn DD 

dt 
= ν(−n DD 

τDD 

+ 

λ

2 

n 

2 
D ) . (29)

Provided the interior equilibrium exists, it is 

( n H , n D ) = 

(
πD (ν + V ) 

λνV 

, 
(ν + V )(C πD (ν + V ) − πH V (2 C + ν)) 

λνV 

2 (2 C + ν) 

)
(30)

and the number of pairs at the equilibrium is given by (27) . We

note that the equilibrium numbers of singles continue to be inde-

pendent of the interaction times and, as ν tends to infinity, is given

by (24) (see also (21) ). 

Since equilibrium (30) converges to equilibrium (24) as ν tends

to infinity, we assume that equilibrium (24) is in the interior

(i.e., π > 0 and Cπ − π V > 0 ) in what follows. We observe that
D D H 
oves exist (i.e., n D > 0) at equilibrium (30) if and only if distribu-

ional dynamics are fast enough so that 

> 

CV (2 πH − πD ) 

C πD − πH V 

. 

ig. 4 E shows this bifurcation curve in the πD − ν parameter space.

he curve separates the values such that Doves go extinct (parame-

er values below the curve) from those where Doves survive (above

he curve). 

Fig. 4 A and B (respectively C and D) show the dependence on ν
f Hawk and Dove numbers (respectively, proportion of Hawks) at

he stable population equilibrium. For slow distributional dynam-

cs, total population size is increasing as ν tends to 0 since singles

ave positive payoffs ( πH > 0, πD > 0 in Fig. 4 ). However, since ν =
 is the threshold below which Doves go extinct in Panel A where

D = 1 , this payoff to single Doves is too low to rescue Doves from

xtinction when ν is small. Panel B with πD = 2 . 5 shows the op-

osite case where the Dove population does not go extinct for any
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> 0 and, in fact, as the speed of distributional dynamics decreases

oward 0, both Hawk and Dove population numbers become arbi-

rarily large. As ν tends to infinity in these four panels, the sta-

le interior equilibrium of (29) converges to that of model (16) of

ection 2 . In particular, for the left panels, this equilibrium ap-

roaches that of the right panels in Fig. 2 where N = H + D = 6

nd p H = V/C = 0 . 5 since all τ ’s are equal and πH = πD . 

. Contest competition for a limited resource 

The Hawk–Dove model, when interpreted as a model of con-

est competition, can represent competition for resources, such as

reeding sites where each site can be owned by at most one indi-

idual ( Kokko et al., 2014 ). We represent these K sites as a resource

ith finite environmental carrying capacity. Individuals are again

ither Hawks or Doves, and they can be either searching for the

esource ( n H s , n D s ), owning the resource ( n H o , n D o ), or interacting

ith each other when a searcher finds an owner. During the com-

etition for a site there are four possible types of searcher-owner

airs and the numbers of these pairs are denoted as n H s H o , n H s D o ,

 H o D s , and n D s D o . Once the competing pair is formed and jointly oc-

upy the site, the individuals are no longer searchers for the site or

wners of the site. The notation for competing pairs indicates how

he pair formed. In particular, n H s D o is the number of occupied sites

here a searching Hawk encountered an owning Dove. 

.1. Distributional dynamics 

Distributional dynamics at fixed population sizes H and D of

awks and Doves, respectively, that are based on the mass action

rinciple are 

dn H s 

dt 
= − λn H s F − λn H s n H o − λn H s n D o + 

n H s H o 

τHH 

dn H o 

dt 
= λn H s F − λn H s n H o − λn D s n H o + 

n H s H o 

τHH 

+ 

n H o D s 

τHD 

+ 

n H s D o 

τHD 

dn D s 

dt 
= − λn D s F − λn D s n H o − λn D s n D o + 

n D s D o 

τDD 

+ 

n H s D o 

τHD 

+ 

n H o D s 

τHD 

dn D o 

dt 
= λn D s F − λn D s n D o − λn H s n D o + 

n D s D o 

τDD 

dn H s H o 

dt 
= − n H s H o 

τHH 

+ λn H s n H o 

dn H s D o 

dt 
= − n H s D o 

τHD 

+ λn H s n D o 

dn H o D s 

dt 
= − n H o D s 

τHD 

+ λn D s n H o 

dn D s D o 

dt 
= − n D s D o 

τDD 

+ λn D s n D o 

(31) 

here 

 ≡ K − n H o − n D o − n H s H o − n H s D o − n D s D o − n H o D s (32)

s the nonnegative number of free sites (i.e., sites that are neither

ccupied by a single owner or by a pair). Model (31) assumes that

ndividual search rate is λ. If a searching individual encounters a

ree site, it will occupy it and will become an owning consumer.

hen a searching Hawk encounters a site owned by a Dove, the

awk wins the competition and, when the pair disbands, becomes
n owning Hawk while the Dove that lost the site becomes a

earching Dove. This assumption leads to the term 

n H s D o 
τHD 

in the sec-

nd and third equations. Once again this shows that distributional

ynamics such as (31) may depend on how entries in the payoff

atrix are interpreted. 

From (31) , the number of free sites evolves according to 

dF 

dt 
= −λ(n H s + n D s ) F . (33)

hat is, the number of free sites changes at a rate proportional to

he number of searchers encountering them. Eq. (33) shows that

he system either converges to a state where there are no searchers

i.e., n H s + n D s = 0 ) or to the set of states where there are no free

ites (i.e., F = 0 ). Appendix C shows that for each fixed Hawk and

ove population numbers, system (31) has a unique equilibrium.

t also shows that this equilibrium depends on the abundances of

awks and Doves and on the number of sites, K , according to the

ollowing three cases. 

1. When the number of individuals is no larger than the number

of sites ( H + D ≤ K), all Hawks and all Doves own sites, i.e., the

equilibrium is n H o = H, n D o = D . 

2. When the total number of individuals is larger than the number

of sites ( H + D > K) while the number of Hawks in the popula-

tion is no larger than the number of sites ( H ≤ K ), all Hawks

occupy sites either as single owners or in H o D s pairs and all

other K − H sites are occupied by Doves. 

3. When the number of Hawks in the population is larger than the

number of sites ( H > K ), all sites are occupied by Hawks, either

as single owners or in H o H s and H o D s pairs. 

As the distributional equilibrium is quite complicated in the

ast two cases, the next example considers distributional dynam-

cs (31) when only Hawk–Hawk interactions are time consuming. 

xample 3. In this example, we will assume that τHD and τDD 

end to 0. As τHD and τDD tend to 0, the number of pairs, except

 H s H o , will quickly equilibrate with the number of singles, i.e., 

 H s D o = λτHD n H s n D o 

 H o D s = λτHD n D s n H o 

 D s D o = λτDD n D s n D o . (34) 

e substitute this pseudo-equilibrium into distributional dynamics

31) to get 

dn H s 

dt 
= −λn H s F − λn H s n H o − λn H s n D o + 

n H s H o 

τHH 

dn H o 

dt 
= λn H s F − λn H s n H o + λn H s n D o + 

n H s H o 

τHH 

dn D s 

dt 
= −λn D s F + λn H s n D o 

dn D o 

dt 
= λn D s F − λn H s n D o 

dn H s H o 

dt 
= −n H s H o 

τHH 

+ λn H s n H o (35) 

here F = K − (n H o + n D o + n H o H s ) . Appendix D analyzes the unique

istributional equilibrium of (35) and proves that it is globally

symptotically stable at any Hawk and Dove population abun-

ances. 

In particular, the three cases above simplify to 

1. When the number of individuals is no larger than the number

of sites ( H + D ≤ K), all Hawks and all Doves own sites, i.e., the

equilibrium is 

(n H s , n H o , n D s , n D o , n H s H o ) = (0 , H, 0 , D, 0) (36)

(see Fig. 5 for K ≥ 100). 
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Fig. 5. Dependence of the number of searchers ( n H s and n D s ) and number of owners 

( n H o and n D o ) at the distributional equilibrium of model (35) as a function of K . The 

overall number of individuals is fixed at H = 60 and D = 40 . Hawks are described 

by solid lines, Doves are described by dashed lines. Black lines denote owning in- 

dividuals and gray lines denote searching individuals. The dotted line denotes the 

number of Hawk pairs, i.e, n H s H o . Parameters: λ = 1 , τHH = 1 , τHD = 0 , τDD = 0 . 
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2. When the total number of individuals is larger than the number

of sites ( H + D > K) while the number of Hawks in the popula-

tion is no larger than the number of sites ( H ≤ K ), all Hawks

own sites while Doves occupy the rest of the sites and some

Doves are searching, i.e., the equilibrium is 

(n H s , n H o , n D s , n D o , n H s H o ) = (0 , H, H + D − K, K − H, 0) , (37)

(see Fig. 5 for 60 ≤ K < 100). 
3. When the number of Hawks in the population is larger than the

number of sites ( H > K ), all sites are occupied by Hawks and all
Doves are single searchers. 

n H s = 

−1 + (H − 2 K) λτHH + 

√ 

1 + λτHH (2 H + (H − 2 K) 2 λτHH ) 

2 λτHH 

n H o = 

−1 − (H − 2 K) λτHH + 

√ 

1 + λτHH (2 H + (H − 2 K) 2 λτHH ) 

2 λτHH 

n D s = D 

n D o = 0 

n H s H o = 

1 + HλτHH −
√ 

1 + λτHH (2 H + (H − 2 K) 2 λτHH ) 

2 λτHH 

. (38)

(see Fig. 5 for K < 60). 

4.2. Distributional–population dynamics 

To combine distributional dynamics (31) with changing pop-

ulation size, we must include fitness effects (cf. Section 3 ). Sin-

gle Hawk and Dove searchers (owners) gain payoffs πH s ( πH o ) and

πD s ( πD o ) per unit of time, respectively. When in pairs, payoffs are

given by a payoff bi-matrix 

( H o D o 

H s πH s H o , πH o H s πH s D o , πD o H s 

D s πD s H o , πH o D s πD s D o , πD o D s 

)
(39)

where the first (second) payoff in each entry of the matrix is that

of the row (column) player. With fitness defined as the average

payoff per unit of time (cf. (8) ), we now have 

�H = 

n H s H o ( 
πH s H o 

τHH 
+ 

πH o H s 

τHH 
) + n H s D o 

πH s D o 

τHD 
+ n H o D s 

πH o D s 

τHD 
+ n H o πH o + n H s πH s 

H 

and 

�D = 

n D s D o ( 
πD s D o 

τDD 
+ 

πD o D s 

τDD 
) + n H o D s 

πD s H o 

τHD 
+ n H s D o 

πD o H s 

τHD 
+ n D o πD o + n D s πD s 

D 

(40)
here H = 2 n H s H o + n H s D o + n H o D s + n H s + n H o and D = 2 n D s D o +
 H s D o + n D s H o + n D s + n D o are the total number of Hawks and

oves, respectively. 

To add the fitness terms in (40) to the distributional dynamics

31) in order to produce a distributional-population dynamics in

nalogy to model (26) , we again split payoffs for pairs into birth

nd death rates, i.e., πi j = βi j − μi j . Distributional-population dy-

amics are then 

dn H s 

dt 
= ν

(
− λn H s F − λn H s n H o − λn H s n D o + 

n H s H o 

τHH 

)
+ (βH s − μH s ) 

n H s + βH o n H o + 

βH s H o + βH o H s 

τHH 

n H s H o + 

βH s D o 

τHD 

n H s D o 

+ 

βH o D s 

τHD 

n H o D s 

dn H o 

dt 
= ν

(
λn H s F − λn H s n H o − λn D s n H o + 

n H s H o 

τHH 

+ 

n H o D s 

τHD 

+ 

n H s D o 

τHD 

)
− μH o n H o + 

μH s H o + μH o H s 

τHH 

n H s H o + 

μD o H s 

τHD 

n H s D o + 

μD s H o 

τHD 

n H o D

dn D s 

dt 
= ν

(
− λn D s F − λn D s n H o − λn D s n D o + 

n D s D o 

τDD 

+ 

n H s D o 

τHD 

+ 

n H o D s 

τHD 

)

+ (βD s − μD s ) n D s + βD o n D o + 

βD s D o + βD o D s 

τDD 

n D s D o 

+ 

βD o H s 

τHD 

n H s D o + 

βD s H o 

τHD 

n H o D s 

dn D o 

dt 
= ν

(
λn D s F − λn D s n D o − λn H s n D o + 

n D s D o 

τDD 

)
− μD o n D o + 

μD s D o + μD o D s 

τDD 

n D s D o + 

μH s D o 

τHD 

n H s D o + 

μH o D s 

τHD 

n H o 

dn H s H o 

dt 
= ν

(
− n H s H o 

τHH 

+ λn H s n H o 

)
− μH s H o + μH o H s 

τHH 

n H s H o 

dn H s D o 

dt 
= ν

(
− n H s D o 

τHD 

+ λn H s n D o 

)
− μH s D o + μD o H s 

τHD 

n H s D o 

dn H o D s 

dt 
= ν

(
− n H o D s 

τHD 

+ λn D s n H o 

)
− μH o D s + μD s H o 

τHD 

n H o D s 

dn D s D o 

dt 
= ν

(
− n D s D o 

τDD 

+ λn D s n D o 

)
− μD s D o + μD o D s 

τDD 

n D s D o 

(41)

here F is given by (32) . Here the model assumes that newborns

re single searchers. This makes it important to also write pay-

ffs to singles as differences (e.g., πH o = βH o − μH o ). Population de-

ography is given by two processes. First, the model assumes de-

ographic changes associated with singles. For example, in the

rst equation in (41) , the term (βH s − μH s ) n H s describes changes

ue to birth and death among single Hawk searchers. Note that,

n the simulations below, we assume that only individuals who

re on a site either as singles or in pairs can give birth (and so

H s = βD s = 0 ). Term βH o n H o describes birth for those Hawks that

wn a site. Second, (41) considers demographic changes due to

ontests between individuals. For example, term 

βH s H o 
+ βH o H s 

τHH 
n H s H o 

escribes newborns produced as a consequence of a contest be-

ween two Hawks, i.e., when a searching Hawk is paired with an

wning Hawk. One of the two Hawks will win the site and will

ain fitness by the opportunity of reproducing in the site. The

robability of winning the contest and reproducing is captured by

erms βH s H o in the case it is the searching Hawk that wins the

ontest and βH o H s when the owning Hawk retains the site after

he contest. Term 

βH s D o 
τHD 

n H s D o represents newborn Hawks produced

hen a searching Hawk is paired with an owning Dove, because

n this case we assume that with probability one the Hawk will

in the contest. In the second equation for owning Hawks, term
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8 We will assume that πHD ≥ 0 and πDH ≤ 0 from now on. These conditions are 

satisfied by both parametrizations of the Hawk–Dove payoff matrices given by 
μD o H s 
τHD 

n H s D o represents the situation where the owning Dove paired

ith a searching Hawk dies and the searching Hawk becomes a

ingle owning Hawk. The other terms follow the same logic. 

A lengthy but straightforward calculation based on (41) yields 

dH 

dt 
= 

d(2 n H s H o + n H s D o + n H o D s + n H s + n H o ) 

dt 
= �H H 

nd 

dD 

dt 
= 

d(2 n D s D o + n H s D o + n H o D s + n D s + n D o ) 

dt 
= �D D 

here �H and �D are given by (40) . Thus, when distributional dy-

amics are fast (i.e., ν tends to infinity), H and D evolve according

o this dynamical system where �H and �D in (40) are evaluated

t the unique equilibrium of (31) for current population sizes. 

Since the notation for pairs only indicates how the pair was

ormed (i.e., there is no owner or searcher when in a pair), we

ssume that once two individuals occupy a site, their payoffs do

ot depend on who was the owner and who was the searcher

hen they encountered each other. In particular, payoffs to Hawks

n all Hawk-Hawk pairs are equal as are those in Hawk–Dove

airs. That is πHH = πH s H o = πH o H s , πDD = πD s D o = πD o D s , πHD =
H s D o = πH o D s , and πDH = πD s H o = πD o H s in (39) . Fitnesses (40) then

implify to 

H = 

2 n H s H o 
πHH 

τHH 
+ (n H s D o + n H o D s ) 

πHD 

τHD 
+ n H o πH o + n H s πH s 

H 

, 

�D = 

2 n D s D o 
πDD 

τDD 
+ (n D s H o + n D o H s ) 

πDH 

τHD 
+ n D o πD o + n D s πD s 

D 

. (42) 

However, population dynamics (41) are too complex for mathe-

atical analysis even when we assume fast distributional dynam-

cs. We thus restrict our attention to the case where τDD and τHD 

end to 0 as in Example 3 for the remainder of this section. 

Example 3 continued. We first derive population dynamics for

awks and Doves when ν tends to infinity by assuming that dis-

ributional dynamics track the unique equilibrium of the simpli-

ed model (35) instantaneously. Substituting distributional equilib-

ia (36), (37) , and (38) to (42) , we obtain 

dH 

dt 
= πH o H 

dD 

dt 
= πD o D 

(43) 

hen H + D ≤ K, 

dH 

dt 
= H((D + H − K) λπHD + πH o ) 

dD 

dt 
= (K − H)(2(D + H − K) λπDD + πD o ) 

+(D + H − K)(HλπDH + πD s ) (44) 

hen H + D > K and H ≤ K , and 

dH 

dt 
= 

(−2 πHH +(DλπHD + πH o 
+ πH s 

) τHH ) 

√ 

1+ λτHH (2 H+(H−2 K) 2 λτHH ) 

2 λτ2 
HH 

−

−2 πHH (1+ H λτH H )+ τH H (DλπH D + πH o 
+ πH s 

+(H −2 K) λ(DλπH D + πH o 
−πH s 

) τH H ) 

2 λτ2 
HH 

dD 

dt 
= D 

⎛ 

⎝ πD s + 

πDH 

(
−1+(2 K−H ) λτH H + 

√ 

1+ λτH H (2 H +(H −2 K) 2 λτH H ) 

)

2 τHH 

⎞ 

⎠ 

(45) 

hen H > K . 

(

To analyze models (43) –(45) , we will assume that owners ob-

ain positive payoffs ( πH o > 0 , πD o > 0 ) and searching individuals

btain negative payoffs ( πH s < 0 and πD s < 0 ). There is then no

on-zero equilibrium for (43) in region H + D ≤ K because both

awks and Doves increase exponentially and so all trajectories

ith initial positive population sizes for Hawks and Doves leave

his region. If, in addition, Hawks gain payoff in their Hawk–Dove

nteracting pairs ( πHD ≥ 0), Eq. (44) shows that Hawks are always

ncreasing in the region where H + D > K and H < K , and so these

rajectories must enter the region where H > K . Furthermore, if

DH ≤ 0, 8 Appendix E shows that Eq. (45) has a unique globally

symptotically stable equilibrium. Altogether, this implies that the

ystem of Eqs. (43) –(45) has a globally asymptotically stable equi-

ibrium given by 

H, D ) = 

(
2 Kλ(2 π2 

HH −πHH (πH o + 3 πH s ) τHH + 2 πH o πH s τ
2 
HH ) + πH s (2 πHH −(πH o + πH s ) τHH ) 

2 λ πH s τHH (πH o τHH − 2 πHH ) 

+ 

(2 πHH −(πH o + πH s ) τHH ) 
√ 

(2 KλπHH + πH s ) 
2 −4 KλπH o πH s τHH 

2 λ πH s τHH (πH o τHH − 2 πHH ) 
, 0 

)
(46) 

provided that 2 πHH � = πH o τHH , and 

(H, D ) = 

(
K 

(
πH s 

λK πH o τHH − πH s 

− πH o 

πH s 

+ 2 

)
, 0 

)

f 2 πHH = πH o τHH . 

Fig. 6 shows the population equilibrium based on simula-

ions of the dynamics (41) applied to the simplified model of

xample 3 without assuming fast distributional dynamics. Panel A

ses the classic Hawk–Dove payoff matrix 

V − C 2 V 

0 V 

)
= 

(
V 2 V 

0 V 

)
−

(
C 0 

0 0 

)
(47) 

see also (12) ) whereas panel B uses (28) . The simulations sug-

est that there is a unique equilibrium for each set of parameters

sed in this figure. When distributional dynamics are on a similar

ime scale as population dynamics, we see that there are signifi-

ant differences in the equilibrium for the two payoff matrices. For

lassic payoffs, we observe that both Hawks and Doves coexist at

he equilibrium (panel A) for all ν ’s. For the other payoff matrix

28) (panel B), we observe that the range of ν ’s for which Doves 

oexist with Hawks is much smaller. As ν tends to infinity, we see

n Fig. 6 , that the total numbers of Hawks and the total numbers

f Doves tends to the equilibrium given by (46) . 

. Discussion 

Motivated by genetics, where players are alleles, the classical

heory of two-strategy, two-player symmetric evolutionary games

ssumes that all individuals get payoffs only when paired, pair-

ng is random and instantaneous, and the number of pairs is given

y the Hardy–Weinberg distribution. With an individual’s fitness

quated to its expected payoff, the population growth rate (which

s assumed to be proportional to the mean fitness of the popula-

ion) is then frequency dependent but density independent. For the

lassical Hawk–Dove game, population growth is exponential as in

q. (15) . On the other hand, growth in natural populations is rarely

xponential. Density dependent growth is universal. This calls into

uestion the degree to which results of two-player matrix games

ay be extended to make predictions about natural populations. 

The above assumptions on pairs make sense when considering

or example mating between sexes, but fitness is also gained/lost
12) and (23) (see also (47) and (28) ) that have been used throughout the article. 
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Fig. 6. The dependence of the equilibrium of distributional-population dynamics (41) on ν ( ν > 0.2) when interaction times between Hawks (solid line) and Doves (dashed 

line) and between Doves are very short (i.e., τHD = τDD = 0 . 0 0 01 ). Left (respectively, right) panel is for the Hawk–Dove game with payoff matrix (47) (respectively, (28) ). 

Other parameters: λ = 1 , τHH = 1 , V = 1 , C = 4 , K = 10 , βH o = βD o = 0 . 2 , μH o = μD o = 0 . 1 , βH s = βD s = 0 , μH s = μD s = 0 . 1 . 
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10 Other approaches (e.g., Argasinski and Broom, 2013; Cressman, 1992 ) to get 

convergence to non-zero population numbers typically assume some explicit den- 

sity dependent mechanisms in individual payoff/fitness. 
when individuals are singles. For example, fitness may increase

when an individual forages through an increase in its survival

probability, or an increase in egg production. In this article, we de-

velop a new theoretical approach that relaxes these assumptions:

(i) individuals do not pair instantaneously so that there are sin-

gles in the population, (ii) individuals gain/lose fitness not only

when paired, but also as singles, and (iii) duration of encounters

between individuals depends on their strategies. We find that in-

cluding singles can regulate population growth which allows the

study of both frequency and density of strategies. 

Our approach builds on that developed by K ̌rivan and Cress-

man (2017) who assumed that individuals pair instantaneously, but

interactions between different strategies take different time. As a

result, the rate (per unit of time) that individuals are paired with

each other depends on the strategies of the players. This idea that

interaction rates might be strategy-dependent was incorporated

into evolutionary game dynamics by Taylor and Nowak (2006) . In

their analysis of the evolutionary stability of strategy dynamics,

the fitness of a strategy is given in units of payoff per interaction

( Argasinski and Broom, 2018 ), and the interaction rates refer to

the intensity with which certain strategies will assort with other

strategies. This mirrors the classical theory in which the number

of interactions determines overall fitness. Our models include the

length of time a game is played, so our approach differs funda-

mentally from Taylor and Nowak (2006) and is more closely re-

lated to that of Argasinski and Broom (2018) where the number

of games that are played in a period of time is taken into ac-

count. 9 This approach allows one to study the fitness of a strategy

when fitness includes more than game payoffs, e.g., singles pay-

off. In Section 2 , we see that when singles payoff does not depend

on strategy, and interaction times are equal, then the Nash equi-

librium of the game is unchanged from classical predictions. Un-

der these assumptions, including singles is equivalent to adding

background fitness ( Cressman, 1992 ). However, if singles payoffs

depend on strategy, then under the aforementioned assumptions,

we see ( Fig. 2 , panels C and E) that these payoffs contribute more

to average fitness because the proportion of singles tends to 1 (re-

spectively, 0) when the total population size, N , tends to zero (re-

spectively, infinity). 

In Sections 2 and 3 , where payoffs to singles and pairs are

density independent, we show that non-instantaneous pair for-

mation can induce density dependence in the population growth

where the population growth rate is still given by the average fit-
9 These approaches are equivalent when all interactions take the same amount of 

time and fitness is accrued only through the game. 

l

a

l

ess in the population. 10 The existence of a coexistence equilib-

ium (i.e., an interior equilibrium where both strategies have pos-

tive density) relies on a balance between the positive payoff of

ingles and the negative average payoff from the game (or vice

ersa). Moreover, the stability of an interior equilibrium for the

awk–Dove model depends on the parametrization of its payoff

atrix, as seen in Fig. 3 of Section 2 , where distributional dy-

amics act on a fast time-scale compared to population dynamics.

or instance, an interior population equilibrium may exist for the

awk–Dove model with classic payoff matrix (12) when the pay-

ffs to singles are negative. However, this equilibrium is never sta-

le ( Example 1 ). 11 On the other hand, when the payoffs to interact-

ng pairs are all decreased by the same amount as in payoff matrix

23) of Example 2 , 12 a stable interior equilibrium often emerges if

ayoffs to singles are positive. Thus, the eco-evolutionary dynam-

cs depend on where fitness is accrued, as remarked in Argasinski

nd Broom (2013, 2017, 2018) (see also McNamara, 2013 ). 

The population dynamics (16) of Section 2 serve to frame our

hinking around relating ecological parameters to V and C from

he Hawk–Dove payoff matrix. When these model equations have

 stable interior equilibrium (in Example 2 ), it can be shown using

24) that the proportion of Hawks at equilibrium will increase with

ncreases in V and decrease with increases in C . This is consistent

ith the classical Hawk–Dove game at the interior ESS where the

roportion of Hawks equals V 
C . On the other hand, in the classi-

al game, Hawks and Doves coexist if and only if the cost when

wo Hawks fight is higher than their expected gain (i.e., V < C )

hereas, in Example 2 , we show that coexistence may also oc-

ur when V > C due to singles receiving payoff. The same result

i.e., coexistence when V > C ) was shown by K ̌rivan and Cress-

an (2017) at fixed population size. Specifically, when pairs form

nstantaneously and interactions between two Hawks take long

nough compared to other interactions, they showed that non-

ggressiveness can evolve even when V > C . Similarly, in the re-

eated Prisoner’s Dilemma game, cooperation evolves when indi-

iduals can control how many rounds to continue an interaction

i.e., they can opt-out; Zhang et al., 2016 ). These models are the

imit cases of the model investigated in Section 2 when the mean
11 The intuitive reason for this is that the negative payoffs to singles locally stabi- 

izes the extinction equilibrium whereas the positive payoffs from interacting pairs 

t the distributional equilibrium drives the population to infinity once its size is 

arge enough. 
12 This does not change the evolutionary outcome (i.e., ESS) of the classic Hawk–

Dove game ( Hofbauer and Sigmund, 1998 ). 
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13 
ime between encounters tends to zero and the number of singles

ends to zero too. Once again, we see that including singles and/or

ncluding interaction times can influence the evolutionary predic-

ions. 

Although the parameters V and C from the Hawk–Dove

ame are not well-defined ecological parameters, we show in

ection 3 that it is possible to decompose the payoffs from

he Hawk–Dove game into payoffs that increase fitness and pay-

ffs that decrease fitness. This allows us to examine population–

istributional dynamics when relaxing the assumption that distri-

utional dynamics are fast compared to population dynamics. In

articular, non-aggressiveness can evolve when the distributional

nd population dynamics are on similar time scales. This result

oes not depend on the amount of time that individuals are paired

ut only on the relative time scales of the two dynamics. This is il-

ustrated in Fig. 4 where we see that coexistence depends on the

peed of distributional dynamics relative to population dynamics. 

Our final model ( Section 4 ) includes an explicit density-

ependent mechanism in the Hawk–Dove game through competi-

ion over a fixed number of breeding sites. With the usual assump-

ion that a Hawk gains the resource (i.e., the site) when interacting

ith a Dove, Hawks always win at the equilibrium of the distribu-

ional dynamics in the sense that Doves can only own breeding

ites when there is an insufficient number of Hawks to occupy all

ites ( Fig. 5 ). Not surprisingly, Doves are then driven to extinction

hen population sizes also evolve and the distributional dynam-

cs are fast (i.e., ν is large). Coexistence of Hawks and Doves now

equires that the combined population and distributional dynam-

cs operate on a similar time scale ( Fig. 6 ). In particular, as ν in-

reases, Doves go extinct. Interestingly, this effect of increasing ν
n the density dependent model of Section 4 is opposite to the co-

xistence outcome for large ν in Section 3 ( Fig. 4 ) where the model

as no a priori density dependence. 

In sum, we have shown that including singles can induce den-

ity dependence into the game’s population dynamics. This allows

ne to study not only the frequency but also the density of strate-

ies. We have been able to study how singles and the relative time

cales of the distributional and population dynamics affect the evo-

utionary predictions of the classical game. Although we have as-

umed here density independent payoffs to both singles and pairs,

t will be interesting to examine in future work how our predic-

ions may be affected by payoffs that can change with the envi-

onmental condition. 
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ppendix A. Uniqueness of distributional equilibrium of (5) 

Fix H and D and define q H ≡ n H 
H (and q D ≡ n D 

D ) as the proportion

f single Hawks (Doves) in the Hawk (Dove) population. Then, at

n equilibrium of (5) , 

q H = 

1 

1 + λτHH Hq H + λτHD Dq D 

q D = 

1 

1 + λτHD Hq H + λτDD Dq D 

(A.1) 
ince, for example, 

 H ( 1 + λτHH Hq H + λτHD Dq D ) = 

n H 

H 

(
1 + λτHH H 

n H 

H 

+ λτHD D 

n D 

D 

)

= 

1 

H 

(n H + 2 n HH + n HD ) = 1 

y (6) . 

By Lemma 2 in Garay et al. (2017) , there is a unique solution

f (A.1) with q H and q D between 0 and 1 (in fact, both q H and

 D will be strictly between 0 and 1) for each fixed H and D . The

quilibrium solution of (5) is then 

n H = Hq H 

n D = Dq D 

 HH = 

1 

2 

λτHH n 

2 
H 

n HD = λτHD n H n D 

n DD = 

1 

2 

λτDD n 

2 
D 

hich, from (A.1) , will satisfy H = n H + 2 n HH + n HD and D = n D +
 HD + 2 n DD . This will be the only equilibrium solution of (5) for a

iven H and D . 

ppendix B. Stability of equilibria for model (18) 

Because eigenvalues of linearized model (18) at extinction equi-

ibrium (n H , n D ) = (0 , 0) are πH , and πD , this equilibrium is locally

table when πH < 0 and πD < 0. 

Eigenvalues of linearized model (18) at equilibrium (19) are

(πH πHH ) / (2 πH τHH − πHH ) , and (πDH πH − πD πHH ) / (πH τHD −
HH ) . The boundary equilibrium exists (i.e., the Hawk only equi-

ibrium is positive) and is locally stable if and only if πHH < 0,

H > 0, and πDH πH < πD πHH . 
13 

Similarly, eigenvalues of linearized model (18) at equilibrium

20) are πD πDD / (2 πD τDD − πDD ) , and (πDD πH − πD πHD ) / (πDD −
D τHD ) . This equilibrium exists (i.e., the Dove equilibrium

s positive) and locally stable when πDD < 0, πD > 0, and

D πHD < πDD πH . 

Stability analysis of the interior equilibrium (21) leads to com-

lex expressions. Instead, we analyze its stability for the Hawk–

ove parametrizations in Examples 1 and 2 . 

First we consider the parametrization of the Hawk–Dove model

iven by (12) . Using Mathematica ( Appendix F ), we calculated

race 

r (J) = 

V (V − C) 

A 

(
V 

(
πD 

2 (−4 τDD + 9 τHD − 4 τHH ) 

+2 πD πH ( τDD − 3 τHD + τHH ) + πH 
2 τHD + V ( πD 

−πH ) ) −C( πD ( πD ( τHD − 4 τDD ) + 2 πH τDD ) + V ( πD − πH ) )

nd determinant 

et J = 

πD V 

2 (C − V ) 2 ( πH − 2 πD ) 

A 

f the Jacobian matrix evaluated at the interior equilibrium

22) where 

 = (C − V ) 
(
V (C − V )(V − 2 πD τDD ) − τHD 

(
2 πD 

2 τDD (V − C) 

+ V ( πD (C + V ) − πH V ) ) ) + 2 τHH V (2 πD − πH )((V − C) 

(V − 2 πD τDD ) + τHD V (2 πD − πH )) . 

Using the Reduce command of Mathematica ( Appendix F ) un-

er the assumptions that equilibrium (22) is interior and parame-

ers V , C , τHH , τHD , τDD , λ are all positive, we found that tr( J ) < 0
We ignore degenerate cases with eigenvalue 0. 

https://doi.org/10.13039/501100007601
https://doi.org/10.13039/501100000038
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and det J > 0 (i.e., the equilibrium is locally asymptotically stable)

if and only if 14 

0 < C < V < 

C πD 
2 

( πH − 3 πD ) 2 
, 

0 < τHH < 

τHD 

(
V ( πH − 3 πD ) 

2 − C πD 
2 
)

+ (V − C)(2 πD τDD ( πH − 2 πD ) + V ( πD − πH )) 

2 πD V (2 πD − πH ) 
, 

τHD > 

(V − C)(2 πD τDD ( πH − 2 πD ) + V ( πD − πH )) 

C πD 
2 − V ( πH − 3 πD ) 2 

. 

In particular, these conditions imply that the interior equilibrium

cannot be stable for the case where C > V . 

Second we consider the parametrization of the Hawk–Dove

model given by (23) . From (24) , there is an interior equilibrium

if and only if πD > 0 and V πH < C πD . Using Mathematica, we cal-

culated trace 

tr (J) = − C πD V (2 C πD τDD + V ( πD τHD − 2 πH τDD + V )) 

B 

and determinant 

det J = 

πD V 

3 (C πD − πH V ) 

B 

of the Jacobian matrix evaluated at the interior equilibrium

(24) where 

B = 2 C 2 πD 
2 τDD τHD + πD V ( −4 C πH τDD τHD + CV (2 τDD + τHD ) 

+ V 

2 ( τHD + 2 τHH ) − 4 πH τDD τHH V ) + 2 πD 
2 τHH V 

(2 C τDD + τHD V ) + V 

2 (V − 2 πH τDD )(V − πH τHD ) . 

Using the Reduce command of Mathematica ( Appendix F ) un-

der the assumptions that equilibrium (24) is interior and parame-

ters V , C , τHH , τHD , τDD , λ are all positive, we found that tr( J ) < 0

and det J > 0 (i.e., the equilibrium is locally asymptotically stable)

whenever it exists. Note that these conditions can hold both when

V > C as well as when C < V . 

Appendix C. Unique equilibrium solution to distributional 

dynamics (31) 

We want to show that, given H and D , there exists a unique

distributional equilibrium of system (31) , for which the number of

occupied sites is at most K . 

Eq. (33) shows that the system either converges to a state

where there are no searchers ( n H s + n D s = 0 ) or to the set of states

where there are no free sites ( F = 0 ). 15 We show that at the distri-

butional equilibrium there are no searchers if and only if H + D ≤
K. If there are no searchers, there are no pairs and so all individ-

uals are owners (i.e., n H o = H and n D o = D ) and, consequently, the

total population size cannot be larger than the number of sites,

i.e., H + D ≤ K. Conversely, suppose that the total number of indi-

viduals satisfies H + D ≤ K. If there were some searchers at the dis-

tributional equilibrium, there would be no free sites (i.e., all sites

would be occupied) and so H + D = K. As we assumed there were

some searchers, the total population would be larger than K , a con-

tradiction. Thus, all individuals are owners if and only if H + D ≤ K

and in this case, n H o = H, and n D o = D is the unique equilibrium. 

Now we assume that H + D > K. Thus, there must be searchers

at the equilibrium and (33) implies that F = 0 , i.e., all sites are

occupied (i.e., K = n H o + n D o + n H s H o + n H s D o + n D s D o + n H o D s ). Then,
14 Here, we ignore the degenerate cases where 3 πD = πH or C πD 
2 = V ( πH − 3 πD ) 

2 . 
15 This equation is also important in that it guarantees that model (31) is eco- 

logically well-defined. That is, all state variables (i.e., the number of singles and 

pairs) as well as the number of free sites must stay non-negative when initially 

non-negative. 

n

λ

 

y adding the first and fifth equations of (31) , an equilibrium of

31) must satisfy n H s (F + n D o ) = 0 . Also, if n H s > 0 , then F = n D o =
 and so all sites are occupied by Hawks and H > K . When H > K

hen n H s > 0 , thus, n H s = 0 if and only if H ≤ K . 

First we assume that H ≤ K . Then all Hawks occupy sites as

wners or in H o D s pairs (i.e., H = n H o + n H o D s ) and all other K − H

ites are occupied by Doves as owners or in D s D o pairs. As there

re no Hawks searching, we have n H s H o = n H s D o = 0 . Under these

ssumptions, equations for equilibrium of model (31) are 

 = n H o + n D o + n D s D o + n H o D s = H + n D o (1 + λτDD n D s ) (C.1a)

 = n H o (1 + λτHD n D s ) (C.1b)

 = n D s + n D o + 2 n D s D o + n D s H o 

= n D o + n D s + 2 λτDD n D s n D o + λτHD n D s n H o . (C.1c)

From (C.1a) and (C.1b) , solve for n D o and n H o in terms of n D s .

hen system (C.1) can be re-written as a cubic equation for un-

nown n D s 

 

3 
D s 

λ2 τDD τHD + 

λn 

2 
D s 

(λτDD τHD (2 K − D − H) + τDD + τHD ) + 

n D s (−Dλ( τDD + τHD ) − 2 HλτDD + λK(2 τDD + τHD ) + 1) 

−D − H + K = 0 . (C.2)

ince this cubic has positive leading coefficient and negative con-

tant term, there is exactly one nonnegative root if the coefficient

f n D s is negative whenever the coefficient of n 2 D s 
is negative by

escartes’ rule of signs. To see this, suppose that 

τDD τHD (2 K − D − H) + τDD + τHD < 0 . 

hat is 

 KλτDD τHD + τDD + τHD < λD τDD τHD + λH τDD τHD . 

hen 

 KλτDD + 1 < λD τDD + λH τDD . 

ince D > K , 

 KλτDD + λKτHD + 1 < λD τDD + λH τDD 

+ λDτHD < λD ( τDD + τHD ) + 2 H λτDD . 

hus, the coefficient of n D s , 

λD ( τDD + τHD ) − 2 λHτDD + λK(2 τDD + τHD ) + 1 , 

s negative. Thus, the cubic (C.2) has exactly one positive root for

 D s . We see from (C.1a) that K − H = n D o (1 + λτDD n D s ) . Since H ≤ K ,

t follows that n D o ≥ 0 and so we have a solution with n H o , n D s D o 
nd n H o D s all nonnegative. 

Second, if H > K , then n H s > 0 and all K sites are occupied by

awks (since F = n D o = 0 ) either as owners or in H o H s and H o D s

airs. As there are no Dove owners, we have the following three

quations 

 = n H o + n H s H o + n H o D s = n H o + λτHH n H s n H o + λτHD n D s n H o (C.3a)

 = n H o + n H s + 2 λτHH n H s n H o + λτHD n D s n H o (C.3b)

 = n D s + n D s H o = n D s + λτHD n D s n H o . (C.3c)

ystem (C.3) can be re-written as a cubic equation for unknown

 H o 

2 τHD τHH n 

3 
H o 

+ λn 

2 
H o 

(λτHH τHD (H + D − 2 K) + (τHD + τHH )) 

+ (1 + λ(τHD (D − K) + τHH (H − 2 K))) n H o − K = 0 . 

(C.4)
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16 For example, from (31) , 
dn H s D o 

dt 
≤ − n H s D o 

τHD 
+ λn H s n D o < 0 if n H s D o > 0 and τ HD is 

small enough. 
gain, suppose the coefficient of n 2 
H o 

is negative. That is, 

τHH τHD (H + D − 2 K) + (τHD + τHH ) < 0 . 

hen H + D < 2 K and 

HτHD + λDτHD + 1 < 2 λKτHD . 

hus 

τHD (H − K) + λDτHD + 1 < λKτHD . 

ince H > K , 

DτHD + 1 < λKτHD 

nd 

 + λDτHD + λHτHH < λKτHD + 2 λKτHH 

ince H < 2 K . That is, the coefficient of n H o is negative and so

he cubic (C.4) has exactly one positive root for n H o by Descartes’

ule of signs. It follows from (C.3c) that n D s > 0 . Moreover, from

C.3a) and (C.3b) , we see that K = H − n H s (1 + λτHH n H o ) . Since

 ≥ K , we have n H s , n H s H o , n H o D s are all nonnegative. 

ppendix D. Global stability of the unique distributional 

quilibrium of (35) for Example 3 

To prove global asymptotic stability, we first show that trajec-

ories of (35) converge to an equilibrium point. Since there is a

nique equilibrium point in each of the three regions in the main

ext, the equilibrium is globally asymptotically stable if it is locally

symptotically stable (we show this local stability second). 

From (33) , either F converges to 0 or n H s + n D s converges to 0

or a fixed trajectory of (35) . 

Case 1 ( n H s + n D s converges to 0 ). By the last equation of (35) ,

n H s H o converges to 0. Thus n H o = H − 2 n H o H s − n H s converges

to H and n D o = D − n D s converges to D . That is, H + D ≤ K

and the trajectory converges to equilibrium (36) . 

Case 2 ( n H s + n D s does not converge to 0 ). Since F converges to

0, H + D ≥ K with equality if and only if n H s = 0 and n D s = 0 .

Thus, H + D > K. 

From (35) , 

d(n H s + n H s H o ) 

dt 
= −λn H s (F + n D o ) . (D.1) 

Thus either n H s + n H s H o converges to 0 or n H s (F + n D o ) con-

verges to 0. 

Case 2(i) ( n H s + n H s H o converges to 0 ). Then n H o converges

to H (and so H ≤ K ) and n H o + n D o converges to K (and so

n D o converges to K − H). The trajectory converges to equi-

librium (37) . 

Case 2(ii) ( n H s + n H s H o does not converge to 0 ). From (D.1) ,

n H s + n H s H o is decreasing and so converges to C > 0. Also,

n H o + n H s H o = H − (n H s + n H s H o ) is increasing to H − C > 0 .

Then n D o = K − F − (n H o + n H s H o ) converges to K − (H − C)

since F converges to 0. We claim that n D o converges to

0 (i.e., K = H − C). Otherwise, n H s converges to 0 (since

n H s n D o converges to 0) and n H s H o converges to C > 0. But
dn H s H o 

dt 
= − n H s H o 

τHH 
+ λn H s n H o < 0 when n H s = 0 and n H s H o =

C > 0 and so n H s H o cannot converge to C . Thus, n D o con-
verges to 0 and n D s converges to D . Also, n H s + n H s H o con-

verges to K and so H > K . Furthermore, for large t , 

dn H s H o 

dt 
=−n H s H o 

τHH 

+λn H s n H o ≈ −n H s H o 

τHH 

+λ(C − n H s H o )(H − C − n H s H o )

(D.2) 

The approximation gets better as t increases along the

trajectory. Thus, the dynamics on the (omega) limit set

of this trajectory for (35) is described by the one-

dimensional differential equation for n H s H o . Since trajec-

tories are bounded, n H s H o (t) must converge to an equi-

librium value for the given trajectory. That is, all compo-

nents of the trajectory converge to the equilibrium given

by (38) . 

e now show that the unique equilibrium is locally asymptoti-

ally stable. As the number of Doves that jointly occupy sites tends

o 0, 16 all Doves are singles ( D = n D s + n D o ), and Hawks are either

ingles or in Hawk-Hawk pairs ( H = n H s + n H o + 2 n H s H o ). Substitut-

ng n H s H o = (H − n H s − n H o ) / 2 and n D o = D − n D s into (35) leads to

implified distributional dynamics 

dn H s 

dt 
= −1 

2 

λn H s (2 K + n H o + n H s − H) + 

H − n H o − n H s 

2 τHH 

dn H o 

dt 
= 

H − n H o − n H s + n H s λτHH (2 K − H − 3 n H o + n H s ) 

2 τHH 

dn D s 

dt 
= 

1 

2 

λn D s (H − 2 K − 2 n D s + n H o − 3 n H s ) + λD (n D s + n H s ) . 

(D.3) 

inally, as shown below, the equilibrium points (36), (37) , and

38) are locally asymptotically stable. 

Using Mathematica ( Appendix F ), we calculated eigenvalues of

he Jacobian matrix of (35) evaluated at equilibria (36) –(38) . The

igenvalues at equilibrium (36) are 

1 = λ(H + D − K) , 

2 = −
√ 

4 HλτHH + (λK τHH − 1) 2 + λK τHH + 1 

2 τHH 

, 

3 = 

√ 

4 HλτHH + (λK τHH − 1) 2 − λK τHH − 1 

2 τHH 

. 

hese eigenvalues are real and they are all negative when H + D <

. 

The eigenvalues at equilibrium (37) are 

1 = λ(K − H − D ) , 

2 = −
√ 

4 HλτHH + (λK τHH − 1) 2 + λK τHH + 1 

2 τHH 

, 

3 = 

√ 

4 HλτHH + (λK τHH − 1) 2 − λK τHH − 1 

2 τHH 

. 

hese eigenvalues are real and they are all negative when H + D >

and H < K . 
The eigenvalues at equilibrium (38) are 

1 = 

1 − 2 DλτHH + λτHH (2 K − H) −
√ 

λτHH 

(
λτHH (2 K − H) 2 + 2 H 

)
+ 1 

2 τHH 

2 = −

√ 

λτHH 

(
λτHH (2 K − H) 2 + 2 H 

)
+ 1 

τ
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λ3 = 

1 + λτHH (2 K − H) −
√ 

λτHH (λτHH (2 K − H) 2 + 2 H) + 1 

2 τHH 

. 

All three eigenvalues are negative when H > K . 

Thus, in all three cases, the unique distributional equilibrium of

(D.3) is locally asymptotically stable. 

Appendix E. Unique equilibrium solution of (45) 

To find equilibria of (45) , notice that dD / dt < 0 if D > 0 under

our assumptions that πD s < 0 and πDH ≤ 0 since 

−1 + (2 K − H) λτHH + 

√ 

1 + λτHH (2 H + (H − 2 K) 2 λτHH ) > 0 

when H > K . Thus, any equilibrium of (45) satisfies D = 0 . 
Substituting D = 0 into the right hand-side of the equation for

Hawks in (45) , an equilibrium ( H , 0) satisfies 

−2 πHH (1 + HλτHH ) + τHH (πH o + πH s + (H − 2 K) λ(πH o − πH s ) τHH ) 

−2 πHH + (πH o + πH s ) τHH 

= 

√ 

1 + λτHH (2 H + (H − 2 K) 2 λτHH ) . (E.1)

We note that every solution H of the above equation must sat-
isfy 

−2 πHH (1 + HλτHH ) + τHH (πH o + πH s + (H − 2 K) λ(πH o − πH s ) τHH ) 

−2 πHH + (πH o + πH s ) τHH 

≥ 0 . 

(E.2)

Solving (E.1) by squaring both sides leads to two expressions 

H ± = 

2 Kλ(2 π2 
HH − πHH (πH o + 3 πH s ) τHH + 2 πH o πH s τ

2 
HH ) + πH s (2 πHH − (πH o + πH s ) τHH )

2 λ πH s τHH (πH o τHH − 2 πHH ) 

(2 πHH − (πH o + πH s ) τHH ) 
√ 

(2 KλπHH + πH s ) 
2 − 4 KλπH o πH s τHH 

2 λ πH s τHH (πH o τHH − 2 πHH ) 
. (E.3)

Using Mathematica (with assumptions K > 0, λ> 0, τHH > 0,

πH s < 0 , πH o > 0 , πD s < 0 , πD o > 0 , see Appendix F ) we show that

condition (E.2) evaluated at H − cannot hold when H − > K and so

(H, D ) = (H −, 0) is not an equilibrium of (45) . H + is the only so-

lution that satisfies both conditions (provided we assume 2 πHH � =
πH o τHH ). 

Moreover, if D = 0 in the right-hand side of (45) , then dH / dt is

positive when H = K and tends to minus infinity as the number
f Hawks increases to infinity (because πH s < 0 ). Thus, the equilib-

ium (H + , 0) is globally asymptotically stable for Example 3 . 

ppendix F. Mathematica notebook 

This appendix contains Mathematica notebook with symbolic

alculations used in the text. 
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