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Abstract

This article analyzes the classical 2-resource–1-consumer apparent competition community module with the Holling type II functional

response. Two types of resource regulation (top-down vs. combined top-down and bottom-up) and two types of consumer behaviors

(inflexible consumers with fixed preferences for resources vs. adaptive consumers) are considered. When resources grow exponentially

and consumers are inflexible foragers, one resource is always outcompeted due to strong apparent competition. Density dependent

resource growth relaxes apparent competition so that resources can coexist. As multiple attractors (either equilibria or limit cycles)

coexist, population dynamics and community composition depend on initial population densities. Population dynamics change

dramatically when consumers forage adaptively. In this case, the results both for top-down, and combined top-down and bottom-up

regulation are similar and they show that species persistence occurs for a much larger set of parameter values when compared with

inflexible consumers. Moreover, population dynamics will be chaotic when resource carrying capacities are high enough. This shows that

adaptive consumer switching can destabilize population dynamics.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A consumer sharing two resources is one of the
community modules that has received a lot of attention
since the pioneering work of Holt (1977) on apparent
competition (see also Holt, 1984; Holt and Lawton, 1994).
In this module resources that can be spatially segregated,
interact through shared consumers in a similar way as two
predator species compete for a common prey. This is
because apparent competition, as any other indirect density
mediated interactions (e.g., trophical cascade), can strongly
influence community composition (Holt and Lawton,
1994). A detailed mechanistic understanding of apparent
competition is important, e.g., to asses the effect of alien
species invasion on native ecosystems (e.g., Morris et al.,
e front matter r 2006 Elsevier Inc. All rights reserved.
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s.cz (J. Eisner).
2004; Rand and Louda, 2004; Koss et al., 2004; Harmon
and Andow, 2004; Koss and Snyder, 2005).
The negative effect of one resource on the other resource

at a population equilibrium (or, more generally along a
consumer isocline) was shown for a broad class of
population dynamics (Holt, 1977). An excellent analysis
for the Lotka–Volterra model with all species coexisting at
an equilibrium was given in Holt (1977, 1984). In this case,
an increase in one resource equilibrium density increases
equilibrium consumer density which has a negative effect
on the other resource equilibrium density. Understanding
the role of apparent competition when species do not
coexist at an equilibrium, or, multiple community states
coexist, is more difficult. Holt (1997a) presents a time-
averaging argument suggesting that if resources experience
no direct density dependence, then even in fluctuating
environments one resource will be outcompeted due to
strong apparent competition. Such a situation often arises
when the linear functional response is replaced by the
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Holling type II functional response which destabilizes the
resource–consumer interaction via the MacArthur–Ro-
senzweig paradox of enrichment (e.g., Kretzschmar et al.,
1993; Klebanoff and Hastings, 1994; Abrams et al., 1998;
Abrams, 1999; Abrams and Holt, 2002).

Holt (1984) also showed that if consumers switch
between resources optimally then apparent competition
ceases at the population equilibrium. This is because
apparent competition at the population equilibrium
requires that the predator isocline in the resource
1–resource 2 phase space has a negative slope.
However, when an optimally foraging consumer
switches abruptly as resource densities change, the con-
sumer isocline is rectangular (Holt, 1983). Křivan
(1997) studied the effect of optimal predator switching on
the Lotka–Volterra population dynamics (with exponential
resource growth and linear functional response) in a
two-patch environment. Consumers were assumed to be
free to move between two resource patches while
resources did not move. As predicted by Holt (1977,
1997a), fixed consumer preferences led to exclusion of
one resource due to strong apparent competition. In
contrast, if consumers moved between patches so that
their fitness measured by the per capita population growth
rate was instantaneously maximized, resources in both
patches survived although the system dynamics did not
tend to an equilibrium. Moreover, consumers drove
resources to the levels where consumer fitness was
independent of the consumer strategy, which led to the
ideal free distribution (IFD) of consumers (Fretwell and
Lucas, 1970).

In this article, we consider 2-resource–one consumer
population dynamics with the Holling type II functional
response. We compare the case where consumer prefer-
ences for either resource are independent from resource
densities with population dynamics where consumers
switch between the two prey optimally. We do this
comparison both for exponential resource growth (top-
down regulation) and logistic resource growth (combined
top-down and bottom-up regulation). Following general
predictions (Holt, 1977, 1997a) we expect that for inflexible
consumers and top-down regulation only, one resource will
be outcompeted from the community. When resource
growth is also bottom-up regulated, apparent competition
gets weaker as there is an upper limit on consumer
densities (Holt, 1977), and resources can coexist. We analyze
this case numerically and we show that bottom-up
regulation can lead to non-equilibrium population dynamics
(equilibria and/or limit cycles) and multiple attractors
similarly as in the case of purely exploitative commu-
nity module (Armstrong and McGehee, 1976, 1980). We
analyze dependence of all attractors on resource carrying
capacities.

Then we do the same analysis assuming that consumers
behave as optimal foragers. We show that consumer
switching promotes species coexistence without stabilizing
population dynamics. In fact, optimal consumer foraging
behavior can destabilize species coexistence and lead to
chaotic population dynamics.
2. One-consumer–two-resource population dynamics

We assume that resources are spatially distributed in two
patch types. Resource abundance in patch i is Ri ði ¼ 1; 2Þ
and the overall consumer abundance in both patches is C.
Population dynamics that neglect consumer travel time are
described by the following model:

dR1

dt
¼ r1ðR1ÞR1 �

l1R1u1C

1þ h1l1R1
,

dR2

dt
¼ r2ðR2ÞR2 �

l2R2u2C

1þ h2l2R2
,

dC

dt
¼

e1l1R1

1þ h1l1R1
�m1

� �
u1C

þ
e2l2R2

1þ h2l2R2
�m2

� �
u2C. ð1Þ

Here ui denotes the fraction of lifetime an average
consumer stays in patch i, ri is the intrinsic per capita
resource i growth rate, li is the cropping rate, hi is the
handling time, ei denotes the efficiency with which
resources are converted to new consumers, and mi is the
per capita consumer mortality rate. Neglecting consumer
travel time leads to u1 þ u2 ¼ 1; since every consumer is in
either patch 1 or patch 2.
Assuming that consumer fitness is measured by the per

capita instantaneous consumer population growth rate
dC=ðCdtÞ, the consumer optimal strategy is
(a)
 If e1l1R1=ð1þ h1l1R1Þ �m14e2l2R2=ð1þ h2l2R2Þ �

m2 then consumers maximize their fitness by feeding
on resource 1 only (u1 ¼ 1 and u2 ¼ 0).
(b)
 If e1l1R1=ð1þ h1l1R1Þ �m1oe2l2R2=ð1þ h2l2R2Þ �

m2 then consumers maximize their fitness by feeding
on resource 2 only (u1 ¼ 0 and u2 ¼ 1).
(c)
 If e1l1R1=ð1þ h1l1R1Þ �m1 ¼ e2l2R2=ð1þ h2l2R2Þ �

m2 then consumer fitness is independent of the
consumer strategy. Thus, consumer strategy is not
uniquely given by fitness maximization.
The equality in (c) defines a surface in the resource
1–resource 2-consumer density phase space. This surface
(see the shaded surface in Fig. 1) is called the switching
manifold. Along the switching manifold resource densities
are such that consumer fitness is independent of
the consumer strategy ðuiÞ. If population dynamics
together with the optimal consumer strategy are such
that trajectories of model (1) tend to the switching
manifold, the consumers will distribute among the two
patches following the IFD (IFD; Fretwell and Lucas, 1970;
Křivan, 1996).
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Fig. 1. The long term behavior of trajectories of model (1) with resources growing exponentially ðriðRiÞ ¼ riÞ and adaptive consumers. For zero handling

times (panel A, h1 ¼ h2 ¼ 0) a neutrally stable equilibrium exists. This equilibrium is surrounded by a family of Lotka–Volterra closed orbits. For positive

handling times, the Lotka–Volterra cycles disappear and trajectories converge to a limit cycle (panel B, h1 ¼ h2 ¼ 0:01). As handling times increase, the

limit cycle undergoes period doubling bifurcation (panel C shows a 2-cycle, h1 ¼ h2 ¼ 0:015, panel D shows a 4-cycle, h1 ¼ h2 ¼ 0:019) which is a well-

known route to chaos (panel E, h1 ¼ h2 ¼ 0:035). A corresponding bifurcation diagram is shown in panel F. Other parameters: r1 ¼ 1:5, r2 ¼ 0:5,
m1 ¼ 0:3, m2 ¼ 0:2, e1 ¼ 0:15, e2 ¼ 0:1 and l1 ¼ 1:2, l2 ¼ 0:9.

V. Křivan, J. Eisner / Theoretical Population Biology 70 (2006) 421–430 423
3. Top-down control only

Here we assume that resources grow exponentially and
we set riðRiÞ ¼ ri in model (1). We will consider two cases:
(i) consumer preferences for either resource are fixed and
independent of the resource availability, or (ii) consumers
adapt their preferences to changing resource densities.
3.1. Fixed preferences

We will show that, for small handling times, model (1)
with fixed consumer preferences (ui) is impermanent
because the competitively weaker species (which is the
species with lower ratio ri=ðliuiÞ) cannot invade
the community consisting of the competitively stronger
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V. Křivan, J. Eisner / Theoretical Population Biology 70 (2006) 421–430424
resource and consumers. Let us assume that resource j is
missing. The present resource i-consumer population
equilibrium is then

R�i ¼
miui þmjuj

liuiðei �mihiÞ � lihimjuj

and

C� ¼
riei

liuiðei �mihiÞ � hilimjuj

.

The missing resource j can invade at the above population
equilibrium provided

rj

ujlj

4
ri

uili � hili=ðeiðmiui þmjujÞÞ
.

Similarly, the condition for invasibility of resource i at the
resource j-consumer equilibrium is

ri

uili

4
rj

ujlj � hjlj=ðejðmiui þmjujÞÞ
.

The above two inequalities cannot hold simultaneously
when resource handling times are small, and, consequently,
model (1) for non-adaptive consumers with fixed prefer-
ences for either patch is impermanent. When handling
times are zero, model (1) has no interior equilibrium and
the resource with higher ratio ri=ðuiliÞ outcompetes the
other resource through the shared consumers (Holt, 1977;
Křivan, 1997). Numerical simulations show that the
competitive exclusion holds also for small handling times
(although for small positive handling times an interior
equilibrium exists, but it is unstable). This is an excellent
example of apparent competition in a highly unstable
dynamics (Holt, 1977; Abrams et al., 1998; Brassil and
Abrams, 2004).

3.2. Optimal preferences

Now we consider the case in which consumers behave as
optimal foragers, by moving to the patch where their fitness
maximizes. We show that consumer switching relaxes
conditions for permanence, when compared with inflexible
consumers, because the missing resource can always invade
the remaining resource–consumer equilibrium. The optimal
consumer strategy dictates that at such an equilibrium all
consumers will be feeding in the patch that has a positive
resource density. This is because in the resource free patch
the consumer fitness is negative, while in the patch with a
positive resource level the consumer fitness at the
corresponding population equilibrium is zero, thus higher.
Consequently, the missing resource, not being consumed,
can always invade the consumer free patch and the
necessary conditions for species permanence are trivially
satisfied due to consumer adaptive behavior (see also Holt,
1977).

We show that model (1) with optimal consumers does
not have any stable interior equilibrium. It is clear that
there is no interior equilibrium off the switching manifold
(because off the switching manifold one species is always
exponentially growing). Now we consider population
dynamics along the switching manifold. The switching
manifold consists of two regions (Křivan, 1997; Boukal
and Křivan, 1999): (i) the region where trajectories of
model (1) tend to the switching manifold from both sides
(this region is called the sliding domain because trajectories
cannot leave the switching manifold and must ‘‘slide’’
along it), and (ii) the region where trajectories cross
switching manifold transversally. In Fig. 1 these two
regions of the switching manifold (shaded area) are
separated by the dashed curve (the part of the switching
manifold above the dashed curve is the sliding domain).
Thus, if model (1) has an equilibrium in the switching
manifold, the equilibrium must be in the sliding domain.
The case where handling times are zero (Křivan, 1997)
shows that such an equilibrium in the switching manifold
exists (shown as the solid dot in Fig. 1A) and is neutrally
stable. Numerical simulations reveal that small positive
handling times destabilize this equilibrium and trajectories
spiral away from it. When such a trajectory reaches the
boundary of the sliding domain (the dashed curve in Fig. 1)
it leaves the switching manifold and all consumers move to
the patch that provides them with the highest fitness (which
is patch 1 in Fig. 1). As resources in patch 1 decrease, there
will be a time when consumer fitness equalizes in both
patches. At this time, the trajectory hits again the switching
manifold and moves along it until it reaches its boundary
and so on. For small handling times a limit cycle appears
(Fig. 1B). As handling times increase, the limit cycle
undergoes a series of period doubling bifurcations (two-
cycle in Fig. 1C, four-cycle in D), which is a well-known
route to chaos (Fig. 1E). The corresponding bifurcation
diagram is shown in Fig. 1F. This diagram shows, for each
handling time, how points along the horizontal dotted line
(Fig. 1) are mapped by the corresponding trajectories of
model (1). More specifically, the points on the diagram
show successive values of resource 1 at times when the
corresponding trajectory of model (1) intersects with the
dotted line while consumer density C decreases. Thus, for a
given handling time, the number of points in Fig. 1F,
corresponds to the multiplicity of the corresponding limit
cycle of model 1 (i.e., a single point means that the
corresponding trajectory follows a simple cycle, two points
denote a 2-cycle as the one shown in Fig. 1C and so on). As
handling times increase, multiplicity of the limit cycle first
increases and then decreases via period reversal bifurca-
tions leading finally to a single limit cycle for large handling
times.
4. Bottom-up control

Now we consider a combined bottom-up and top-down
regulation of resources. We assume the logistic resource
growth rate [riðRiÞ :¼ rið1� Ri=KiÞ] in model (1).



ARTICLE IN PRESS
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4.1. Fixed preferences

First we study the necessary conditions for species
permanence. When compared to the case of top-down
regulation only, we are in a more complex situation now,
because when one resource is missing the other resource–
consumer population dynamics may coexist along a limit
cycle due to the paradox of enrichment. In this case, the
invasibility condition for the missing species along the limit
cycle cannot be derived analytically. In analyzing model (1)
we will proceed in two steps. First, we derive conditions
under which a missing species can invade the community
that is at an equilibrium. These necessary conditions for
species permanence can be derived analytically. Second, we
will analyze qualitative behavior of model (1) numerically
with respect to the resource carrying capacities.

4.1.1. Invasibility of the missing species at the community

equilibrium

If one resource is missing the remaining resource–con-
sumer population dynamics are described by the Ma-
cArthur–Rosenzweig system. If resource j ¼ ð1; 2Þ is
missing the remaining resource i-consumer system has the
following equilibrium:

R�i ¼
miui þmjuj

liðuiðei �mihiÞ � himjujÞ
,

C� ¼
riei

liuiðei �mihiÞ � hilimjuj

1�
R�i
Ki

� �
. ð2Þ

This equilibrium is stable (as the equilibrium of the
resource i-consumer system) if the present resource i

carrying capacity meets the following two threshold
conditions

miui þmjuj

liuiðei �mihiÞ � lihimjuj

oKip
eiui þ hiðmiui þmjujÞ

hiliðeiui � hiðmiui þmjujÞÞ
.

The first condition states that the carrying capacity must be
high enough to support consumers at a positive density
(this threshold for resource i ¼ 1ð2Þ is shown as the vertical
(horizontal) dashed line in Fig. 2, left panel) while the
second condition gives an upper bound below which the
resource i-consumer equilibrium is stable (in the resource i-
consumer phase space). This latter threshold for resource
i ¼ 1ð2Þ is shown as the solid vertical (horizontal) line in
Fig. 2, left panel. For high carrying capacities that meet the
second threshold level, the resource i-consumer equilibrium
is unstable and a stable (in resource i-consumer density
phase space) limit cycle exists due to the paradox of
enrichment.

The missing resource j can invade at population
equilibrium (2) provided

KioR�i 1�
rj

ujlj

li

ri

ui �
hiðmiui þmjujÞ

ei

� �� ��
. (3)

This threshold is shown for resource 1 (2) as the dotted
vertical (horizontal) line in Fig. 2, left panel. For high
resource i carrying capacity that do not satisfy the above
inequality, the ith resource level is too high and the missing
resource j cannot invade due to strong apparent competi-
tion (Holt, 1977).
When consumers are missing, the equilibrial resource

densities are K1 and K2. Consumers can invade if

e1l1K1

1þ h1l1K1
�m1

� �
u1 þ

e2l2K2

1þ h2l2K2
�m2

� �
u240.

The expression on the left-hand side of the above inequality
defines a curve in the resource carrying parameter space
that separates regions A0 from A1 in Fig. 2, left panel.
Thus, the invasibility conditions for the missing species

to invade at the community equilibrium are satisfied in
regions of the resource carrying capacity parameter space
that are bounded by the curve separating regions A0 from
A1 and by dotted lines (Fig. 2, left panel). However, the
problem is that for given resource carrying capacities the
invasibility of the missing species at the community
equilibrium does not guarantee indefinite coexistence of
all species if the resource i-consumer limit cycle exists. For
example, in Fig. 2C the paradox of enrichment threshold
for resource 1 (solid vertical line) is to the left of the
invasibility threshold (dotted vertical line). This means that
for resource 1 carrying capacities that are to the right of the
solid vertical line and to the left of the dotted vertical line a
limit cycle in resource 1-consumer phase space exists. For
species permanence, this limit cycle must also be invasible
by missing resource 2, but the conditions for invasibility
cannot be derived analytically. In the next section, we use
numerical analysis to derive invasibility conditions along
such a limit cycle. We remark, that for zero handling times
no limit cycles with one resource missing exist.
4.1.2. Numerical analysis

For numerical analysis we parameterize model (1) so
that resource 1 will be outcompeted by resource 2 when
resource carrying capacities K1 and K2 are infinite (i.e., if
resource growth is density independent). Fig. 2 (left panel)
and Table 1 show results of numerical stability analysis of
model (1). Panel A assumes zero handling times while
panels C and E assume positive handling times
(h1 ¼ h2 ¼ 0:02 and h1 ¼ h2 ¼ 0:08, respectively). Table 1
lists all equilibria and limit cycles that we found by
numerical analysis. The equilibria and limit cycles with one
species missing are classified as unstable and invasible (UI),
unstable and non-invasible (UN), or stable (S). We remark
that every boundary equilibrium that is stable (S) is
automatically non-invasible. Interior equilibria and limit
cycles are classified as stable (S) or unstable (U). Using
continuation package XPPAUT (Ermentrout, 2002), we
split the K1–K2 parameter space in regions with qualita-
tively different predictions for population dynamics. The
curves separating these regions are described in Appendix.
Inspection of Table 1 shows that model (1) is permanent

in the following regions: A1, A2, A5, B1, B2, B5, D1, D2, D4
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Fig. 2. Results of numerical analysis of model (1) with bottom-up regulation and non-adaptive consumers (left panel, with equal consumer preferences for

either patch, u1 ¼ u2 ¼ 0:5) and adaptive consumers (right panel). The upper three rows show bifurcation diagrams in the carrying capacity parameter

space (K1–K2) for increasing handling times (h1 ¼ h2 ¼ 0 in A and B; h1 ¼ h2 ¼ 0:02 in C and D; h1 ¼ h2 ¼ 0:08 in E, F). List of all attractors

corresponding to various regions is given in Table 1 (for the left panel) and 2 (for the right panel), respectively. Detailed description of curves is in the

Appendix. The bottom row shows bifurcation diagrams at a fixed carrying capacity (K1 ¼ 16 in panel G and K1 ¼ 200 in panel H). In panel G, the

number of coexisting species is indicated by the line thickness (thick line ¼ 3 species, medium thick line ¼ 2 species, thin line ¼ single species), or the

diameter of the circle (large diameter circle ¼ 3 species, small diameter circle ¼ 2 species). Solid (dashed) lines and filled (open) circles denote locally stable

(unstable) equilibria and limit cycles, respectively. Parameters: r1 ¼ 1:5, r2 ¼ 0:5, m1 ¼ 0:3, m2 ¼ 0:2, e1 ¼ 0:15, e2 ¼ 0:1, l1 ¼ 1:9, l2 ¼ 0:6.

V. Křivan, J. Eisner / Theoretical Population Biology 70 (2006) 421–430426
and D5. This is because in these regions the missing species
can invade two-species equilibria and two-species limit
cycles, provided they exist. However, species can coexist
even if the system is impermanent. Inspection of Table 1
shows that, in addition to regions where model (1) is
permanent, all species can coexist (either at an equilibrium,
or along a limit cycle) in regions A6, B6, C5, C7, C9, D3, D6,
D7, E1–E4, F1–F5, G2, G3 and H7, H9, H11 (see Table 1
and Fig. 2C, E). However, in these regions species
coexistence depends on the initial densities.
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Table 1

The results of numerical analysis of model (1) for inflexible consumers and

logistically growing resources

Region Equilibria Limit cycles

R1C R2C R1R2C R1C R2C R1R2C

A0 – – – – – –

A1 – – S – – –

A2 UI – S – – –

A3 S – – – – –

A4 UN – – S – –

A5 UI – U UI – S

A6 UN – – UI – S

B1 – UI S – – –

B2 UI UI S – – –

B3 S UI – – – –

B4 UN UI – S – –

B5 UI UI U UI – S

B6 UN UI – UI – S

C1 – S – – – –

C2 UI S – – – –

C3 S S U – – –

C4 S S U – – U

C5 S S U – – S, U, U

C6 UN S U S – U

C7 UN S U S – S, U, U

C8 UN S U UI – –

C9 UN S U UI – S, U

D1 UI UI S UI – –

D2 UI UI S UI – S,U

D3 UN UI S UI – S, U

D4 UI UI U – – S

D5 UI UI U – – S, U

D6 S UI – – – S, U

D7 UN UI – S – S, U

E1 S UI U, U – – S

E2 S UI U, U – – S, U

E3 UN UI U, U S – S, U

E4 UN UI U, U UI – S

F1 S UI S, U – – –

F2 S UI S, U – – U

F3 S UI S, U – – S, U, U

F4 UN UI S, U S – S, U, U

F5 UN UI S, U UI – S, U

G1 UI S – UI – –

G2 UI S – UI – S, U

G3 UN S – UI – S, U

H1 – UN – – S –

H2 UI UN – – S –

H3 S UN U – S –

H4 S UN U – S U

H5 UN UN U S S U

H6 UN UN U UI S –

H7 UN UN U UI S S, U

H8 UI UN – UI S –

H9 UI UN – UI S S, U

H10 UN UN – UI S –

H11 UN UN – UI S S, U

The two-species equilibria and boundary cycles are denotes as RiC

(i ¼ 1; 2) and the three-species equilibria and limit cycles are denoted as

R1R2C, respectively. For the boundary equilibria and limit cycles their

invasibility by the missing species is indicated (UN ¼ Unstable and Non-

invasible, UI ¼ Unstable and Invasible). Stable (unstable) equilibria and

limit cycles are denotes by S (U). Regions of the carrying capacity

parameter space correspond to those shown in Fig. 2, left panel.

Table 2

List of the regions corresponding to Fig. 2, right panel and their attractors

for adaptive consumers

Stable attractors

S0 consumers extinct

S1 interior equilibrium (no limit cycle)

P1 interior limit cycle

P2 interior double limit cycle

P3 interior triple limit cycle

P4 interior quadruple limit cycle

P5 interior 5-limit cycle

P6 interior 6-limit cycle

Ch chaotic behavior
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Our numerical analysis shows that model (1) behaves
qualitatively similarly as the two-dimensional predator-
prey MacArthur–Rosenzweig model. For low carrying
capacities species coexist at an equilibrium (e.g., regions
A1, A2, B1, B2) while at high carrying capacities either one
resource is outcompeted (e.g., regions H6, H10), or species
coexistence is achieved along a locally stable limit cycle
(e.g., regions C9, G3, H7, H11). Thus, we observe the
paradox of enrichment. In contrast to its two-species
counterpart, the three species model can have multiple
attractors.
We remark, that the interior locally stable limit cycle

exists even for large values of carrying capacities (e.g., for
carrying capacities in regions H7 and H11). As we know
that there is no interior attractor when resource growth is
exponential, we can ask what happens to the locally stable
limit cycle as the carrying capacities tend to infinity (in
which case model with density-dependent resource growth
converges to the model with exponentially growing
resources). Numerical simulations suggest that as the
carrying capacities increase, the amplitude of the interior
limit cycle increases too and the limit cycle approaches the
plane R1 ¼ 0; which means that the stronger competitor
(which is resource 2 in our case) outcompetes the weaker
competitor exactly as predicted by the model without
resource density dependence.
To understand better dynamics of model (1), we consider

a vertical cross-section of Fig. 2E at K1 ¼ 16. The structure
of corresponding attractors along this cross-section is
shown in Fig. 2G. Since resource 1 carrying capacity K1 ¼

16 meets the threshold for the paradox of enrichment (i.e.,
K1 ¼ 16 is to the right of the vertical solid line in Fig. 2E),
there is a stable limit cycle (denoted by small solid dots for
R2 ¼ 0 in Fig. 2G) in resource 1-consumer density phase
space. For K1 ¼ 16, resource 2 cannot invade along this
two species limit cycle (the threshold for the invasibility of
resource 2 along resource 1-consumer limit cycle is possible
for K1418:2, see the vertical dash–double-dotted line in
Fig. 2E) and the boundary limit cycle is an attractor
(Table 1). This attractor exists for any value of K2. The
unstable resource 1-consumer equilibrium is shown as the
medium thick dashed line at R2 ¼ 0 in Fig. 2G. Thus, for
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low values of K2o18:2 resource 2 is necessarily out-
competed from the system. For higher values of K2

(18:2oK2o29:2) there are two attractors, because a locally
stable interior limit cycle (shown as the large solid dots in
Fig. 2G) exists. Whether resource 2 is outcompeted or not
depends now on the initial values of all species. For yet
higher values of K2 (29:2oK2o32:2) a third attractor
appears. This is a locally stable interior equilibrium shown
as the thick solid line in Fig. 2G. In this parameter range all
species can coexist either at the interior equilibrium, or at
the limit cycle, or resource 2 can be outcompeted. For
K2 ¼ 32:2, the interior equilibrium disappears and a new
resource 2-consumer equilibrium (the medium thick solid
horizontal line in Fig. 2G) becomes the third attractor. In
this case either resource can outcompete the other resource,
or both resources can coexist along a limit cycle. For
K2 ¼ 37:5, the interior stable limit cycle disappears and
coexistence of both resources is impossible. We get a bi-
stable case where one resource outcompetes the other
resource. Which resource will survive depends on the initial
population densities. For K2448:7, we still have the bi-
stable situation but the coexistence of resource 2 with
consumers is possible only along a limit cycle due to the
paradox of enrichment (Table 2).

4.2. Optimal preferences

Now we consider the case where consumers behave as
optimal foragers. First we show that invasibility conditions
for species permanence are relaxed when compared with
inflexible consumers for the same reason as in the case of
exponentially growing resources. We consider two qualita-
tively different cases. First, let us assume that consumer
mortality rates in both patches are the same (m1 ¼ m2) and
one resource is missing. The optimal foraging strategy then
dictates that all consumers will be in the patch with the
resource and the missing resource can always invade in the
consumer free patch. This shows that the missing resource
can invade regardless if the other resource–consumer
system is at an equilibrium or fluctuates along a limit cycle
(see also Holt, 1997a). Second, let us consider the case
where consumer mortality rates are patch-dependent.
Again we assume that one resource is missing from the
system. In this case, however, it is not true that consumers
will not move to the empty patch. Indeed, if the resource
level in the other patch is low and/or the consumer
mortality rate in that patch is high, the empty patch can
serve as a refuge (or as a sink Holt, 1997b). This shows that
the argument used in the case where consumer mortality
rates are equal cannot be applied in the present situation
and the invasibility conditions along a limit cycle with one
missing resource cannot be verified analytically.

For species persistence we have to ensure that consumers
can invade the resource 1–resource 2 equilibrium
ðK1;K2; 0Þ: Let us assume that this equilibrium lies in the
part of the species density phase space where consumers
feed on resource i only. Then consumers can invade at this
equilibrium provided resource i is abundant enough to
support consumers at positive density, i.e.,

Ki4
mi

liðei �mihiÞ
. (4)

First, we consider the case of zero handling times
(Fig. 2B) which was studied in detail by Křivan and
Schmitz (2003). There are two possibilities. Either both
resource carrying capacities meet the threshold given by (4)
in which case consumers will occupy both patches and the
corresponding population equilibrium is globally asymp-
totically stable, or, only one carrying capacity meets the
threshold condition given by (4) in which case all
consumers will occupy a single patch only. Both of these
cases correspond to the region S1 in Fig. 2B. In region S0,
neither of the two resource carrying capacities meets
condition (4) and consumers go extinct.
Second, let us consider positive handling times (Figs. 2D,

F). Numerical simulations lead to population dynamics
that are very similar to those with top-down regulation
only (Fig. 1). At very low carrying capacities (region S0 in
Fig. 2, right panel) resources are not able to support
consumers at positive densities. At higher values (region
S1) species coexist at a globally stable equilibrium that
undergoes a series of period doubling bifurcations as the
carrying capacities continue to grow (P-regions), even-
tually leading to a chaotic behavior (region Ch). The
chaotic region is punctuated by regions where coexistence
occurs along a limit cycle (Fig. 2F, H). Fig. 2H shows
bifurcation of the Poincaré return map as a function of K2.
This diagram was constructed similarly as the bifurcation
diagram in Fig. 1F.

5. Discussion

In this article, we studied population dynamics of the
apparent competition community module (Holt, 1977,
1984, 1997a) with the Holling type II function responses.
We considered two types of consumer foraging behavior
(inflexible or optimal) and two types of resource growth
(exponential or logistic).
When resources grow exponentially, handling times are

zero, and consumer preferences for resources are fixed,
apparent competition always leads to exclusion of the
competitively weaker resource (Holt, 1977; Křivan, 1997).
In contrast, when consumers are optimal foragers, both
resources do coexist in the system and coexistence occurs
along a limit cycle centered at a neutrally stable equilibrium
(Fig. 1A; Křivan, 1997). In this article, we demonstrated
that positive handling times do not qualitatively change
predictions obtained for zero handling times and inflexible
consumers. However, for optimally foraging consumers,
positive handling times destroy the neutral stability of the
population equilibrium and a globally stable limit cycle
appears for small handling times. As handling times
increase, this cycle undergoes a series of period doubling
bifurcations which leads to chaos (Fig. 1).
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Then we studied the effect of the logistic resource growth
on apparent competition. First, we considered the case
where consumers have fixed preferences for either resource.
Similar models have been extensively studied in literature
(e.g., Vance, 1978; Gilpin, 1979; Kretzschmar et al., 1993;
Klebanoff and Hastings, 1994; Abrams et al., 1998;
Abrams, 1999). These models, however, study different
systems. Either, functional responses are linear, or the two
resource species occur in a fine-grained environment where
they can also compete for common resources. In this
article, we focused on numerical analysis of the model that
assumes a coarse-grained environment where resources
cannot compete directly. We analyzed this model with
respect to environmental productivities measured by the
carrying capacities. It has been argued in literature (e.g.,
Holt and Lawton, 1993; Holt, 1997a; Křivan and Sikder,
1999; Křivan and Diehl, 2005) that resource enrichment
(modeled as an increase in resource carrying capacity)
typically makes resource coexistence less likely. These
predictions are often based on conditions for species
invasibility when rare, which are necessary conditions for
species permanence (Butler and Waltman, 1986). Violation
of the invasibility conditions does not necessarily mean
that species cannot survive as survival depends on initial
population densities. We showed that in the case of
inflexible predators, species permanence is guaranteed for
intermediate levels of resource carrying capacities (i.e., in
regions A1, A2, A5, B1, B2, B5, D1, D2, D4 and D5 in Fig. 2).
However, species can coexist even if invasibility conditions
for species persistence do not hold, i.e., when one or both
species cannot invade the community when initially rare.
Armstrong and McGehee (1976) (see also Armstrong and
McGehee, 1980; Abrams and Holt, 2002) showed that two
competing species can survive on a single resource. In our
case, the Armstrong and McGehee mechanism requires
that the missing resource can invade the community which
fluctuates along a limit cycle, but it cannot invade when the
community is in unstable two-species equilibrium.Table 1
shows that this happens in regions A6, B6, D3, E4, F5 of the
resource carrying capacity parameter space. In all these
cases all species will coexist for almost all initial conditions,
although the system is impermanent because there are
initial conditions for which one resource goes to extinction.
Even if a boundary attractor exists (which happens in
regions C5, C7, C9, D6, D7, E1, E2, E3, F1–F4, G2–G3, H7,
H9, H11), species can still coexist indefinitely at an interior
attractor depending on the initial data. Thus, the set of
enrichment levels at which all species can coexist is much
larger than the set where the system is permanent.

The case where consumer preferences for resources are
fixed corresponds to the classical apparent competition
module that considers passive non-directional dispersal of
consumers between two resource patches. Since the highly
productive patches support more consumers than the less
productive patches, passive non-directional dispersal leads
to consumer ‘‘spill-over’’ from the highly productive
patches to the less productive patches. This spill-over
causes a negative effect of high productive patches on less
productive patches which is the mechanisms leading to
apparent competition. This effect is stronger if resources
grow exponentially, while logistic resource growth weakens
the spill-over effect and the apparent competition (Holt,
1977).
Holt (1977) predicted that strong consumer switching

relaxes apparent competition. In fact, optimal foraging
prevents the spill-over effect because consumers do not
disperse from the patch where their fitness maximizes. In
addition, our numerical simulations show that optimal
foraging (i) increases range of parameters for which all
species coexist, and (ii) leads to chaotic population
dynamics (Figs. 1 and 2, right panel). This clearly shows
that adaptive behavior can lead to chaotic population
dynamics.
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Appendix A. The bifurcation analysis of model (1) for non-

adaptive consumers

Here we describe various curves shown in Figs. 2C and
E. These curves were obtained using XPPAUT continua-
tion software (Ermentrout, 2002). The dashed-double
dotted vertical line shown in Fig. 2E is the invasibility
threshold for resource 2 along resource 1-consumer limit
cycle. For resource 1 carrying capacities that meet this
threshold (i.e., they are to the right of this threshold in Fig.
2), resource 2 can invade resource 1-consumer limit cycle.
The solid thick curve in Figs. 2C, E is the Hopf bifurcation
curve along which an interior limit cycle bifurcates from an
interior equilibrium. An example of such a bifurcation is
given in Fig. 2G at the point K2 ¼ 29:3, R2 ¼ 10:0 where
the curve of interior equilibria (the thick curve) changes its
stability and an unstable limit cycle emerges. The dash-
dotted thick curve in Fig. 2E is the turning point of a
branch of interior limit cycles (i.e., along this curve two
interior limit cycles collide). An example of this bifurcation
type is shown in Fig. 2G at K2 ¼ 18:2 where to the left of
this carrying capacity no interior limit cycle exists while to
the right two interior limit cycles (one stable and one
unstable) exist. Similarly, the thin dash-dotted curve in
Fig. 2E is the turning point of an interior equilibrium curve
(i.e., along this curve two interior equilibria collide into a
single equilibrium). An example is given in Fig. 2G where
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to the left of K2 ¼ 28 no interior equilibrium exists while to
the right of this point two interior equilibria exist.
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