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Abstract

In the previous two articles (Theor. Popul. Biol. 49 (1996) 265–290; 55 (1999) 111–126), the population dynamics resulting from a

two-prey–one-predator system with adaptive predators was studied. In these articles, predators followed the predictions of optimal

foraging theory. Analysis of that system was hindered by the incorporation of the logistic description of prey growth. In particular,

because prey self-regulation dependence is a strong stabilizing mechanism, the effects of optimal foraging could not be easily

separated from the effects of bottom-up control of prey growth on species coexistence. In this article, we analyze two models. The

first model assumes the exponential growth of both prey types while the second model assumes the exponential growth of the

preferred prey type and the logistic growth of the alternative prey type. This permits the effect of adaptive foraging on two-prey–

predator food webs to be addressed. We show that optimal foraging reduces apparent competition between the two prey types,

promotes species coexistence, and leads to multiple attractors.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is well known that when two non-competing species
share a common predator, predator-mediated apparent
competition (Holt, 1977) often leads to competitive
exclusion of one prey population. If predation is the
only regulatory mechanism of prey exponential growth
and predators are non-adaptive foragers, this will
always hold for population dynamics modeled by
Lotka–Volterra-type differential equations with either
a linear or Holling type II functional response. If prey
growth is density dependent then both prey species can
survive with predators for an appropriate range of
parameters (Holt, 1977). Thus, in classical models of
population ecology, prey density dependence (bottom-
up regulation) relaxes the strength of apparent competi-
tion making indefinite coexistence of both prey species
possible.

In this article, we consider the effect of adaptive
foraging (i.e., top-down regulation) on apparent prey
competition. In Křivan (1996), a two-prey–one-predator

population model with optimal predator foraging
behavior was studied in a fine-grained environment
(Werner and Hall, 1974; Charnov, 1976; Stephens and
Krebs, 1986). That model contained two regulatory
mechanisms of prey growth: (i) prey self-regulation
modeled by the logistic equation (bottom-up control),
and (ii) optimal diet selection by predators (top-down
control) modeled by a piece-wise Holling type II
functional response which arises as a result of optimal
predator diet choice. Analysis of the resulting system
was hindered by the logistic prey growth and only
partial stability analysis for the equal intrinsic per capita
prey growth rates was given (Křivan, 1996). The analysis
together with computer simulations suggested that
optimal diet choice reduces the amplitude of population
oscillations without stabilizing the system at an equili-
brium. Similar results were obtained by Fryxell and
Lundberg (1994, 1997) for systems in which switching
was described by a more gradual sigmoidal function.
However, Křivan (1996) also showed that optimal
foraging can be destabilizing for certain parameter
values. The stable equilibrium of a predator–prey system
where predators behave as specialists was destabilized
when predators became optimally foraging generalists
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because of the Paradox of Enrichment (Rosenzweig,
1971).

Using invasibility analysis, Křivan and Sikder (1999)
proved that for logistically growing prey the range of
model parameters for which the two prey populations
indefinitely coexist with predators is larger for optimally
foraging predators when compared with non-adaptive
predators that choose their diet at random. However,
their analysis was limited to those parameter ranges for
which the Paradox of Enrichment does not hold (i.e., for
relatively low levels of environmental carrying capacities
for the two prey species). The invasibility analysis does
not distinguish between various types of attractors, so it
was not clear whether the increased persistence is due to
increased stability of an interior equilibrium, emergence
of a limit cycle or a more complex attractor.

A similar model without prey density dependence (no
bottom-up regulation) was considered by van Baalen
et al. (2001). They assumed exponential growth of the
preferred prey type and showed that, for a fixed density
of the alternative prey type, a locally stable predator–
prey limit cycle emerges due to optimal predator
foraging. This strongly suggests that optimal diet
selection promotes species persistence without promot-
ing species equilibrium stability. It is unclear however,
whether the emergent limit cycle will be preserved when
alternative prey type undergoes population dynamics.

In this article, we extend the van Baalen et al. (2001)
study by considering population dynamics of both prey
types. We want to disentangle the bottom-up effects
from top-down control on population dynamics and
therefore we start with the case where both prey types
grow exponentially without predators. Compared with
previous studies of predator–prey systems with optimal
foraging (Gleeson and Wilson, 1986; Fryxell and
Lundberg, 1994, 1997; Křivan, 1996; Genkai-Kato and
Yamamura, 1999; Křivan and Sikder, 1999), the
exclusion of bottom-up regulatory mechanism simplifies
the analysis and allows for a deeper understanding of
the role of adaptive food choice on apparent competi-
tion between two prey types. Then we also study the
interplay between bottom-up and top-down control by
assuming density-dependent growth of the alternative
prey type. We compare two types of predator behavior:
(i) non-adaptive feeding when predator preferences for
either prey type are fixed and independent of prey
density, and (ii) adaptive feeding that follows rules of
optimal foraging theory. We ask: Can adaptive foraging
relax the strength of apparent competition between the
two prey types and lead to their indefinite coexistence?
We show that this is indeed true. Adaptive foraging
leads to the emergence of a limit cycle which is unstable
if both prey types grow exponentially. However, if the
alternative prey type is self-regulated, another locally
stable limit cycle emerges together with the unstable
limit cycle.

2. Population dynamics

Křivan (1996) and Křivan and Sikder (1999) con-
sidered a system consisting of two prey types with
densities R1 and R2; respectively, and optimally foraging
predators with density C: In these two articles, popula-
tion dynamics was described by the following model:

dR1

dt
¼R1 r1ðR1Þ �

l1C

1 þ h1l1R1 þ u2h2l2R2

� �
;

dR2

dt
¼R2 r2ðR2Þ �

u2l2C

1 þ h1l1R1 þ u2h2l2R2

� �
;

dC

dt
¼C

e1l1R1 þ u2e2l2R2

1 þ h1l1R1 þ u2h2l2R2
� m

� �
: ð1Þ

Here riðRiÞ is the per capita prey growth rate, li is the
cropping rate of a predator when feeding on the ith prey
type, ei is the conversion factor which relates predator
reproduction to prey consumption, hi is the expected
handling time spent with the ith prey type, and m is the
per capita consumer mortality rate. The first prey is
more profitable than the second prey provided
e1=h14e2=h2 which henceforth is assumed throughout
this article. The above-mentioned two articles assumed
that the prey growth rate is self-regulated (described by
the logistic function). To study the regulatory effect of
predation on exponentially growing prey population(s)
alone, first we assume exponential prey growth when
predators are absent ðriðRiÞ ¼ riÞ: This allows us to
disentangle the top-down effect of optimally foraging
predators from the bottom-up effect of resources on
population dynamics. Optimal foraging theory implies
that the preferred prey type (which we will assume is the
first prey type) is included in predator diet and that the
less preferred, alternative, prey type is either included or
excluded, depending on the density of the preferred prey
type. In order to model optimal foraging, we introduce a
control parameter u2 ð0pu2p1Þ which denotes the
probability that the alternative second prey type is
included in predators diet.

2.1. Non-adaptive predators

Consider the situation where predators are non-
adaptive foragers and their diet preference for the
alternative prey type u2 is fixed. Without loss of
generality we assume that u2 ¼ 1: System (1) has no
interior equilibrium and the prey type with higher ratio
ri=li outcompetes the other prey type via apparent
competition mediated through the common predator
(Appendix A; Holt, 1977) For example, if the alternative
prey type 2 is competitively weaker than prey type 1 (by
which we mean that r2=l2or1=l1) then it will be
excluded from the system. The population dynamics of
the remaining prey type 1–predator system are then
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described by

dR1

dt
¼R1 r1 �

l1C

1 þ h1l1R1

� �
;

dC

dt
¼C

e1l1R1

1 þ h1l1R1
� m

� �
: ð2Þ

If the internal equilibrium of model (2) exists then it is
unstable and for small handling times, trajectories must
spiral away from that equilibrium (Bazykin, 1998,
p. 28). Qualitatively, trajectories of system (1) behave
as shown in Fig. 1. Resource 2 density decreases to zero
and the remaining-prey–predator system (2) fluctuates
away from its internal equilibrium. If the internal
equilibrium of model (2) does not exist then predators
will die out and prey will grow to infinity (Bazykin,
1998). Therefore, model (1) with non-adaptive generalist
predators is highly impermanent. First, the competi-
tively weaker prey type 2 is competed out of the system
due to apparent competition, second, the remaining-
prey–predator system is impermanent because either
predators or both prey and predators are excluded from
the system (2), see Bazykin, 1998). We conclude that if
predators are generalists which take prey in proportion
to their abundance, inclusion of an alternative prey type
in a predator–prey system cannot lead to species
persistence whenever both prey species grow exponen-
tially because of strong apparent competition between
the two prey types.

2.2. Optimally foraging predators

We now consider the case in which predators are
adaptive foragers and they follow predictions of optimal
foraging theory (Charnov, 1976; Stephens and Krebs,
1986). Optimal foraging theory assumes that predators
attempt to maximize their net rate of energy intake while
foraging (for detailed description of assumptions and
predictions see Chapter 2.2 in Stephens and Krebs,
1986). Then the alternative prey 2 is included in
predators diet ðu2 ¼ 1Þ if density of the more profitable
prey type 1 drops below the critical threshold:

R%
1 ¼ e2

l1ðe1h2 � e2h1Þ
(Charnov, 1976; Stephens and Krebs, 1986).

If prey 1 density is below the critical threshold R%
1 ;

population dynamics for optimally foraging predators
are described by model (1) with u2 ¼ 1 and by the same
model with u2 ¼ 0 above that threshold. We remark that
for R1 ¼ R%

1 the right-hand-side of model (1) is not well
defined because optimal foraging strategy is not unique
(any value of 0pup1 is optimal). Despite the non-
uniqueness in model description, trajectories of model
(1) are unique (Křivan, 1996). Prey switching makes
prey 1 isocline piece-wise continuous (van Baalen et al.,
2001) with a triangular gap at the switching prey 1

density (Fig. 2). This triangular region is described by
(Křivan, 1996)

r1e1h2

l1ðe1h2 � e2h1Þ
oCo

r1

l1

e1h2

e1h2 � e2h1
þ h2l2R2

� �
ð3Þ

and trajectories of (1) which are driven by optimal
foraging strategy cannot cross this vertical part of the
prey 1 isocline (because, by the definition of isocline,
dR1=dt ¼ 0 along the prey 1 isocline). The triangular
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Fig. 1. Trajectories of system (1) when predator foraging behavior is

non-adaptive. Competitively weaker prey type 2 is outcompeted from

the system and the remaining prey 1–predator system follows diverging

oscillations which result from the Holling type II functional response.

(A) shows a trajectory in 3D-phase space, (B) shows the same

trajectory in prey 1–predator phase space and (C) shows time dynamics

of prey type 2. Parameters: r1 ¼ 2; r2 ¼ 1:5; l1 ¼ l2 ¼ 1; e1 ¼ 1;

e2 ¼ 0:1; h1 ¼ 0:05; h2 ¼ 0:1;m ¼ 0:5:
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region (3) is referred to as the partial preference domain
(Křivan, 1996), because partial preferences for the
alternative prey type arise in this area. Population
dynamics on the partial preference domain are given in
Appendix B.

When the alternative prey type is excluded from the
predators diet ðu2 ¼ 0Þ system (1) has one non-trivial
unstable equilibrium

E1 ¼ m

l1ðe1 � h1mÞ; 0;
e1r1

l1ðe1 � h1mÞ

� �
:

When the alternative prey is included in the predators
diet ðu2 ¼ 1Þ there will be, in addition to equilibrium E1;
another equilibrium

E2 ¼ 0;
m

l2ðe2 � h2mÞ;
e2r2

l2ðe2 � h2mÞ

� �
:

We shall show that the adaptive predator behavior can
lead to indefinite coexistence of all three species.

First, we assume that the prey type 1 equilibrium
density

m

l1ðe1 � h1mÞ
is larger than the switching threshold R%

1 which occurs
when

m4
e2

h2
; ð4Þ

(see Figs. 3A and B). Under this condition, van Baalen
et al. (2001) showed the existence of a locally stable limit
cycle for constant density of the alternative prey type.
Inequality (4) precludes the existence of a positive
(unstable) equilibrium for the system consisting of
predators and the alternative prey type only. There are
two possibilities. Either (Fig. 3A) prey 1 is competitively
dominant in which case the R2–C phase space repels
nearby orbits and the part of the R1–C phase plane for

which R1oR%
1 attracts nearby orbits. Or alternatively,

(Fig. 3B) prey 2 is competitively dominant in which case
the R2–C phase space attracts nearby orbits and the R1–
C phase plane repels nearby orbits. In both situations,
the part of the R1–C phase plane which satisfies
R14R%

1 repels nearby orbits because prey 2 grows
exponentially there. Fig. 3 also shows that in addition to
the equilibrium point E1; an infinitely large heteroclinic
cycle occurs in the R1–C phase plane. (In this figure, the
phase space is projected on the unit sphere which is an
efficient tool to study the behavior of trajectories in
infinity, Bazykin, 1998). The infinitely large heteroclinic
cycle consists of C and R1 axes and the dotted arc which
connects the ends of these axes. Trajectories which start
in the R1–C phase plane converge to this heteroclinic
orbit. In the R2–C phase plane no such infinitely large
heteroclinic cycle exists because there is no interior
equilibrium in this plane (because of inequality (4)).
Trajectories converge to the end point on the R2 axes
which represent an infinitely large prey 2 population
with predators extinct. The above analysis shows that
the system can be permanent only provided prey 2 is
competitively weaker than prey 1 (Fig. 3A). Otherwise,
for low prey 1 initial densities prey 1 will be out-
competed by prey 2 (Fig. 3B). Thus, in what follows we
focus mainly on the case where the alternative prey type
is the weaker competitor ðr2=l2or1=l1Þ:

We shall demonstrate further that because a part of
the R1 isocline is vertical, indefinite coexistence of all
three species really occurs. Consider initial species
densities in the vicinity of the prey 1–predator equili-
brium E1 and that a low density of competitively weaker
prey 2 is introduced (Fig. 3A). Because the prey 1–
predator equilibrium E1 repels orbits that start in its
vicinity the corresponding trajectory will oscillate in the
prey 1–predator phase plane with an increasing ampli-
tude. Not being preyed upon, prey type 2 grows
exponentially. However, after some time the trajectory
of model (1) hits the switching plane R1 ¼ R%

1 : If it hits
it in the partial preference domain where the prey 1
isocline is vertical it will move along this domain
downwards (because predator density decreases in the
partial preference domain, see population dynamics (6)
in Appendix A and inequality (4)) until it reaches the
lower boundary of the partial preference domain (see
inequality (3)). On reaching this lower bound, the
trajectory will move to the right part of the phase space
where prey 2 is excluded from predators diet. Simula-
tions show that there exists a point on the lower
boundary of the partial preference domain (in other
words, the point ðR%

1 ;Rcrit
2 ; r1e1h2=ðl1ðe1h2 � e2h1ÞÞ)

such that the corresponding trajectory of model (1)
forms a closed orbit in the phase space (the cycle in
Fig. 4). However, this limit cycle is not stable. Alter-
native prey is outcompeted along trajectories of model
(1) that start at the lower boundary of the partial
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Fig. 2. Effect of optimal prey switching on prey 1 isocline. Prey

switching causes a vertical gap at the switching prey 1 density.

Trajectories of model (1) cannot go through the vertical part of the

prey 1 isocline. Parameters: r1 ¼ 2; r2 ¼ 0:1; l1 ¼ l2 ¼ 1; e1 ¼ 1;

e2 ¼ 0:1; h1 ¼ 0:05; h2 ¼ 0:1;m ¼ 1:1:
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preference domain, whenever the initial density of the
alternative prey type is lower than the critical density
(R2ð0ÞoRcrit

2 ; Fig. 4). If the initial point is at the lower
boundary of the partial preference domain and the
initial density of the alternative prey type is above the
critical density (R2ð0Þ4Rcrit

2 ; Fig. 4) then the alternative
prey survives in the system indefinitely and its density
tends to infinity. Thus, optimal foraging leads to
multiple attractors. We remark that numerical simula-
tions show that as the alternative prey growth rate ðr2Þ
decreases to zero, the unstable limit cycle moves in the
R2 direction to infinity.

If prey 2 is competitively dominant over prey 1
(Fig. 3B), then the unstable limit cycle cannot arise
because prey 2 density increases everywhere in the
partial preference domain (Appendix B).

Second, we assume that prey type 1 equilibrium
density is below the switching threshold, which happens
if the opposite inequality to that in (4) holds. This occurs
when prey type 2 alone can support the predator
population at a positive equilibrium. Qualitatively, there
are again two possibilities shown in Figs. 3C and D.
Fig. 3C shows the case where prey 1 is competitively
dominant while Fig. 3D shows the case where prey 2 is
competitively dominant. Once again it is clear that prey
switching can make system permanent only provided
prey 1 is stronger competitor. However, the situation is
quite different than in the previous case where consumer
density was decreasing in the partial preference domain,
because now, consumer preference increases there
(Appendix B). Extensive numerical simulations do not
suggest existence of any limit cycle similar to the one we
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Fig. 3. This figure shows the projection of the phase space of model (1) onto a unit sphere. The projection allows us to study population dynamics at

infinity. (A) and (B) assume that the equilibrium of prey 1–predator system is to the right from the switching plane while (C) and (D) assume the

opposite case. (A) and (C) assume that prey 2 is competitively dominant over prey 1 while (B) and (D) assume the opposite case.
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observed when prey 1 equilibrium density was above the
switching threshold. However, species coexistence is still
possible (Fig. 5) albeit the mechanism leading to it is
different than in the previous case. Presently, coex-
istence is achieved along a trajectory of model (1) which
is effectively trapped by the partial preference domain.
Along such a trajectory, all three species coexist
indefinitely without oscillations in prey and predator
population densities and density of the alternative prey
and predators grow to infinity.

Using the continuation AUTO package we studied
the dependence of the unstable limit cycle on the
predator mortality rate (Fig. 6). The open dots denote
the maximum and minimum values along the unstable
limit cycle. We observe that this limit cycle bifurcates for
m ¼ e2=h2 from the equilibrium E1 [which for m ¼ e2=h2

coincides with the point ðR%
1 ; 0; r1

l1
ð1 þ h1l1R%

1 ÞÞ� in the
plane R2 ¼ 0: As the predator mortality rate m

increases, amplitude of the cycle increases too both in
R1 and R2: The bifurcation diagram for the consumer
looks similar to that of the bifurcation diagram for
prey 1.

The present analysis shows that adaptive foraging
behavior of consumers can lead to sustained oscillations

in prey 1–predator system provided the alternative prey
species persist in the system. This is the case where prey
1 is competitively dominant over the alternative prey
and the alternative prey type profitability (e2=h2) is
smaller than is the predator mortality rate (m). We also
showed that adaptive prey switching cannot regulate
exponential growth of both prey species because under

Fig. 4. Optimal foraging behavior of predators leads to the emergence

of an unstable limit cycle for population dynamics described by (1).

This limit cycle passes through the lower bound of the partial

preference domain (lower solid line). The light shaded plane is the

switching plane and the dark shaded area of this plane is the partial

preference domain. If initial density of the alternative, competitively

weaker prey type 2 is low, then the corresponding trajectory that starts

at the lower boundary of the partial preference domain converges to

the R1–C plane and the alternative prey type is outcompeted from the

system. The remaining prey type 1–predator system follows diverging

oscillations which result from the Holling type II functional response.

If an initial density of the alternative prey type is high enough, all three

species survive indefinitely along a trajectory which starts at the lower

bound of the partial preference domain. This figure assumes that the

alternative prey 2 alone cannot support predators at a positive

equilibrium level (i.e., the equilibrium of prey 1–predator subsystem is

to the right from the switching plane). Parameters are the same as

those given in the legend of Fig. 2.

Fig. 5. This figure assumes that the alternative prey type 2 alone can

support predators at a positive (unstable) equilibrium (i.e., the

equilibrium of prey 1–predator subsystem is to the left from the

switching plane). The figure also shows that in this case, species

coexistence can be achieved because species densities converge to the

partial preference domain where they can remain. (A) shows a

trajectory in 3D-phase space, (B) shows the same trajectory in prey

type 1–predator phase space and (C) shows time dynamics of prey type

2. Parameters: r1 ¼ 2; r2 ¼ 1:5; l1 ¼ l2 ¼ 1; e1 ¼ 1; e2 ¼ 0:1; h1 ¼ 0:05;

h2 ¼ 0:1;m ¼ 0:9:
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the above assumptions the alternative prey density
grows to infinity.

3. Logistic prey growth

When prey growth was controlled by top-down
control alone we showed in the previous section that
predators are not able to keep both prey densities
bounded. If both prey types are to coexist indefinitely,
the alternative prey type will grow to infinity. Thus,
there must be another kind of control that keeps the
alternative prey type bounded. Here we assume that the
alternative prey is also limited by bottom-up control
while the primary prey type is limited by top-down
control only. Numerical simulations show that the
bottom-up regulation of the alternative prey species
can lead to boundedness and coexistence of all three
species because together with the unstable limit cycle
that we observed in the previous section (the middle

cycle in Fig. 7) a stable limit cycle appears (the right
limit cycle in Fig. 7). Along this stable limit cycle, all
three populations fluctuate indefinitely. We remark that
the system without prey switching has no interior
equilibrium under the assumption that the alternative
prey type is the weaker competitor and we did not
observe any interior limit cycles in our numerical
simulations.

Using the continuation package AUTO we studied
dependence of those two limit cycles that arise due to
prey switching on the predator mortality rate parameter
(m; Fig. 8). Figs. 7A and 8A and B show the situation
where the alternative prey is much competitively weaker
than prey 1 (i.e., r2=l25r1=l1; both the stable and
unstable limit cycles coexist symmetrically with respect
to R2) while Figs. 7B and 8C and D show the situation
where prey 2 is only slightly competitively weaker than

Fig. 6. The dependence of the unstable limit cycle that arises due to

optimal prey switching in model (1) on predator mortality rate. The

figure assumes that both prey types grow exponentially and it shows

maximum and minimum values for the two prey species along the limit

cycle (the open dots). Parameters are the same as those given in the

legend of Fig. 2.

Fig. 7. The logistic growth of the alternative prey type with optimal

prey switching leads to one unstable (the cycle in the middle of the

figure) and one locally stable limit cycle (the right cycle). The unstable

limit cycle either enters the partial preference domain if prey 1 is

strongly competitively dominant over prey 2 (A) or circles round it if

prey 1 is only weakly competitively dominant (B). Parameters are the

same as those given in the legend of Fig. 2 with the exception r2 ¼ 0:35

in case (B). Alternative prey carrying capacity is K2 ¼ 500:

V. K$rivan, J. Eisner / Theoretical Population Biology 63 (2003) 269–279 275



prey 1. Bifurcation diagrams for the consumer look
similar as those for prey 1. The solid dots denote the
maximum and minimum values along the stable limit
cycle while the open dots denote the same for the
unstable limit cycle. For m ¼ e2=h2; we observe bifurca-
tion of two limit cycles. The stable limit cycle bifurcates
from the equilibrium

E3 ¼ m

l1ðe1 � h1mÞ;K2;
e1r1

l1ðe1 � h1mÞ

� �

while the unstable limit cycle bifurcates from the
equilibrium E1: [For m ¼ e2=h2 these two equilibria
coincide with ðR%

1 ;K2;
r1
l1
ð1 þ h1l1R%

1 ÞÞ and
ðR%

1 ; 0; r1
l1
ð1 þ h1l1R%

1 ÞÞ; respectively.] As the predator
mortality rate m increases, amplitude of both cycles
increases too. The stable limit cycle is in the part of the
species density phase space where the alternative prey is
abundant while the unstable limit cycle is in the part of
the phase space where the alternative prey abundance is
low (Fig. 8B). The stable limit cycle always enters the
partial preference domain and does not enter the
domain behind the switching plane where the alternative
prey would be fully included ðu2 ¼ 1Þ—see Fig. 7. The
unstable limit cycle enters the partial preference domain
as on Fig. 7A irrespectively of the predator mortality
rate m only if prey 1 is strongly competitively dominant
over prey 2. In this case, both limit cycles are symmetric
with respect to R2 and have the same amplitude in all
variables (see Figs. 8A and B). On the contrary, if prey 1
is only slightly competitively dominant over prey 2 then
the unstable limit cycle does not enter the partial
preference domain for any m and circles round it
(Fig. 7B). Hence, the unstable limit cycle has larger
amplitude in all variables and the symmetry is broken
(see Figs. 8C and D). As m increases the two limit cycles
tend together, for m ¼ mmax they coincide and for yet
higher values of the predator mortality rates they do not
exist.

4. Gradual switching

To assume that prey switching is instantaneous is
unrealistic and we can ask how robust are our results
when switching is more gradual. Following van Baalen
et al. (2001), we model gradual switching by the

Fig. 8. The dependence of the stable and unstable limit cycles that

arise due to optimal prey switching in model with the logistic

alternative prey growth on the predator mortality rate. The solid dots

describe the stable limit cycle while the open dots describe the unstable

cycle. Parameters for (A) and (B) are the same as those for Fig. 4 i.e.,

prey type 1 is strongly dominant over prey type 2 while in cases (C) and

(D), prey type 1 is only weakly competitively dominant over prey type

2 ðr2 ¼ 1Þ: The alternative prey carrying capacity for all four cases is

K2 ¼ 500:
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following function:

u2ðR1Þ ¼
ðR%

1 Þm

R
m
1 þ ðR%

1 Þm
;

where parameter m determines the width of the
predator’s switching interval. The larger m is, the more
closely u2 approximates the optimum step-wise switch.
Using the AUTO continuation package we can now
study the dependence of the limit cycles (that we
observed for step-wise switch) on the precision of
switching m: Fig. 9A shows the case where both prey
types grow exponentially while Figs. 9B and C show the
case where the alternative prey type grows logistically.
Again, the solid dots denote the maximum and
minimum values along the stable limit cycle while the
open dots denote the same for the unstable limit cycle.
We observe that the unstable limit cycle (in the case of
the logistical growth) bifurcates for lower values of the
switching parameter m than the stable limit cycle does.
These two bifurcation points are connected by the curve
of inner equilibria (the solid line in Fig. 9—the heavy
part denotes locally stable equilibria while the thin part
denotes unstable equilibria). The amplitude of the stable
limit cycles increases with m to a constant level (in all
Figs. 9A–C). The same holds for the unstable limit
cycles providing prey 2 is competitively much weaker
than prey 1 (Figs. 9A and B). If prey 2 is only slightly
competitively inferior than prey 1 then the amplitude of
the unstable limit cycles first rapidly increases and then
decreases to a constant level (Fig. 9C).

5. Discussion

In this article, we have studied two-prey–one-predator
population dynamics for two types of predator beha-
viors: (i) non-adaptive predators which choose their diet
at random, and (ii) adaptive predators which follow the
predictions of optimal foraging theory (Charnov, 1976;
Stephens and Krebs, 1986). In the latter case, below a
critical preferred prey (type 1) density, the alternative
prey (type 2) is included in the predator diet while above
that density prey (type 2) is excluded from diet. Such a
model with adaptive predator behavior has been
recently studied in several articles under various
assumptions (for a review see Schmitz, 1997). The above
model was numerically studied by Fryxell and Lundberg
(1994, 1997), with density-dependent prey growth and
switching between prey types occurring gradually. The
same model with step-wise switching was studied by
Křivan (1996) and Křivan and Sikder (1999). These
studies showed that (i) switching can reduce fluctuations
in species densities when compared with non-adaptive
predators, and (ii) switching can destabilize a stable
coexistence of prey and predators. Moreover, switching
enhances species persistence because the set of model

parameters for which all species coexist is larger for the
system with switching when compared with non-
adaptive predators (Křivan and Sikder, 1999). Two

Fig. 9. The dependence of the stable and unstable limit cycles that

arises due to optimal prey switching in model (1) on the predator’s

precision of switching. (A) shows the case where both prey types grow

exponentially while (B) and (C) show the case where the alternative

prey type grows logistically. The solid dots describe the stable limit

cycle while the open dots describe the unstable cycle. In (A) and (B),

predator’s mortality rate m ¼ 3 and the other parameters are the same

as those used in Fig. 4. In (C), we have r2 ¼ 1 and m ¼ 5: The

alternative prey carrying capacity in (B) and (C) is K2 ¼ 500:
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factors influenced these results: (i) optimal predator
foraging, and (ii) prey density-dependent growth. As it is
known that prey density-dependent growth highly
promotes species coexistence (either by stabilizing
species densities at an equilibrium, or by the existence
of a stable limit cycle due to the Paradox of Enrichment,
Rosenzweig, 1971) it is not clear, how much the above-
mentioned results depend on the description of prey-
type dynamics. For this reason, van Baalen et al. (2001)
studied a similar system without density-dependent
prey-type growth but under a simplifying assumption
that the alternative-prey-type density is constant, that is,
not influenced by demographic and predation processes.
They showed that adaptive foraging leads to the
emergence of a limit cycle via which the predator–prey
system becomes persistent. The present analysis which
treats prey type 2 dynamically confirms their result.
Even if the alternative prey type 2 grows exponentially it
can still make the preferred-prey–predator system
permanent (Fig. 4). This is because optimal foraging
makes apparent competition (Holt, 1977) between the
two prey types weaker when compared with a system
where predators are non-adaptive. In the latter system,
apparent competition is strong due to exponential prey
growth which leads to the extinction of the competi-
tively weaker prey species. In contrast, optimal foraging
relaxes apparent competition because with high densities
of the more profitable prey type, predators do not feed
on the alternative prey type. If the alternative prey type
is the weaker competitor and the profitability of the
alternative prey type is lower than the predator
mortality rate, this mechanism can lead to its survival
in the system which cannot happen when predators are
non-adaptive generalists. Because predators include the
alternative prey type in their diet when the more
profitable prey type is at low density, this relaxes the
predation strength on the preferred prey type which
leads to sustained oscillations in the preferred-prey-
type–predator subsystem. However, this does not hold
uniformly for all initial population densities. When, for
example, initial densities of the alternative, competi-
tively weaker prey type are low then coexistence is not
achieved because apparent competition is still strong
enough to exclude the alternative prey type from the
system. This is because we have shown in this article that
optimal foraging gives rise to an unstable limit cycle
which leads to multiple attractors.

The results obtained in this article and in the previous
articles (Křivan, 1996; Křivan and Sikder, 1999; van
Baalen et al., 2001) strongly suggest that adaptive prey
switching is a mechanism that promotes species coex-
istence without necessarily stabilizing species densities at
an equilibrium. Thus, predation alone can effectively
control exponential prey growth provided predators are
adaptive and an alternative food resource exists.
However, prey switching cannot regulate both the

preferred and the alternative prey type, i.e., when
preferred prey-type growth is regulated, the alterna-
tive-prey-type density tends to infinity.

For this reason we also considered the case where
alternative prey growth is bottom-up regulated. We
have shown that in this case there exist two limit cycles
as a consequence of optimal prey switching. One of
them is unstable while the other is locally stable (Fig. 7).
These two cycles exist provided the alternative prey type
is the weaker competitor and its profitability is lower
than the predator mortality rate.

This clearly has major implications for biological
control. Consider the situation where predators are used
(in long-term perspective) to control some pest. The
classical Rosenzweig–MacArthur predator–prey model
suggests that such a system is non-persistent. Either
predators kill prey and not having enough food they die
out (so that they will not be able to control newly
immigrating prey), or, predators die out and prey grow
exponentially. Even if predators are non-adaptive
generalist, then adding an alternative exponentially
growing prey does not lead to a qualitatively different
situation because one of the two prey types is out-
competed. Once again we arrive at Rosenzweig–
MacArthurs’ impermanent remaining-prey–predator
model. From the biological control point of view, it is
desirable that predators survive in the system indefi-
nitely so that they can control the pest when it appears.
In this article, we have shown that this can be so
provided predators follow optimal (or more gradual
suboptimal) diet choice and the alternative prey is viable
enough to survive in the system indefinitely. We
demonstrated that there are two necessary condition to
achieve this. First, the alternative prey species is
competitively weaker than the target prey species and,
second, the profitability of the alternative prey species is
lower than the predator mortality rate. However,
because there are multiple attractors, whether or not
the system with an alternative prey type will persist
depends also on the initial species densities. In this
article we have shown, that the initial density of the
alternative prey type cannot be too low because in that
case the alternative prey type is eliminated from the
system.
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Appendix A

Transformation of (1) to cylindrical coordinates
ðr;f;CÞ given by R1 ¼ ðr cos fÞl1 and R2 ¼ ðr sin fÞl2

gives the following equation for f:

df
dt

¼ 1

2

r2

l2
� r1

l1

� �
r sinð2fÞ: ðA:1Þ

It follows that for r1=l14r2=l2; f tends to zero which
implies that the second species is outcompeted by the
first species, while for r1=l1or2=l2; f tends to p=2
which implies that the first species is outcompeted by the
second species.

Appendix B

In the partial preference domain density of the more
profitable prey type is constant and equal to R%

1 which
implies that dR1

dt
¼ 0 in system (1). This allows us to

compute preferences for the alternative prey type:

u2 ¼
1

h2l2R2

l1C

r1
� e1h2

e1h2 � e2h1

� �
;

for details see Křivan (1996). Substituting this expres-
sion for u2 in model (1), the resulting population dy-
namics in the partial preference domain are described by

dR1

dt
¼ 0;

dR2

dt
¼ R2r2 þ

e1r1

l1ðe1h2 � e2h1Þ
� C

h2
;

dC

dt
¼ C

e2

h2
� m

� �
: ðB:1Þ

Model (B.1) implies that prey type 2 density decreases in
the upper part of the partial preference domain

r1

l1

e1h2

e1h2 � e2h1
þ h2l1r2R2

r1

� �

oCo
r1

l1

e1h2

e1h2 � e2h1
þ h2l2R2

� �
ðB:2Þ

and increases in the lower part of the partial preference
domain

r1e1h2

l1ðe1h2 � e2h1Þ
oCo

r1

l1

e1h2

e1h2 � e2h1
þ h2l1l2R2

r1

� �
:

Note that when prey type 2 is competitively dominant
over prey type 1 (i.e., r2=l24r1=l1) its density cannot

decrease in the partial preference domain because
inequality (B.2) does not hold.

Appendix C

When the alternative prey growth is logistic there exist
an interior equilibrium of model (1) which is

RE
1 ¼ mr2l1 � K2ðe2 � h2mÞr2l1l2 þ K2ðe2 � h2mÞr1l2

2

ðe1 � h1mÞr2l2
1

;

RE
2 ¼ K2l2

r2

r2

l2
� r1

l1

� �
;

CE ¼ r1ðe2h1K2l2ðr1l2 � r2l1Þ þ e1ðr2ðl1 þ h2K2l1l2Þ � h2K2r1l
2
2ÞÞ

ðe1 � h1mÞr2l2
1

:

We observe that when prey 1 is competitively dominant
then this equilibrium is not positive.
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