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Abstract

The Ideal Free Distribution (IFD), introduced by Fretwell and Lucas in [Fretwell, D.S., Lucas, H.L., 1970. On territorial behavior and other
factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16–32] to predict how a single species will distribute itself among several
patches, is often cited as an example of an evolutionarily stable strategy (ESS). By defining the strategies and payoffs for habitat selection, this
article puts the IFD concept in a more general game-theoretic setting of the “habitat selection game”. Within this game-theoretic framework,
the article focuses on recent progress in the following directions: (1) studying evolutionarily stable dispersal rates and corresponding dispersal
dynamics; (2) extending the concept when population numbers are not fixed but undergo population dynamics; (3) generalizing the IFD to multiple
species.

For a single species, the article briefly reviews existing results. It also develops a new perspective for Parker’s matching principle, showing that
this can be viewed as the IFD of the habitat selection game that models consumer behavior in several resource patches and analyzing complications
involved when the model includes resource dynamics as well. For two species, the article first demonstrates that the connection between IFD and
ESS is now more delicate by pointing out pitfalls that arise when applying several existing game-theoretic approaches to these habitat selection
games. However, by providing a new detailed analysis of dispersal dynamics for predator–prey or competitive interactions in two habitats, it
also pinpoints one approach that shows much promise in this general setting, the so-called “two-species ESS”. The consequences of this concept
are shown to be related to recent studies of population dynamics combined with individual dispersal and are explored for more species or more
patches.
c© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Understanding the spatial distribution of animals is one of
the ultimate goals of ecology (Morris, 2003). The problem is
not simple as species distribution is not only a function of the
quality of the environment but also of the species distribution
itself. The relationship between environmental productivity and
species richness is complicated by the fact that habitat selection
depends on interactions among animals. These interactions can
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take many forms (e.g., predator–prey, competition, or social
type) that are used either singly or in combination to model
complex ecological systems. Thus, abiotic factors related to the
quality of the environment cannot by themselves completely
explain species distribution.

One of the basic concepts that considers frequency-
dependent animal distribution of a single species is that of
the Ideal Free Distribution (Fretwell and Lucas, 1970). The
original theoretical concept of the IFD (Fretwell and Lucas,
1970) was derived under the following assumptions: resources
are distributed in discrete habitats (also called patches); animals
are equal competitors for resources and their number does
not change; animals are free to settle in any patch and there
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is no cost to move between patches; they have complete
knowledge (i.e. they are ideal or omniscient) of the resource
quality of each patch and this quality does not change in
time; individual animal resource intake rate decreases with
increased consumer (i.e. animal) numbers in the patch. Many
of these assumptions were relaxed in subsequent articles (for
reviews see, for example, Milinski (1988), Kacelnik et al.
(1992), Milinski and Parker (1991), Weber (1998) and Morris
(2003)). There has also been a heated debate on whether or not
observed animal distributions conform to the IFD (Kennedy
and Gray, 1993; Gray and Kennedy, 1994b; Milinski, 1994)
and to misconceptions in the use of the IFD (Tregenza, 1994).
Recently, some strong support for the IFD in a natural setting
was observed (Haugen et al., 2006; Morris, 2006).

With more than 450 articles returned when searching the
Web of Science for “Ideal Free Distribution”, it might seem
that there is little or nothing to be added to the concept
itself. However, we do not think so, as we believe a lot of
confusion related to the IFD arises because the concept itself
is still underdeveloped. A striking illustration of this fact is
that, although most authors refer to the single-species IFD
as an example of an Evolutionarily Stable Strategy (Parker,
1978, 1984; Morris, 1994),1 this seems to be proved only
recently (Cressman and Křivan, 2006). This is perhaps because
the original definition of the IFD by Fretwell and Lucas
(1970) is equivalent to the Nash equilibrium (NE) concept
of a corresponding game, but it does not guarantee that the
equilibrium is stable with respect to other patch selection
strategies. However, the ESS stability of the IFD is crucial since
one cannot expect to get consistent empirical observations of
the IFD if it is not stable since there would then always be
some random perturbations that drive the animal distribution
away from the IFD. That is, if the IFD were not stable, then its
usefulness for ecology would be negligible. In this article we
review and synthesize various conceptual studies on the IFD
from the game-theoretical point of view, with an emphasis on
stability of the IFD.

We split this article into two parts. The first part (Section 2)
focuses on the IFD for a single species, which is the original
setting of the Fretwell and Lucas (1970) article. The second
part (Section 3) is related to two-species IFD. We also suggest
some future directions in which theoretical research on the IFD
should focus.

2. Single-species IFD

2.1. The IFD as a game-theoretical concept

One of the basic models that aims to describe the spatial
distribution of a single species was developed by Fretwell and
Lucas (1970). These authors assumed that animals are free to
move between several patches, the travel time is negligible,
each individual knows perfectly the quality (or suitability) of all
patches and all individuals have the same competitive abilities.
1 We remark that the concept of the IFD was introduced before the ESS was
conceived by Maynard Smith and Price (1973).
Assuming that these patches differ in their basic suitability
(i.e. their quality when unoccupied by any consumers), they
predicted that the best patch will always be occupied. They also
assumed that a patch’s quality and the species’ density there
determined individual fitness (which, in game-theoretic terms,
is equated to individual payoff). Let us order the patches so that
the first patch has a higher basic quality than the second patch
and so on. Following the method and terminology of Fretwell
and Lucas (1970), consider H habitat patches with suitabilities
(i.e. individual payoffs)

Vi = Bi − hi (mi ). (1)

Here Bi is the basic suitability, mi is the animal density in patch
i , and hi is an increasing function that is 0 when patch i is
unoccupied. In particular, B1 > · · · > BH .

As the density of individuals in patch 1 increases, individual
payoff there will decrease and, at a certain critical density, patch
2 will have the same payoff. Then, for a higher population
density, both patches will be occupied and the payoff in either
patch will be the same. For yet higher species densities, the
third patch will give the same payoff and it will be occupied
too. Thus, all occupied patches provide the same payoff and
no unoccupied patch has a higher payoff. This distribution was
termed the Ideal Free Distribution. In other words, if the first `

patches are occupied at the IFD, then

V1 = · · · = V`

and V` ≥ B`+1 > · · · > BH .

Fretwell and Lucas (1970) showed that, for each positive
total population size M , there will be a unique IFD. This result
also arises since the IFD is a NE of the single-species “habitat
selection game” (Section 2.1.1) and since this game has exactly
one NE.

Thus, when the population distribution is at its IFD p∗
=

(p∗

1, . . . , p∗

H ), no other individual strategy can achieve a higher
payoff. However, this concept does not address the question of
whether the population distribution will return to the IFD after
a perturbation to p∗. That is, the IFD definition as a NE a priori
lacks a stability property. A concept of stability for the NE was
introduced in the biological context later on by Maynard Smith
and Price (1973) (see also Maynard Smith (1982)) under the
term Evolutionarily Stable Strategy. The ESS, besides being a
NE, must also be stable with respect to rare mutant strategies
in the sense that these strategies cannot spread in a population
consisting of a few mutants together with a resident population
where all individuals play the ESS. To avoid confusion of
stability with respect to some explicit dynamics that we discuss
in the following sections, we call this the ESS stability type. For
playing-the-field models, p∗ is an ESS if it satisfies (Maynard
Smith, 1982; Hofbauer and Sigmund, 1998)

p · V (p) < p∗
· V (p) (2)

for all p ∈ ∆H sufficiently close (but not equal) to p∗.
Cressman et al. (2004) and Cressman and Křivan (2006) prove
that inequality (2) holds for all p 6= p∗ in every habitat
selection game (where animal payoffs in every patch decrease



V. Křivan et al. / Theoretical Population Biology 73 (2008) 403–425 405
Fig. 1. Panel A plots mean payoff V as a function of distribution p1 and overall number of individuals M for a two-patch model with linear payoff (Vi = ri (1−
pi M
Ki

),
i = 1, 2). The thick curve corresponds to the IFD, while the thin solid curve corresponds to the distribution along which the mean payoff maximizes. Panel B shows
that along the IFD the fitness in both patches is the same (solid line) for all M when both patches are occupied. On the other hand, for the strategy that maximizes
the mean payoff, the patch specific payoffs are different (the two dashed lines correspond to payoffs in the two patches). Parameters used in simulations: r1 = 1,
r2 = 2, K1 = 20, K2 = 10.
as the density of the patch increases). That is, the IFD is not
only a NE, it is an ESS.

When Vi is linear, the payoff in patch i becomes Vi (p) =

ri (1 − pi M/Ki ). That is, per capita fitness in each patch has
the form of a logistic equation. In this important special case,
payoffs can be interpreted as resulting from random pairwise
interactions between individuals. The payoff ai j to individual
using pure strategy i against pure strategy j can then be taken
as the intrinsic growth rate ri if i 6= j and ri (1 − M/Ki )

if i = j . These payoffs form the entries of the H × H
payoff matrix with the expected payoff of an individual with
strategy p against an individual with strategy p′ given by∑H

i, j=1 pi ai j p′

j (in particular, Vi (p) =
∑H

j=1 ai j p j ). From the
matrix structure, an algorithm exists for determining NE and
ESS in general matrix games (Haigh, 1975; Abakuks, 1980)
and for the specific habitat selection game (Křivan and Sirot,
2002) where it produces the IFD. For instance, for the case
of two patches with M large enough that both patches are
occupied, the IFD is given by

p∗

1 =
r2 K1

r1 K2 + r2 K1
+

K1 K2(r1 − r2)

(r1 K2 + r2 K1)M
(3)

and of course p∗

2 = 1 − p∗

1 .
For readers unfamiliar with the NE concept, it is important

to emphasize here that the IFD is very different from
maximization of the mean animal payoff V = p · V (p)

(Brown, 1998). As an example, when the IFD is given by
(3), the strategy that maximizes the mean payoff is given by
p1 =

r2 K1
r1 K2+r2 K1

+
K1 K2(r1−r2)

2(r1 K2+r2 K1)M , provided this number is
between 0 and 1. Thus, p1 = p∗

1 if and only if r1 = r2.
Fig. 1 shows that, while the latter strategy is never worse than
the IFD, individuals using it obtain lower payoffs in one patch
than in the other patch which makes this strategy vulnerable
to invasions by individuals using a different strategy such as the
IFD. It seems that in the ecological literature these two different
approaches are not always clearly distinguished (cf. Figure 2 in
Morris (2003)).

2.1.1. Single-species habitat selection game
To describe habitat selection as a game, we must specify

the set of (pure) strategies and the payoff functions associated
with each of these strategies. Each player (i.e. animal) chooses
among H pure strategies, where strategy i corresponds to the
animal spending all of its time in habitat i . To each pure
strategy, there is a payoff function Vi : ∆H

→ R that is given
through (1) as

Vi (p) = Bi − hi (pi M). (4)

Vi is a decreasing function of pi . Here M is the fixed positive
total population size and ∆H is the (H−1) dimensional strategy
simplex {p = (p1, . . . , pH ) |

∑
pi = 1 and pi ≥ 0 for all 1 ≤

i ≤ H} that serves a dual purpose in evolutionary game theory.
It is used to denote the set of population distributions (also
called population states) but can also refer to an individual’s
mixed strategy (i. e., an individual using strategy p spends a
proportion pi of its time in habitat i).

This set of pure strategies combined with their payoff
functions constitutes a single population game (Sandholm,
2007) which we call the habitat selection game. Unless each
Vi is a linear function, the habitat selection game cannot
be viewed as a two-player game where animals compete in
random pairwise contests. Instead, it is known in the biological
literature as a “playing-the-field” game (Maynard Smith,
1982) (which has also been called “scrambles”, Parker, 1984).

The concept of a NE was introduced for n-player games by
the Nobel prize winner J.F. Nash (Nash, 1951). For a single
population game, p∗

∈ ∆H is a NE if

p · V (p∗) ≤ p∗
· V (p∗)
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for all p ∈ ∆H . Here p · V (p∗) ≡
∑H

i=1 pi Vi (p∗) is the
payoff to an individual using strategy p when the population
distribution is at the NE p∗. Thus, p∗

· V (p∗) is the average
individual payoff (i.e. mean payoff) of the population. The
linearity of this inequality in the components of pi implies
Vi (p∗) = V j (p∗) for all p∗

i p∗

j > 0 and Vi (p∗) ≤ V j (p∗) if
p∗

i = 0 and p∗

j > 0. That is, the IFD definition is equivalent to
that of a NE. Cressman and Křivan (2006, Appendix B) show
that the habitat selection game has a unique NE when the payoff
in each patch is a decreasing function of population density
there.

2.2. Parker’s matching rule, resource dynamics

The IFD concept as a game between individuals does
not consider any population dynamics whatsoever. Instead, it
assumes that patch payoff decreases with increasing number
of animals without specifying the mechanism leading to this
negative relation. The payoff is related to competition between
animals. Either animals scramble for food resources or mate
(also called exploitative or scramble competition), or they
compete for space and territories (called contest competition
or interference). The original concept of the IFD assumes that
each patch is characterized by its individual payoff Vi which
decreases as more animals settle in this patch (Section 2.1.1).
Although this payoff can implicitly capture the resource
dynamics (e.g., by assuming that resource dynamics are fast
with respect to consumer dynamics so that resources quickly
equilibrate with each consumer density), it does not describe
resource dynamics explicitly and is therefore more directly
related to the concept of contest competition than scramble
competition.

Parker (1978) derived, under particular assumptions, an IFD
that is called the “input matching” principle. There has been a
lot of confusion in the literature (see discussion in Gray and
Kennedy (1994a) and Milinski (1994)) as often the matching
principle was identified with the IFD. However, this is not so,
because the matching principle is only an IFD for a particular
payoff function choice, while the IFD is a general concept
that applies for any payoff function satisfying the general
assumptions given by Fretwell and Lucas (1970). In particular,
Parker (1978) assumed that resource input rates are constant
and all resources in all patches are consumed immediately
when they enter the system and so there is no standing crop.
This leads to a particularly simple definition of animal payoff
in a patch as the ratio of the resource input rate divided by
the number of individuals there. The matching principle then
states that animals distribute themselves so that their density
in each patch is proportional to the rate with which resources
arrive into the patch pi/p j = ri/r j (see Section 2.2.1) and all
patches will be occupied (as the consumer density in a patch
decreases, payoff ri/(pi M) tends to infinity). This concept
successfully predicts the distribution of house flies that arrive at
a cow patch where they immediately mate (Parker, 1978, 1984;
Blanckenhorn et al., 2000), or of fish that are fed at two feeders
in a tank (Milinski, 1979, 1988; Berec et al., 2006). However, it
has also been inappropriately applied to many other empirical
systems where resources form a standing crop (for a review see
Tregenza (1994)).

Although the matching principle does not consider any
resource dynamics (because resources are assumed to be
immediately consumed), Section 2.2.1 shows that even if
resources are not immediately consumed and they exist at
positive densities in the system, a matching principle still
holds (Lessells, 1995; Křivan, 2003). In particular, if resource
densities Ri converge to an equilibrium R∗

i , the corresponding
matching principle reads pi/p j = ri (R∗

i )/r j (R∗

j ) (see
Section 2.2.1). In contrast to the fixed input rates of the
preceding paragraph, not all patches need to be occupied now.
For instance, when consumer densities are low, their payoff at
the resource equilibrium in one patch may be higher than the
payoff in the other patch and all consumers will occupy one
patch only at the IFD Křivan (2003).

2.2.1. Parker’s matching principle for a single species
If resources (Ri , i = 1, . . . , H ) undergo population

dynamics, their densities can be described by the system of
differential equations (Lessells, 1995)

d Ri

dt
= ri (Ri ) − fi (Ri )pi M (5)

where ri and fi are the resource growth rate and the individual
consumption rate (i.e. the functional response) of consumers,
respectively, as functions of the resource level Ri in patch i . As
before, pi is the proportion of consumers in patch i and M is
the (fixed) consumer density.

Let us assume that consumer payoff in any occupied patch is
equal to the individual consumption rate (i.e. Vi = fi (Ri )), that
each patch has a resource carrying capacity Ki (i.e. ri (Ki ) = 0)
and that the resource dynamics converges to an equilibrium R∗

i
in each patch. Then, in each occupied patch, R∗

i is a decreasing
function of consumer density in the patch. This follows from
the identity

∂(ri (Ri ) − fi (Ri )pi M)

∂ Ri

d Ri

dpi
+

∂(ri (Ri ) − fi (Ri )pi M)

∂pi
= 0

combined with the facts that ∂(ri (Ri )− fi (Ri )pi M)
∂ Ri

is negative at

the stable equilibrium and ∂(ri (Ri )− fi (Ri )pi M)
∂pi

= − fi (Ri )M
is also negative (these expressions are evaluated at the
equilibrium, i.e., Ri = R∗

i ). Moreover, since the resource level
R∗

i decreases as pi increases, individual consumer payoff in
patch i is a decreasing function of pi . That is, the consumers
are playing a habitat selection game according to Section 2.1.1.
Since Vi = fi (R∗

i ) = ri (R∗

i )/(p∗

i M) at equilibrium, the
IFD of this habitat selection game is a p∗

∈ ∆H such that
ri (R∗

i )/(p∗

i M) = r j (R∗

j )/(p∗

j M) = V ∗ for all occupied
patches i and j . Furthermore, individual consumer payoff in
any unoccupied patch k is Vk = fk(Kk) ≤ V ∗. In particular, at
the equilibrium,

p∗

i

p∗

j
=

ri (R∗

i )

r j (R∗

j )

for those patches that are occupied, which is a generalized
Parker’s matching law (Lessells, 1995).
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3 These best response dynamics can also be multiplied by a positive constant
(to reflect the time scale of moving to the best patch) without affecting the
final outcome of the dispersal process. In the above discussion, it is implicitly
assumed that there are solutions to the dispersal dynamics (6) for each initial
population distribution p (i.e. a trajectory starting at p that satisfies (6) and is
defined for all positive t). Mathematically, this requires either some continuity
assumption on the vector field I (p)− p or, in the case of differential inclusions,
an assumption on the continuity of the set-valued map I (p) − p (e.g., see the
set BR(p) in Section 2.3.1.1). Thus, strictly speaking, our dispersal dynamics
refer to those for which solutions exist for each initial population.

4 In hindsight, a more descriptive name for the best response dynamics for
the habitat selection game is “ideal movement dynamics” in that they are
based on the Fretwell and Lucas (1970) assumption of ideal free animals.
Similarly, alternative phrases such as “monotone movement dynamics” may
2.3. Dispersal dynamics

Although the IFD is assumed to be the ultimate outcome
of animal dispersal, there is no explicit dispersal process
associated with this concept. In biological applications of
game theory, an explicit game dynamics was introduced
by Taylor and Jonker (1978). These dynamics, known as
the “replicator equation” describe the changing proportion of
various phenotypes in an exponentially growing population.
These authors proved that a dynamically stable equilibrium
(the “stability” here means (local) asymptotic stability of the
equilibrium with respect to the replicator equation) must be a
NE and that an ESS is a stable equilibrium. These results form
part of what is now called the Folk Theorem of Evolutionary
Game Theory (Cressman, 2003). They also showed that there
are evolutionary games that have stable (with respect to the
replicator equation) NE that are not ESS. This clearly shows
that the ESS stability concept of Section 2.1 can differ from
the dynamic stability concept once explicit rules (e.g., the
replicator equation) for dispersal are given. However, for the
single-species habitat selection game, the IFD is the only NE
and it is also an ESS. Thus, the Folk Theorem implies that the
IFD is the only stable equilibrium of the replicator equation.

Unfortunately, the replicator equation is not a realistic
dynamics for dispersal between patches. In particular, under
this dynamics, patches which are empty are never colonized.
This led Cressman and Křivan (2006) to consider the following
wider class of dispersal dynamics for habitat selection models
(and study the dynamic stability of the IFD under them).
Suppose the dispersal process is described by

dp

dt
= I (p)p − p (6)

where I (p) is the H × H dispersal matrix that describes
the probability of dispersal between patches (i.e. Ii j (p) is the
probability an individual from patch j disperses to patch i in
unit time).2

An equivalent formulation of Eq. (6) in terms of patch
densities m = (m1, . . . , m H ) that distinguishes between
immigration and emigration is

dmi

dt
=

H∑
j=1

Ii j (m)m j −

H∑
j=1

I j i (m)mi =

H∑
j=1

Ii j (m)m j − mi .

Here the first term in the summation describes immigration to
patch i and the second term describes emigration from patch i .
The dispersal process will then depend on the properties of the
dispersal matrix (i.e. on the particular dispersal rules chosen).
The remainder of this section considers two such classes of
dynamics.

2.3.1. Best and better response dynamics
First, consider dispersal under the assumption that “...each

individual will go to the habitat of highest suitability” (Fretwell
2 We set Ii i (p) = 1 −
∑H

j=1, j 6=i I j i (p) so that I (p) is a stochastic matrix
whose column sums are all equal to one. In particular, we assume the time unit
to be small enough so that Ii i ≥ 0.
and Lucas, 1970, p. 22). Since their ideal animals move
directly without cost to the patch with the highest payoff,
the corresponding dispersal matrix is Ii j (p) = 1 if patch i
is the only patch with highest payoff and V j (p) < Vi (p).
The dispersal dynamics (6) exhibiting such ideal movement
are called the best response dynamics. These actually become
a differential inclusion (Section 2.3.1.1 below; Hofbauer and
Sigmund, 1998) when there is more than one patch with the
highest payoff.3 Clearly, the best response dynamics satisfy the
following two conditions:

(i) animals never disperse to patches with lower payoff,
(ii) from every occupied patch some animals always disperse

to a patch with the highest payoff.

However, the two conditions are also satisfied by animals who
do not know the payoffs in all patches and so cannot be ideal. In
particular, this is the case if animals scan patches at random and
switch to the sampled patch only when their payoff increases.
Such locally myopic dispersal rules are biologically much more
plausible than the best response dynamics.

By showing that W (p) = max1≤i≤H Vi (p) is a strictly
decreasing Lyapunov function along trajectories of (6) with a
global minimum at the IFD p∗, Cressman and Křivan (2006,
Appendix B) proved the IFD is globally asymptotically stable
for any dispersal dynamics (6) satisfying (i) and (ii). This
shows that dispersal rules based on local patch knowledge are
sufficient to achieve the IFD or, to rephrase, the IFD can be
established by animals who do not have a global knowledge of
the environment and so do not always exhibit ideal movement.

Interestingly, Fretwell and Lucas (1970, later on p. 22)
already alluded to the fact that the IFD could be achieved by
animals who do not move directly to the best patch as long as
their non-ideal movement is to a patch with higher payoff. Thus,
the class of dynamics that satisfies conditions (i) and (ii) is quite
natural for habitat selection games but, as far as we know, has
not been given a name in the literature. We propose this class
be called the “better response dynamics” as animal movement
is always towards patches with higher payoff.4

Fig. 2A shows dispersal dynamics describing animal
distribution among three patches in the probability triangle ∆3

(i.e. p1 + p2 + p3 = 1) for three initial animal distributions that
be more descriptive than better response dynamics for habitat selection games.
Furthermore, trajectories of these dynamics are “monotone” for the differential
inclusion in the sense of Aubin and Cellina (1984, p. 181). Instead, we
will use best (and better) response dynamics in keeping with game-theoretic
terminology.
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Fig. 2. Three trajectories for distribution dynamics in a three-patch environment. Panel A shows the best response dynamics at a fixed population density (M = 10)
when Vi (pi M) = ri (1 − pi M/Ki ). Trajectories converge to the IFD (p∗

1 = 0.50, p∗
2 = 0.35, p∗

3 = 0.15) at M = 10. Panels B and C show combined dispersal
and population dynamics described by model (9). Panel B shows the case where population dynamics are fast when compared with dispersal dynamics (ν = 0.001)
and panel C shows the opposite case where population dynamics are slow when compared with dispersal dynamics (ν = 10). In both cases, trajectories converge to
the IFD (p∗

1 = 0.37, p∗
2 = 0.33, p∗

3 = 0.30 and M = 27) corresponding to the patch carrying capacities. The trajectories are shown in a probability simplex phase
space (p1, p2, p3) where 0 ≤ pi ≤ 1 and p1 + p2 + p3 = 1. The vertices of the triangle correspond to the pure strategies where all individuals occupy one patch
only. Along the sides of the triangle, one patch is not occupied. Other parameters used in simulations: r1 = 1, r2 = 0.8, r3 = 0.6, K1 = 10, K2 = 9, K3 = 8.
correspond to the situations in which, initially, only one patch
is occupied. In this case the dispersal dynamics are described
by the best response dynamics (Section 2.3.1.1). We observe,
according to our prediction, that trajectories converge to the
IFD (shown as the solid dot in Fig. 2A). Let us consider the
trajectory with initially all animals in patch 1 (which is the
trajectory that starts at the left lower corner in Fig. 2A). Initially,
patch 2 is the most profitable patch and animals disperse from
patch 1 to patch 2 only. As animal payoff in patch 2 decreases,
at a certain time instant patch 3 becomes as profitable as patch
2. From then on, animals disperse from patch 1 to the other two
patches in such a way that the payoff in patch 2 and patch 3 is
the same (and higher than it is in patch 1).

If all patches are occupied at the IFD, the population
reaches this IFD after some finite time and remains at this
distribution even though animal dispersal between these equal
payoff patches continues. Specifically, the dispersal rates are
then equal to Ii j (p∗) = p∗

i (Cressman and Křivan, 2006).
These rates (or the same positive multiple of them) are called
“balanced dispersal rates” by Holt (1985) (see also McPeek
and Holt (1992), Padrón and Trevisan (2006) and DeAngelis
et al. (2007)) who shows that constant balanced dispersal rates
(i.e. Ii j (p) = p∗

i for all p ∈ ∆H ) when total population
size is at carrying capacity cannot be invaded by mutants
using different constant dispersal rates under the combined
population-dispersal dynamics (see Section 2.4). It is tempting
to call these “evolutionarily stable” dispersal rates but we think
it is inappropriate to use the term ESS in this sense since
the terminology would then depend on the specified dynamics
(see the discussion at the end of Section 2.3.2). From our
perspective, the IFD is an ESS since it satisfies the static payoff
comparisons (2) of the habitat selection game introduced in
Section 2.1. Its biological relevance is then bolstered by its
dynamic stability under many different models of dispersal
dynamics.

Fig. 2A also shows another common characteristic of
trajectories when the dispersal process (6) is a better response
dynamics with continued dispersal between patches with the
highest payoff; namely, their sharp corners when they reach
lines where two patches have the same highest payoff (shown
as dashed lines in Fig. 2A). In what follows we call these
lines equal payoff lines. The sharp corners result from dispersal
rates that are discontinuous functions of animal distribution
along the equal payoff lines. In other words, if two (or more)
patches have the same highest payoff, then either there is no
dispersal between these patches (in which case these dispersal
rates are zero along the equal payoff line), or dispersal rates
change abruptly when animal distributions vary from one side
of this line to the other while animals still disperse. That is,
if animals never disperse to a patch with a lower payoff (e.g.,
when they are ideal) it is not possible that dispersal rates are
continuous functions of species distribution and animals still
disperse between patches with the same highest payoffs.

2.3.1.1. Best response dynamics. Under Fretwell and Lucas
(1970) assumptions, animals are ideal in the sense that they
know perfectly their environment and they move to one of the
patches with the highest payoff. If Vi (p) is the animal payoff
in patch i when the proportion of animals in this patch is pi ,
then this type of dynamics is also called “the best response
dynamics” (Hofbauer, 1995; Hofbauer and Sigmund, 1998) and
it is described by a differential inclusion

dp

dt
∈ BR(p) − p (7)

where BR(p) is the set of best response strategies to the current
distribution p = (p1, . . . , pH ). That is, BR(p) is defined as the
set of those patches where the animal payoff maximizes. If such
a patch is defined uniquely (i.e., Vi (p) > Vk(p) for any patch k
different from patch i), then the set BR(p) is a vector of zeros
except at the i th position where it is 1. That is, BR(p)− p is the
vector field for the differential equation in this case. If there
is more than one patch with the same maximal payoff, then
BR(p) = {(u1, . . . , u H ) ∈ ∆H

| u1V1(p) + · · · + u H VH (p) ≥

v̂1V1(p) + · · · + v̂H VH (p) for all (̂v1, . . . , v̂H ) ∈ ∆H
}. Thus,

if dispersal matrix I (p) is such that all entries in the i th row
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5 Notice that, in this section, Vi is no longer a function of p since the total
population size M is now changing. Instead, Vi is written as a function of
mi = pi M .
are equal to the i th component of the best response ui , then
the dispersal dynamics (6) become the best response dynamics
(7). Since Vi (p) are continuous functions of p, solutions for
(6) exist for all positive time although these trajectories may
not be unique for a given initial condition. A typical example
of the best response dynamics for three patches is shown in
Fig. 2A where we set Vi (p) = ri (1 − pi M/Ki ). Since these
payoff functions are linear in p, best response trajectories are
piecewise linear curves consisting of straight line segments
in the direction of the current best response if this is unique
(Hofbauer, 1995; Hofbauer and Sigmund, 1998). When two
patches currently have the highest payoff in a three-patch
system, the trajectory moves along the equal payoff line at a
rate that can be calculated explicitly (Appendix C, Cressman
and Křivan, 2006).

2.3.2. Suboptimal dispersal
Better response dynamics assume that animals never make

a wrong decision as to where to disperse in that they never
disperse to a patch with a lower payoff. This is often unrealistic
(Hugie and Grand, 1998), in which case it is more plausible to
assume that the non-ideal movement of animals also includes
suboptimal dispersal from patches with higher payoffs to
patches with lower payoffs. Several authors (e.g., Sutherland
(1983), Abrahams (1986), Houston et al. (1995), Hugie and
Grand (1998), Briggs and Hoopes (2004) and Křivan (in press))
have investigated theoretically dispersal dynamics where the
two conditions (i) and (ii) are replaced by

(i)
′

the dispersal rates between any two patches are positive,
(ii)

′

the dispersal rate is a continuous function of animal
distribution,

(iii)
′

the probability of dispersal from one patch to another
patch increases as the payoff in the new patch increases
and decreases as the payoff in the current patch increases.

Notice that, with some suboptimal (e.g., random) dispersal,
continuity of the dispersal matrix no longer implies that
there cannot be any dispersal between patches with the same
payoff. Hugie and Grand (1998) showed that, for two patches,
conditions (i)

′

–(iii)
′

imply there is an equilibrium of the
dispersal process which is stable with respect to dispersal
dynamics (6). This result has been extended to any number
of patches by Cressman and Křivan (2006). However, due to
condition (i)

′

, there may be some random dispersal which
shifts the equilibrium of model (6) off the IFD, causing
fewer animals to be in the better patch than predicted by the
IFD. That is, dispersal models satisfying conditions (i)

′

–(iii)
′

are examples under which the ESS of the habitat selection
game is often not dynamically stable. Such “undermatching”
when animals underuse better patches and overuse poorer
patches was observed in many experiments (for a review
see Kennedy and Gray (1993)). For two patches, the extent
of undermatching increases as the degree of random animal
movement in the population increases. Thus, the difference
between the predicted IFD and the observed animal distribution
can be used as a measure of random dispersal versus better
response dispersal in animal movement between patches.
The results of the preceding paragraph show there is a
fundamental difference between the evolutionary stability of
the IFD and dynamic stability of the IFD with respect to
dispersal dynamics described by model (6). As discussed
above, the evolutionary stability of the IFD refers to its game-
theoretic properties. On the other hand, dynamic stability
of the IFD refers to stability with respect to the dispersal
process. The IFD is dynamically stable for the intuitive class
of better response dynamics of Section 2.3.1 but not for all
possible dispersal dynamics (i.e. those modeling non-ideal
animal movement satisfying conditions (i)

′

–(iii)
′

). Thus, ESS
stability is independent of the particular dispersal process
and so the result of dispersal can often be predicted without
explicitly describing the dispersal process itself (a major goal
of evolutionary game theory; Maynard Smith, 1982). Moreover,
for single-species habitat selection, the NE is unique and
automatically an ESS. Thus, the IFD, NE and ESS concepts
are identical for these models. As we will see in Section 3, this
is no longer true for two-species models because there will be
distributions that are NE but not ESS stable. We argue there that
such a distribution cannot be called an IFD.

2.4. The single-species IFD as a population concept

Although the IFD is assumed to result from animal
dispersal between habitats, the IFD can be reached solely
due to demographic changes without any dispersal as noted
by Cressman and Křivan (2006). To see this, assume that
per capita density-dependent population growth (i.e. individual
fitness) in each patch is directly proportional to the decreasing
payoff function in that patch, which is the usual assumption that
links behavioral and population ecology. That is,

dmi

dt
= mi Vi (mi ) (8)

where mi is population density in patch i .5 Moreover, assume
that there exists a single carrying capacity in each patch to
which the population density converges. For example, the
classical logistic population growth satisfies these assumptions.
At these carrying capacities, the overall population neither
increases or decreases and so the average payoff is equal zero.
All patches that were initially occupied stay occupied at the
equilibrium because the animal fitness would be positive in
any patch where the population was decreasing to zero. Since
better patches support higher number of individuals, fitness
in all occupied patches is the same and equal to zero at the
population equilibrium. That is, if all patches are initially
occupied, then the IFD is achieved at the population equilibrium
without any dispersal between patches. Furthermore, the global
asymptotic stability of this IFD is an immediate consequence of
the negative density dependence of Vi (mi ) in (8).

The dispersal effect can now be added to dynamics (8) by
including parameter ν that characterizes the relative time scale
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between the population and dispersal processes. The combined
population-dispersal dynamics are then

dmi

dt
= mi Vi (mi ) + ν

(
H∑

j=1

Ii j (m)m j − mi

)
. (9)

For ν = 0, we revert to the model of no dispersal given by (8)
whereas, for large values of ν, dispersal acts very quickly by
driving the population to its equilibrium distribution for current
total population size. The population distribution then tracks
the changes in total population size until the population size
reaches its equilibrium. For any positive values of ν, Cressman
and Křivan (2006) assert that population densities in this
combined model still converge to habitat carrying capacities
provided the dispersal process is based on best/better response
dynamics that drive the population distribution to the IFD for
each fixed population size.6

The convergence of the combined population-dispersal
dynamics to the IFD is documented in Fig. 2B and C. We
remark that without any dispersal (i.e. when ν = 0 in model
(9)), the three trajectories in these panels would never leave
the vertices of the triangle because the initial distributions
are such that only one patch is occupied. Because there is a
small amount of dispersal in Fig. 2B (ν = 0.001), all patches
will eventually be occupied. However, because only a small
proportion of animals disperse, it takes a relatively long time
before it is clearly seen in the figure that the two patches that
were originally unoccupied have animals in them. In panel C
(ν = 10), all three trajectories converge quickly to the IFD at
the initial population density and then follow the IFD animal
distribution as a function of the overall population abundance
until they reach the IFD corresponding to the patches’ carrying
capacities. The solid dot in panels B and C shows the IFD at
this population equilibrium.

In summary, for the single-species habitat selection game,
we see that the game-theoretic IFD/ESS concept is relevant for
the combined population-dispersal process (and not only for the
distribution dynamics at fixed population size which is the usual
situation for evolutionary game theory). As we will see, this
result is no longer true for two-species habitat selection games.

2.5. Both resource and consumers undergo population dynam-
ics

In the previous section, we modeled consumer population
dynamics without explicitly considering resource dynamics.
In fact, such models assume that resource equilibrates very
quickly with current consumer numbers. This assumption leads
to decreasing per capita consumer growth rates with increasing
6 This result follows from the fact that W (p, M) = max1≤i≤H Vi (pi M)

is then strictly decreasing if it is positive and w(p, M) =

min1≤i≤H {Vi (pi M)|pi > 0} is strictly increasing if it is negative. For
instance, if W (p, M) is positive and attains this value only in patch i , (9)
implies that

∑H
j=1 Ii j (m)m j − mi ≥ 0 with strict inequality if m j 6= 0 for

some j 6= i . Furthermore, (9) implies mi (t) is increasing and so W = Vi (mi )
is decreasing. Combined with the analogous result for w, we see that W and w

both converge to 0 and this is the IFD at population equilibrium.
density (e.g., logistic growth) in each patch. On the contrary,
Parker’s matching law considers resource dynamics while total
consumer population numbers are assumed to be fixed. This is
reasonable when the time scale for the resource dynamics is
much shorter than the consumer life span, or when consumer
numbers are relatively stable due to such effects as alternative
resources (Polis and Hurd, 1996).

In this section, we briefly consider the game-theoretic
consequences of a two-patch model where both resources and
consumers undergo population dynamics, but only consumers
are adaptive foragers and so may disperse between patches.
Specifically, suppose that the resources Ri in patch i as well
as consumers undergo population dynamics described by the
classical Lotka–Volterra predator–prey two-patch model. Then

d R1

dt
= R1(r1 − λ1u1 M),

d R2

dt
= R2(r2 − λ2u2 M),

d M

dt
= (e1λ1 R1 − d1)u1 M + (e2λ2 R2 − d2)u2 M

where ri and di are the instantaneous per capita growth rate of
prey and mortality rate of predators in patch i , respectively, and
ui (u1 + u2 = 1) denotes the probability that a predator will be
in patch i . In particular, there is a linear functional response
of consumers to the resource levels in each patch (cf. (5)).
Furthermore, the individual payoff eiλi Ri − di to consumers
in patch i depends only indirectly on consumer density there
through current resource levels.

Křivan (1997) considered the situation where the consumers
move instantaneously to the patch with the highest payoff
(i.e. u1 = 1 when e1λ1 R1 − d1 > e2λ2 R2 − d2 and
u1 = 0 when e1λ1 R1 − d1 < e2λ2 R2 − d2). In this case,
the consumer distribution between the two patches track their
IFD for current resource levels. In fact, consumers then drive
the resource to levels where consumer fitness is the same in
both patches (i.e. as t increases, R1 and R2 are such that
e1λ1 R1 − d1 approaches e2λ2 R2 − d2). From the result of
Section 2.4, one might expect this two-patch predator–prey
system restricted to the invariant planar surface where e1λ1 R1−

d1 = e2λ2 R2 − d2 to evolve to the consumer population
equilibrium M = r1/λ1 + r2/λ2 at resource level Ri =

di/(eiλi ) in patch i . However, as shown by Křivan (1997)
(see also Fig. 1A in Křivan and Eisner (2006)), the resource
and consumer densities actually fluctuate indefinitely along
closed Lotka–Volterra orbits around this (neutrally stable)
equilibrium.7 It is clear that along such an orbit individual
consumer payoff in patch i will periodically fluctuate, i.e., it
will not satisfy the condition imposed by Fretwell and Lucas
that payoffs decrease with increasing population densities.
Thus, interspecific effects between consumers and resources
7 An ecologically interesting observation is that the same system where
consumer preferences for either patch are fixed (and different from ui =

ri /(λi M)) is impermanent in the sense that one resource is always outcompeted
by the other resource due to strong apparent competition (Holt, 1984).
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cannot be ignored, a motivation for the two-species analysis of
Section 3.8

This example also clearly shows that consumer aggregation
in patches with the highest payoffs can promote species coex-
istence without promoting species stability. Furthermore, Holt
(1984) proved that optimal habitat selection by consumers de-
couples the resources in different patches (even when prey
growth rate is density dependent). This is because the number of
consumers found in any given patch exactly reflects the produc-
tivity of that patch (i.e. at the equilibrium of the above model,
mi = ui M = ri/λi exactly as if there was no consumer move-
ment between patches).

Numerical analysis shows that a similar model where the
linear functional response is replaced by the Holling type II
functional response (i.e. fi (Ri ) = λi Ri/(1 + hiλi Ri ) in (5)
where hi is the predator handling time of the resource in
patch i) also promotes species coexistence. As the handling
time increases, the population eventually undergoes chaotic
fluctuations (Křivan and Eisner, 2006). Related results of
Fryxell and Lundberg (1997), where a more gradual movement
of consumers between patches (including some movement to a
less profitable patch) is assumed, also support this prediction
(see also similar models reviewed in Bolker et al. (2003)).

3. Two-species IFD

As species do interact, it is important to understand what
is the analogue of the single-species IFD for two and more
species. As we will see, this is not as straightforward as in
Section 2, even for the two-species systems considered here.
First, let us define the (two-species) habitat selection game.9

For this, we need to describe the individuals’ strategies and their
payoff functions.

Let M and N be the fixed positive population sizes of species
one and two respectively. Individuals in both species have the
same set of H pure strategies but their payoff functions (which
depend on the distributions p and q of species one and two
respectively among the H patches) differ. That is, we have a
(two-species) population game (Sandholm, 2007) with Vi and
Wi as the payoff functions in patch i of species one and two
respectively. Moreover, Vi and Wi depend only on the pair
(pi , qi ) of proportions of species one and two in habitat i .

At a minimum, the IFD must satisfy the analogue of the
single-species definition; namely, the payoffs for all individuals
of species one (respectively, species two) in any patch occupied
by this species must be the same and at least as high as
the individual payoff for any unoccupied patch of species
one (respectively, species two). (Otherwise, there would be an
8 In Section 3, we consider the related two-patch predator–prey model where
both consumers (predators) and resources (prey) disperse between patches. In
Section 3.2, the total density of predators and of prey is fixed (i.e. there is
only dispersal between patches). In Section 3.6, we also discuss such models
combined with population dynamics.

9 For the remainder of this section, it will be understood that phrases such
as “habitat selection game”, “NE”, “IFD” and “ESS” refer to the two-species
concepts unless otherwise indicated.
incentive for individuals to move to another patch.) That is, if
(p∗, q∗) is an IFD, we require

Vi (p∗, q∗) = V j (p∗, q∗) ≥ Vk(p∗, q∗)

if p∗

i p∗

j > 0 and p∗

k = 0

Wi (p∗, q∗) = W j (p∗, q∗) ≥ Wk(p∗, q∗)

if q∗

i q∗

j > 0 and q∗

k = 0.

It is straightforward to show that this is equivalent to the
requirement

p · V (p∗, q∗) ≤ p∗
· V (p∗, q∗) and

q · W (p∗, q∗) ≤ q∗
· W (p∗, q∗)

(10)

for all (p, q) ∈ ∆H
× ∆H . These latter inequalities are the

definition that the pair of (mixed) strategies (p∗, q∗) is a NE of
the habitat selection game. Alternatively, a NE is a distribution
(p∗, q∗) whereby p∗ is a single-species IFD for species one
given that species two is distributed at q∗ and q∗ is a single-
species IFD for species two given that species one is distributed
at p∗.

These NE of the habitat selection game have been called
by several other names in the literature such as “joint IFD”
(e.g., Křivan and Sirot (2002), Focardi et al. (2003) and Morris
(2004)) and “candidate IFD” (Abrams et al., 2007). In fact,
several authors (e.g., Auslander et al. (1978), van Baalen and
Sabelis (1993), Křivan (1997), Brown (1998), van Baalen and
Sabelis (1999) and Abrams (2007)) define the IFD as a NE.
However, Cressman et al. (2004) and Cressman and Křivan
(2006) show conclusively that this is not appropriate since such
an IFD definition does not imply any analogue of the single-
species ESS stability condition (2). For these reasons, we prefer
to continue using the game-theoretic terminology for the NE
and reserve the term IFD to only use in its unmodified form as
a NE that satisfies further stability properties.

The “correct” stability condition for the IFD is most clear for
the two-patch competitive systems of the following section. We
develop the game-theoretic perspective of the IFD condition for
such systems in Section 3.3 after discussing issues that already
arise for two-patch predator–prey systems in Section 3.2.

3.1. The two-patch habitat selection game for two competitive
species

We assume that the two species compete in each patch. By
this, we mean that individual payoff in patch i (i = 1, 2)
is a decreasing function of the density of conspecifics and
heterospecifics in this patch. For example, if individual payoff
is linear in these densities, the payoff functions in patch i may
then be written in the Lotka–Volterra form (Křivan and Sirot,
2002; Cressman et al., 2004)

Vi (p, q) = ri

(
1 −

pi M

Ki
−

αi qi N

Ki

)
Wi (p, q) = si

(
1 −

qi N

L i
−

βi pi M

L i

)
.

(11)

Here, positive parameters αi (respectively, βi ), are interspecific
competition coefficients, ri (respectively, si ) are the intrinsic
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Fig. 3. Nash equilibria for two competing species. Only in panel A is the interior NE an IFD (i.e. an ESS). In panel B there are two other boundary NE that are IFDs
since they are both ESSs (the NE at the lower right vertex is actually a strict NE). Panel C shows the case where the two equal payoff lines coincide and infinitely
many NE exist, each one being a weak ESS. The dashed and dotted lines are the equal payoff lines for species 1 and species 2, respectively. NE are shown as circles
(either empty or filled). The IFDs are the filled circles in panels A and B.
10 If p1 and q1 both increase, then V1 decreases and V2 increases and so
payoffs to species one in patches 1 and 2 can no longer be equal.
per capita population growth rates and Ki (respectively L i ) are
the environmental carrying capacities. All these parameters are
assumed to be patch specific.

The NE structure of the two-patch habitat selection game
relies heavily on the analysis of the two equal payoff lines,
one for each species. The equal payoff line for species one is
defined to be those (p, q) ∈ ∆2

× ∆2 for which V1(p, q) =

V2(p, q). Similarly, the equal payoff line for species two
satisfies W1(p, q) = W2(p, q). Since payoffs are linear
functions and since p2 = 1 − p1 and q2 = 1 − q1, these
are lines in the coordinates p1 and q1 as indicated in Fig. 3.
If the two equal payoff lines do not intersect in the unit square
of Fig. 3, the two species cannot coexist in both patches at a
NE. This means that at least one species will reside in a single
habitat only. If only one species (say, species one) is entirely
in its higher payoff patch, then species two will distribute itself
according to the single-species IFD conditional on species one
being in its single patch. That is, there is then exactly one NE,
which must automatically be on the boundary of the unit square
(see Figure 2 in Křivan and Sirot (2002)).

Fig. 3 shows more interesting cases; namely, where the two
equal payoff lines intersect inside the unit square. Notice that,
in all cases, both equal payoff lines must have negative slopes.10

Points of intersection in the unit square of the equal payoff
lines are automatically NE. A point on the boundary of the unit
square is a NE if and only if all nearby boundary arrows, as well
as all nearby interior arrows corresponding to the species that is
only present in one patch at the NE, are directed towards it. The
arrows are used to indicate which patch has the higher payoff
in a given region (a horizontal arrow to the right means patch
one has higher payoff for species one whereas a downward
arrow means patch two has the higher payoff for species two).
Thus, the circles (both empty and filled) in Fig. 3 give all NE.
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Fig. 4. The best response dynamics for the two-patch competitive systems with a unique interior NE. Trajectories are shown as solid curves and the vector field is
shown as short arrows. In panel A (α1 = 0.1, α2 = 0.1, β1 = 0.9, β2 = 0.9), the animal distribution that corresponds to the interior NE is also an IFD, while in
panel B (α1 = 0.8, α2 = 0.8, β1 = 4, β2 = 4) the interior NE is unstable and there are two boundary IFDs. Other parameters: K1 = 15, K2 = 10, L1 = 12,
L2 = 10, r1 = 1, r2 = 1, s1 = 1, s2 = 1, M = 3, N = 3, ν = 2, ξ = 1.
11 This statement is also true for the situation depicted in Fig. 3C. There, all
points on the common equal payoff lines are rest points of the best response
dynamics and so none is asymptotically stable. Furthermore, in panel C, every
trajectory of these dynamics converges to a single point on the overlapping
equal payoff lines but this point depends on the initial conditions of the
trajectory.
Notice that the coincident equal payoff lines in panel C consists
entirely of empty circles.

The central issue for us is which, if any, NE is stable, either
in the ESS sense or dynamically stable under some class of
dispersal dynamics. We postpone discussing ESS stability until
Section 3.3 and begin our analysis here with the best response
dynamics.

The single-species dispersal dynamics (6) can be easily
generalized for two (or more) species. These dispersal
dynamics, at fixed population densities M and N of the two
species, are described by a system of equations

dp

dt
= ν(I (p, q)p − p)

dq

dt
= ξ(J (p, q)q − q)

(12)

where p = (p1, . . . , pH ) and q = (q1, . . . , qH ) are
distributions of species one and two, respectively, and I and J
are dispersal matrices. As before, the entries of these dispersal
matrices describe the transition probabilities that an animal
moves from one patch to another patch in a unit of time.
For instance, under the ideal movement modeled by the best
response dynamics, Ii j (p, q) = 1 if patch i is the only
patch with the highest payoff for species one and otherwise
Ii j (p, q) = 0. Because the time unit can be different for each
species (e.g., due to differences in speed of movement), we
introduce positive parameters ν and ξ to reflect different time
scales. Thus, dispersal dynamics are defined by some specific
dispersal rules given by transition matrices I and J and by time
scales ν and ξ . For example, transition matrices can correspond
to the best (respectively, better) response dynamics. In this
case, we call (12), for all possible positive choices of ν and
ξ , the class of best (respectively, better) response dynamics. We
remark that the scaling constants do not influence the position
of equal payoff lines, but they may influence stability of the
dispersal equilibrium of model (12).
The trajectories of best response dynamics all evolve in the
direction of the arrows given in Fig. 3 (cf. the vector field in
Fig. 4). From Figs. 3 and 4, it is clear that the equal payoff
lines play a similar role for these dispersal dynamics (that
model evolving population distributions) that isoclines do for
the population dynamics of a two-species (competitive) system
in a single patch. In particular, trajectories can only cross the
species one equal payoff line (dashed line in Figs. 3 and 4)
in the vertical direction in Fig. 4 (just as trajectories in the
single patch population dynamics only cross the species one
isocline in the vertical direction). By the same reasoning as
used in isocline analysis, we see that every trajectory of the
best response dynamics for payoffs given by (11) converges to
a NE.

Ignoring the degenerate case depicted in Fig. 3 (panel C)
for the moment means that every NE on the boundary is
asymptotically stable (this remains true for all possible pairs
of equal payoff lines and not only those shown in Fig. 3).
Qualitatively, panels A and B show all cases where there is a
single NE in the interior of the unit square. It is clear that all
trajectories that start in the triangular region above and to the
left of this interior NE remain in this region and converge to it
(respectively, diverge from it) in panel A (respectively, panel B).
In particular, panel B provides a robust example to illustrate that
the IFD definition for two-species systems must require it to be
more than a NE. On the other hand, in panel A, trajectories that
start in any of the the other three regions also converge to the
interior intersection point. Thus, the interior NE is (globally)
asymptotically stable if and only if the equal payoff line for
species one is steeper than that for species two (see Fig. 4).11
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Fig. 5. Two-patch predator–prey systems with an interior NE (filled or empty circle). The vertical line through the NE is the predator equal payoff line. The prey
equal payoff curve corresponds to Lotka–Volterra growth rates in panel A (horizontal, Vi and Wi given by (14)), to density-dependent growth in panel B (negative

slope, Vi = ri (1 −
pi M
Ki

− αi qi N ), K1 = 15 and K2 = 10), and to the Holling type II functional response in panel C (positive slope, h1 = 0.9, h2 = 1 in
(15)). The horizontal and vertical arrows indicate the directions under best (and better) response dynamics. Trajectories (shown for the best response dynamics with
ν = ξ = 1) evolve counterclockwise around the NE. Filled circles are IFDs (and weak ESSs). As shown in Section 3.3.1, IFDs are asymptotically stable for every
best response dynamics whereas the non-IFD in panel C is unstable for some choices of ν and ξ (e.g., trajectories diverge from the interior NE and converge to a
limit cycle in Panel C). Other parameters: M = N = 10, r1 = r2 = 1, s1 = s2 = 1, α1 = α2 = 0.1, β1 = β2 = 0.9, ξ = ν = 1.
Cressman et al. (2004) show this condition is equivalent to

r1s1 K2L2(1 − α1β1) + r1s2 K2L1(1 − α1β2)

+ r2s1 K1L2(1 − α2β1) + r2s2 K1L1(1 − α2β2) > 0. (13)

Fig. 4 shows the actual best response trajectories for a particular
choice of time scales.

It is worth noting at this point that there are (infinitely) many
possible choices of dispersal dynamics that correspond to equal
payoff lines given through (11) and shown in Fig. 3. The best
response dynamics shown in Fig. 4 are just one possibility.
The important point is that, although different dispersal rules
lead to different trajectories of the distribution dynamics (12),
the above argument based on the position of the equal payoff
lines extends to the class of best and better response dynamics,
because all these dispersal dynamics have the same equal payoff
lines as the best response dynamics regardless of time scales
and particular realizations of transition matrices. For instance,
the triangular regions to the upper left and lower right of the
interior NE in Fig. 3, panels A and B, remain invariant and so
there can be no oscillation around this NE (as opposed to that
shown in Fig. 5 for predator–prey systems). In particular, the
eventual outcome from dispersal is a NE distribution under the
class of best and better response dynamics.

In summary, all two-patch competitive systems have equal
payoff lines that either do not intersect in the unit square (see
Figure 2 in Křivan and Sirot (2002)) or do intersect (Fig. 3).
In the first case there is exactly one NE at which at least
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one species occupies one patch only and this equilibrium is
globally asymptotically stable under the class of best (and
better) response dynamics. If equal payoff lines intersect at
a single point in the unit square, then there is either exactly
one NE (panel A) which is globally asymptotically stable
under the same dynamics, or (panel B) there are two locally
asymptotically stable boundary NE. Thus, for a two-patch
competitive system, the IFD definition must characterize every
boundary NE (except in the case of Fig. 3 panel C) as an IFD
as well as declaring an interior NE as an IFD if and only
if inequality (13) holds. Ideally, we would like a condition
similar to the single-species ESS inequality (2) as our IFD
definition. This is given in Section 3.3 after considering two-
patch predator–prey systems.

The above analysis assumes that individual payoff functions
in patch i are linear functions of the species proportions, pi and
qi , in this habitat. For general non-linear payoff functions that
still correspond to competitive species (i.e. they are decreasing
functions of pi and of qi ), equal payoffs for either species in a
two-patch system occur along decreasing curves in the p1, q1
coordinate system. These two curves may intersect several
times in the unit square, all of which are then NE. If we ignore
cases where the curves intersect with the same tangents,12 then
a NE in the interior of the unit square is locally asymptotically
stable for the class of best response dynamics if and only if
the tangent line to the equal payoff line of species one is
steeper than that of species two. In fact, there is at least one
asymptotically stable NE (which must be on the boundary
if there is none in the interior). The analysis of this section
suggests a definition of the IFD which is based on the best
response dynamics. Namely, a NE would be classified as an
IFD if it were stable for the class of best response dynamics.13

3.2. Two-patch predator–prey systems

First, suppose individual payoff in each patch is given as the
per capita growth rate of a Lotka–Volterra predator–prey model
(Hofbauer and Sigmund, 1998). That is, the payoff functions of
the prey and predator species in patch i are

Vi = ri (1 − αi qi N ) and Wi = si (−1 + βi pi M) (14)

respectively. Since the Vi and Wi exhibit no intraspecific effects
on individual payoff, the equal payoff lines for the prey (species
one) and the predator (species two) are horizontal and vertical,
respectively. If one of these lines (say the vertical line for the
predator) does not intersect the unit square, then any NE has all
of the predators in one patch. It is an interesting observation that
at this NE, all the prey must also be in only one patch (which
may or may not be the same one where the predators are). That
is, there is exactly one NE (it is at one of the vertices of the unit
square) and it is straightforward to show that this NE is globally
asymptotically stable for the best response dynamics. This
12 For linear payoff functions, this means we ignore NE given by coincident
equal payoff lines as in Fig. 3, panel C.
13 Moreover, every such NE is locally asymptotically stable with respect to

all better response dynamics.
predicts that distributions where either prey only, or predators
only are distributed across two patches should not be observed
in nature, provided both species are mobile.

As in Section 3.1, the more interesting case is shown in
Fig. 5 (panel A) where these lines intersect at a NE in the unit
square. Here, the horizontal and vertical arrows again indicate
the direction taken by trajectories under best (as well as better)
response dynamics. Unlike Fig. 3 for competitive systems,
these arrows are analogous to the classical predator–prey
Lotka–Volterra population dynamics in a single patch and so
suggest that trajectories evolve counterclockwise around this
interior NE. However, it is unclear if the NE is neutrally
stable or asymptotically stable (unstable) with trajectories
spiraling inwards (outwards). Contrary to the Lotka–Volterra
predator–prey neutrally stable population dynamics, this NE
is globally asymptotically stable for the class of best response
dynamics (Fig. 5A; Section 3.3.1).

If there is within-species negative density-dependent prey
population growth in the predator–prey system corresponding
to a linear individual payoff function, then the prey equal payoff
line is strictly decreasing (as in Fig. 5, panel B where Vi =

ri (1 −
pi M
Ki

− αi qi N )) rather than horizontal. The NE (p∗, q∗)

in this figure is still globally asymptotically stable for the class
of best response dynamics (Section 3.3.1).

If the linear functional response of the predator in the
Lotka–Volterra model is replaced by the Holling type II
functional response of the form

Vi = ri

(
1 −

αi qi N

1 + hiαi pi M

)
and

Wi = si

(
−1 +

βi pi M

1 + hiαi pi M

)
,

(15)

then the prey equal payoff curve has a positive slope. Numerical
simulations (such as those given in Fig. 5C) show the interior
NE is not stable with respect to best response dynamics if
handling times are positive. In particular, (p∗, q∗) does not
meet our requirement to be called an IFD. Since no other NE
exists, we conclude that the Holling type II functional response
has a destabilizing effect on the spatial distribution of predators
and prey similar to its destabilizing effect for predator–prey
population dynamics.

From the above analysis, it is tempting to look for an IFD
definition whereby an interior NE of a two-patch predator–prey
system is asymptotically stable under the class of best response
dynamics if and only if it is an IFD. That is, we could define an
IFD as equivalent to stability under this class of dynamics. This
approach works well for the single-species models of Section 2
where we saw that the original single-species IFD of Fretwell
and Lucas (1970) is equivalent to global asymptotic stability
under the best response dynamics (as well as under all better
response dynamics). It also works well for the two-species
competitive system of Section 3.1 where we proposed the same
definition.

On the other hand, for predator–prey systems, none of the
interior NE of Fig. 5 are asymptotically stable for the class
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of better response dynamics.14 In particular, there are interior
NE that are stable for the class of best response dynamics
but unstable for the class of better response dynamics. That
is, any IFD defined in terms of dynamic stability will depend
on the dynamics for which stability is analyzed, a situation
we argued against in Section 2.3. As stated earlier, we would
prefer a game-theoretic condition similar to the single-species
ESS inequality (2) as our IFD definition. At this point, it is
instructive to look at the evolutionary game theory literature on
this issue.

3.3. The two-patch IFD from the game-theoretic perspective

There have been several attempts in the literature to extend
the single-species ESS concept to general, non-symmetric,
games that model multiple species interactions. An early
attempt by Taylor (1979) (see also Thomas (1986)) took
the sum of payoff functions for each species and searched
for a single-species ESS with respect to this lumped payoff
function. Applying this technique to the competitive system
of Section 3.1 with parameters (K1 = K2 = L1 = L2 =

r1 = r2 = s1 = s2, α1 = α2 = α, β1 = β2 = β), there
is a NE at p∗

1 = q∗

1 = 1/2 for all fixed positive population
sizes M and N . This point is asymptotically stable for a better
response dynamics if and only if αβ < 1. On the other
hand, it satisfies Taylor’s concept if and only if the unrelated
inequality Nα + Mβ < 2

√
M N holds15 and so this concept

is unacceptable for the IFD. Intuitively, this suggestion is also
not acceptable on the biological grounds that it assumes that the
two species “share” their payoff.

Another attempt has developed over the past twenty years
through the work of Brown and Vincent (surveyed in Vincent
and Brown (2005)). For a single species, an “ESS candidate”
in Vincent and Brown (2005) is then defined as a NE for the
game based on payoff functions for the pure strategies when the
population size is fixed at its equilibrium value. To satisfy their
ESS concept, this candidate must be stable under the strategy
dynamics, a type of adaptive dynamics (Dieckmann and Law,
1996) on the strategy set. This approach has been extended to
multiple species and to fixed non-equilibrium population sizes
(for the latter, see the matrix game analysis in Chapter 9 of
Vincent and Brown (2005)). When applied to a game that has
linear payoffs, no ESS candidate that involves a mixed strategy
qualifies as an ESS for them (p. 293 in Vincent and Brown
14 There are better response dynamics for which the interior NE is unstable
even in the best possible predator–prey situation where the prey equal payoff
line has negative slope as in Fig. 5, panel B. As such trajectories need only
move in the direction of the arrows there, any initial point to the upper right of
the NE can evolve arbitrarily close to the intersection of the vertical predator
equal payoff line with the upper edge q1 = 1. This can be continued in the
other regions to show there exist better response dynamics that oscillate away
from the NE.
15 The standard single-species definition of an ESS using the Taylor

(1979) approach requires that 1/2V1(p, q) + 1/2V2(p, q) + 1/2W1(p, q) +

1/2W2(p, q) > p1V1(p, q) + p2V2(p, q) + q1W1(p, q) + q2W2(p, q) for
every (p, q) different from (1/2, 1/2). This inequality simplifies to (1/2 −

p1)2 M + (1/2 − p1)(1/2 − q1)(Nα + Mβ) + (1/2 − q1)2 N > 0, which
holds for all p1 and q1 if and only if Nα + Mβ < 2

√
M N .
(2005)) (see also p. 152 in Brown and Vincent (1987)). Thus
p∗

1 = q∗

1 = 1/2 in the example of the previous paragraph never
satisfies this concept.16 This second attempt is unacceptable as
well for the definition of an IFD since it would exclude the
possibility that a single population can occupy several patches.

A third attempt was developed by Cressman (1992) who
defined a (two-species) ESS (p∗, q∗) as a NE such that, if the
population distributions of the two species are shifted slightly to
(p, q), then an individual in at least one species does better by
playing its ESS strategy than by playing the slightly perturbed
strategy of this species (Section 3.3.1).

Since the arrows for two-patch competitive systems (such
as those illustrated in Fig. 3) determine asymptotic stability of
a NE in exactly the same fashion as Section 3.3.1 characterizes
the ESS, we see that (p∗, q∗) is an ESS if and only if it is locally
asymptotically stable with respect to the class of best response
dynamics (as well as all better response dynamics). That is,
for these two-patch systems, the IFD and ESS concepts are
identical.17 Condition (16) below is then the characterization
of an IFD in analogy to the single-species inequality (2).

For two-patch predator–prey systems with either prey
(predator) equal payoff line horizontal (vertical, such as those
illustrated in Fig. 5), an interior NE is never an ESS because at
distributions that lie on these lines neither prey nor predator
fitness increases in the direction toward (p∗, q∗). In fact,
all predator–prey models where predator growth is density
independent fall in this category. For the Lotka–Volterra system
with no intraspecific payoff effects, this result also follows
from Selten (1980) (see also Hofbauer and Sigmund (1998))
since the predator–prey model given above then has the form
of a two-player “bimatrix” game (i.e., in Section 3.1.1 the
intraspecific payoff matrices, A and D, in (17) are both zero).
Selten (1980) (see also Cressman (2003)) showed every ESS
(p∗, q∗) according to (16) must then be a strict NE (i.e. the
inequalities in (10) are strict if p 6= p∗ and q 6= q∗)
and, in particular, a pure strategy pair. A strict NE, which
corresponds to a situation where all predators are in one patch
and the prey are either all in the same patch or all in the other
patch, is automatically asymptotically stable for evolutionary
dynamics such as better response dynamics by one part of the
Folk Theorem of Evolutionary Game Theory (p. 11, Cressman,
2003) applied to two-player bimatrix games. On the other hand,
the NE in Fig. 5A is a Nash–Pareto pair and this led some
authors (e.g., Křivan (1997), Křivan and Schmitz (2003) and
Cressman et al. (2004)) to declare it to be an IFD.18

When there are intraspecific payoff effects as in Fig. 5,
panels B and C, the concept of a Nash–Pareto pair is not
16 For an analysis of the single-species habitat selection model using this
approach see Section 10.1 in Vincent and Brown (2005) where the same
conclusion is reached.
17 In Cressman et al. (2004), the IFD for two-patch competitive systems was

defined as the ESS. Here, we take the IFD as one given through dynamic
stability and show this is equivalent to the ESS concept.
18 The Nash–Pareto equilibrium is a NE which satisfies an additional

condition that says that it is impossible for both players to increase their fitness
by deviating from this equilibrium. That is, it is a NE that satisfies (16) with
non-strict inequalities.
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applicable since this is no longer a two-player bimatrix game.
However, the inequalities in (16) may continue to hold at an
interior NE if we do not insist they are strict. Such a (p∗, q∗)

is an example of a weak ESS (Section 3.3.1). The weak ESSs
of Fig. 5 correspond to the filled circles in panels A and B
(the empty circle in panel C is not a weak ESS). That is, the
weak ESSs of two-patch predator–prey systems are exactly
those NE that are asymptotically stable under the class of best
response dynamics. To rephrase, if we define an IFD to be a
(weak) ESS, then condition (16) (up to whether the inequalities
in this condition are strict) provides an appropriate analogue
of the single-species ESS condition (2) that has a dynamic
justification as well.

The dynamic analyses of Sections 3.1 and 3.2 (together with
the game-theoretic connections summarized in Section 3.3)
motivate the definition of an IFD as a strategy pair (p∗, q∗) that
is an asymptotically stable NE under the class of best response
dynamics that model ideal movement among patches.19

3.3.1. ESS for two species
If Vi and Wi (i = 1, 2, . . . , H ) are the payoffs of the first

and second species, respectively, in patch i , then payoffs of
an individual using strategy p′

= (p′

1, p′

2, . . . , p′

H ) in species
one (respectively, q ′

= (q ′

1, q ′

2, . . . , q ′

H ) in species two) when
the resident populations use strategies p and q are, respectively
p′

·V (p, q) and q ′
·W (p, q). The game-theoretic ESS condition

taken from Cressman (1992) (see also Cressman (1996, 2003)
and Cressman et al. (2004)) is a strategy pair (p∗, q∗) such that
at least one of the inequalities

p · V (p, q) < p∗
· V (p, q) or

q · W (p, q) < q∗
· W (p, q) (16)

is true for each perturbed pair of distributions (p, q) sufficiently
close (but not equal) to (p∗, q∗).

For two-patch habitat selection models, the ESS condition
(16) can be visualized geometrically in terms of the equal
payoff lines of the two species and their associated arrows
in Figs. 3 and 5. In particular, p · V (p, q) < p∗

· V (p, q)

(respectively, q · W (p, q) < q∗
· W (p.q)) if and only if the

horizontal arrow (respectively, vertical arrow) at (p, q) is in the
same direction as p∗

1 − p1 (respectively, q∗

1 − q1). Thus, by
(16), (p∗, q∗) is an ESS if and only if at least one of the arrows
at every nearby (p, q) is non-zero and pointing in the direction
of (p∗, q∗). That is, the solid circles in Fig. 3 (panels A and B)
are ESSs while the empty circles in Fig. 3 are not. Moreover,
no intersection point (p∗, q∗) of the two equal payoff lines in
Fig. 5 (for predator–prey systems) is an ESS since arrows at
points on the vertical line through (p∗, q∗) have zero vertical
component and so do not point towards q∗.

If there are H patches and payoffs are linear in the
components of p and q (as in (11)), the payoff functions of the
habitat selection game can be based on pairwise interactions
19 It must be kept in mind, however, that this definition of IFD for
predator–prey systems is not equivalent to dynamic stable for all intuitive
dispersal dynamics (e.g. the class of better response dynamics).
and written in the form Vi (p, q) = (Ap + Bq)i , Wi (p, q) =

(Cp+ Dq)i where A, B, C, D are appropriate H × H matrices.
For example, in the case of two patches with payoffs given

by (12) these matrices are: A =

(
r1(1 − M/K1) r1

r2 r2(1 − M/K2)

)
,

B =

(
−α1r1 N/K1 0

0 −α2r2 N/K2

)
, C =

(
−β1s1 M/L1 0

0 −β2s2 M/L2

)
,

D =

(
s1(1 − N/L1) s1

s2 s2(1 − N/L2)

)
. Cressman (1996) (see also

Cressman (2003)) shows that (p∗, q∗) in the interior of ∆H
×

∆H is an ESS if and only if it is the unique NE and there is an
r > 0 such that

(p − p∗) · (A(p − p∗) + B(q − q∗))

+ r(q − q∗) · (C(p − p∗) + D(q − q∗)) < 0 (17)

for all (p, q) 6= (p∗, q∗).
To show the interior ESS (p∗, q∗) is globally asymptotically

stable for the class of best response dynamics, we generalize
the single-species Lyapunov function used in Hofbauer and
Sigmund (1998). Specifically, for a fixed ν and ξ , define

F(p, q) = max
i

(Ap + Bq)i − p · (Ap + Bq)

+
rξ

ν
(max

i
(Cp + Dq)i − q · (Cp + Dq)).

Then F(p, q) ≥ 0 for all (p, q) with equality if and only if
(p, q) = (p∗, q∗). When (p, q) has a unique best response
b1 and b2 for species one and two respectively, then dp

dt =

ν(b1 − p) and dq
dt = ξ(b2 − q) (see (12)). Thus

d F

dt
= −ν(b1 − p) · (Ap + Bq) + (b1 − p) · [ν A(b1 − p)

+ ξ B(b2 − q)] −
rξ2

ν
(b2 − q) · (Cp + Dq)

+
rξ

ν
(b2 − q) · [νC(b1 − p) + ξ D(b2 − q)]

≤ ν

[
(b1 − p) ·

(
A(b1 − p) +

ξ

ν
B(b2 − q)

)
+

rξ

ν
(b2 − q) ·

(
C(b1 − p) + D

ξ

ν
(b2 − q)

)]
≤ 0

by (17) where b1 − p is a non-negative scalar multiple of some
p̂ − p∗ and ξ

ν
(b2 − q) is a non-negative scalar multiple of some

q̂ − q∗. In fact, d F
dt = 0 if and only if (p, q) is a NE (and so

equal to (p∗, q∗)).
The above argument also holds when (p, q) does not have

a unique best response by simply taking b1 and b2 as the
directions of the vector field in (12) whenever the trajectory
of the best response dynamics has a tangent line (which occurs
for almost all positive times t). Then d F

dt ≤ 0 at all such points
and so F is decreasing. This shows that (p∗, q∗) is globally
asymptotically stable.

For predator–prey systems, the concept of a weak ESS is
also important. The strategy pair (p∗, q∗) is a weak ESS if
condition (16) is true whenever p 6= p∗, q 6= q∗ and (p, q)

is close to (p∗, q∗). For an interior weak ESS, there exists an
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r > 0 such that (cf. inequality (17))

(p − p∗) · (A(p − p∗) + B(q − q∗))

+ r(q − q∗) · (C(p − p∗) + D(q − q∗)) ≤ 0

and this implies that d F
dt ≤ 0 is still true. In Fig. 5, the

interior NE is a weak ESS in panels A and B but not in panel
C.20 These inequality conditions are sufficient to prove that a
weak ESS (p∗, q∗) of the two-patch predator–prey system is
asymptotically stable for all best response dynamics.

3.4. Parker’s matching principle for two species

Parker’s matching principle was extended under various
specific assumptions to multiple species (e.g., Parker and
Sutherland (1986), Possingham (1992), Hugie and Grand
(1998), Grand and Dill (1999), Grand (2002b), Grand (2002a),
Křivan (2003) and Berec et al. (2006)). These articles typically
treat two consumer species with fixed sizes M and N in
a two-patch environment where individuals compete through
exploiting a shared resource. Suppose the constant resource
input rate is ri in patch i and λ (Λ) is the per capita consumption
rate of species one (two). If resources in both patches are
consumed immediately and individual payoffs are equated to
the consumption rate, then consumer per capita payoffs Vi and
Wi for species one and two respectively in patch i (=1, 2) are

Vi (pi M, qi N ) = λ
ri

λpi M + Λqi N
and

Wi (pi M, qi N ) = Λ
ri

λpi M + Λqi N
.

(18)

Notice that these payoffs are decreasing non-linear functions of
both species’ patch density.

If both patches are occupied at a NE, then V1 = V2 and
W1 = W2. However, these two equations for unknowns p1 and
q1 (we recall that p2 = 1 − p1 and q2 = 1 − q1) are dependent
and they reduce to a single equation given by the line

q1 =
r1(λM + ΛN )

ΛN (r1 + r2)
−

λM

ΛN
p1. (19)

In particular, this means that the NE of the two-species
competitive system cannot be uniquely computed if the two
species coexist in both patches. Any distribution (p1, q1) that
satisfies (19) is possible.21 Qualitatively, we have the same
situation as shown in Fig. 3C. Thus, there is no ESS or IFD
with the species coexisting in both patches.

Grand and Dill (1999) included in the above model a risk
of predation which they assumed to be patch and species
dependent. If the ratio of the predation risk in the two patches is
different for the two species, the two equal payoff lines do not
coincide anymore, but are parallel in the resource 1–resource 2
density phase space (Possingham, 1992; Grand, 2002a). Thus,
there is a unique NE and it must occur on the boundary of the
20 In Fig. 3C, every NE is a weak ESS.
21 Notice that this line intersects the interior of the unit square since q1 > 0

when p1 = 0 and q1 < 1 when p1 = 1.
unit square. In particular, if one species occupies both patches
at this ESS/IFD, the other species is confined to a single patch
only.

If resources are not assumed to be consumed immediately
(i.e. there is a positive standing resource crop), the
corresponding two-species Parker’s matching principle is
derived in Section 3.4.1. Calculations there show the same
qualitative outcomes as summarized above. In particular, the
payoffs (18) correspond to species food intake rate at the
resource equilibrium densities provided functional responses
are linear.

The argument in Section 3.4.1 can be extended to multiple
patches. We find that an IFD can only occur as follows. The
first possibility is that no patch is occupied by both species
and the patches occupied by a given species form the single-
species IFD for this species in its occupied patches. The only
other possibility is that exactly one patch is occupied by both
species with one species only in this patch and the other species
distributed according to the single-species IFD among all the
patches. These two possibilities suggest a competitive exclusion
principle (also called “ghost of competition past”, Connell,
1980; Morris, 1999) for habitat selection models based on
two consumer species competing over resources undergoing
population dynamics.

3.4.1. Parker’s extended matching principle for two species
Here we extend Parker’s single-species matching principle

to two species that exploitatively compete for shared resources
in each patch (Berec et al., 2006). Similar to the single-
species model, we assume that resources are not consumed
immediately and the resource dynamics are described by the
following general model

d R1

dt
= r1(R1) − f1(R1)p1 M − g1(R1)q1 N

d R2

dt
= r2(R2) − f2(R2)p2 M − g2(R2)q2 N

(20)

where M and N are fixed densities of the two consumer species,
Ri is the resource i density, ri is the resource input rate in patch
i , and fi and gi are functional responses. For constant resource
inflow rate (i.e. r(Ri ) = ri ) and linear functional responses
fi (Ri ) = λRi and gi (Ri ) = ΛRi the resource equilibrium
densities are R?

i =
ri

λpi M+Λqi N , (i = 1, 2). Thus, the payoff
functions given by (18) satisfy Vi (pi M, qi N ) = fi (R?

i ) =

λR?
i and Wi (pi M, qi N ) = gi (R?

i ) = ΛR?
i at the resource

equilibrium.
In the general case described by model (20), the functional

responses may be non-linear (e.g., of Holling type II) and
the inflow rate can be density dependent. We assume that
consumers maximize their food intake rate in analogy with the
single-species case (i.e. species one (two) feeds on resource 1
if f1(R1) > f2(R2) (g1(R1) > g2(R2)) and on resource 2 if
the reverse inequality holds), and that resource dynamics (20)
converge to an equilibrium (for linear functional responses and
logistic resource growth this was proved in Křivan and Vrkoč
(2007)).
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First, we search for possible IFD where both species occupy
both patches at the resource equilibrium. At the resource
equilibrium ri (Ri ) = fi pi M + gi qi N (i = 1, 2), from which
we get q1 =

r1(R1)
g1(R1)N −

f1(R1)M
g1(R1)N p1 and q1 = 1−

r2(R2)− f2(R2)M
g2(R2)N −

f2(R2)M
g2(R2)N p1. At the interior NE, individual payoff in both patches
must be the same for species one ( f1 = f2) and for species
two (g1 = g2). Thus, both equal fitness lines have the same
slope. Moreover, the sum of the two equations for resource
equilibria gives r1(R1)+r2(R2) = f1(R1)M +g1(R1)N which
implies that the two equal fitness lines coincide. This means that
there are infinitely many Nash equilibria (exactly as shown in
Fig. 3C), but not a single IFD.

Now we search for IFDs where one species occupies
one patch only. For instance, if species one occupies both
patches while species two does not (i.e. 0 < p1 < 1 and
q1 = 1), the resource equilibrium must satisfy r1(R1) =

f1(R1)p1 M + g1(R1)N and r2(R2) = f2(R2)p2 M . Together
with the NE condition f1(R1) = f2(R2), there are three
equations for the three unknowns (R1, R2, p1) which provide a
unique distribution of the first species and equilibrium resource
densities. For this distribution to be a NE, g1(R∗

1) > g2(R∗

2)

(i.e. the payoff of species two in its occupied patch is greater
than that in its unoccupied patch). In this case, we automatically
have a boundary ESS/IFD (as in Section 3.5.2) and here
Parker’s single-species matching rule p1/p2 = (r1(R∗

1) −

g1(R∗

1)N )/r2(R∗

2) applies.
Finally, each species may occupy one patch only (this patch

can be the same for both species or distinct). For example,
assume the first species occupies patch 1 and the second species
patch 2 (i.e. p1 = 1 and q1 = 0 in model (20)). From (20), the
two equations for the resource equilibrium, r1(R1) = f1(R1)M
and r2(R2) = g2(R2)N , define the resource equilibrium
densities, R∗

1 and R∗

2 . As we assume that patch 1 is better
for species one and patch 2 for species two, the following
inequalities must be satisfied at these resource equilibrium
densities: f1(R∗

1) > f2(R∗

2) and g2(R∗

2) > g1(R∗

1). Indeed,
under these inequalities, the species distribution (p1, q1) =

(1, 0) is a strict NE and so an ESS/IFD of the two-patch
consumer selection model.

3.5. Multiple patch IFD

From Section 3.3, the IFD for two-patch systems is closely
related to the ESS concept (i.e. condition (16)). Specifically,
every ESS is an IFD and every IFD is a weak ESS.
Unfortunately, the geometric intuition of Figs. 3 and 5 that
proved so effective for the dynamic analysis of these two-patch
models is no longer available when there are multiple (i.e. H ≥

3) patches. In particular, although the ESS condition (16)
applies to any number of patches, its geometric interpretation
when H ≥ 3 is not in the literature. By Section 3.3.1, an interior
ESS is globally asymptotically stable for all best response
dynamics applied to multi-patches22 and so is an IFD but
22 It is also well known that an ESS is asymptotically stable for the replicator
equation (Cressman, 1996, 2003), a result that is not so relevant for the habitat
selection game since this dynamics is not a realistic dispersal process.
general game-theoretic conditions that completely characterize
dynamic stability under the best response dynamics are
unknown. There are, however, special types of multi-patch
habitat selection games of biological importance where the
connection between ESS and dynamic stability can be made.

3.5.1. Dominant species
The first such type of biological significance is the case of

two competing species where one species (species one, say) is
dominant and the other (species two) is subordinate. By this,
we mean that the payoff to individuals in species one in each
patch is independent of the density of species two there. There
is considerable evidence that such asymmetric interspecific
competition is quite common in nature (Schoener, 1983). For
example, this was shown for hummingbirds (Pimm et al., 1985),
for rodents (Abramsky et al., 1990), for isopods (Franke et al.,
2007), and for fish (Berec et al., 2006).

In a dominant-subordinate system, any ESS (p∗, q∗) must
have p∗ as the unique single-species ESS/IFD of the dominant
species one. Now, with p = p∗ in (16), we see that q∗ is the
unique single-species ESS of species two conditional on species
one being fixed at p∗. The converse is also true and so every
dominant-subordinate system has a unique ESS (p∗, q∗). If all
patches are occupied by species one at p∗, it is well known
(p. 97, Theorem 8.4.4 in Hofbauer and Sigmund (1998)) that the
single-species best response dynamics converge to p∗ in finite
time and stays there. After this time, species two will evolve
under the single-species best response dynamics (conditional
on species one being fixed at p∗) to q∗. Thus, for all dominant-
subordinate systems, there will be a unique ESS (p∗, q∗) and
it will be the only IFD in the sense of dynamic stability with
respect to the class of best response dynamics.

Clearly, the above argument generalizes to hierarchical
biological systems with more than two species. Here, species
one is dominant in that its payoff function in each patch
depends only on its density there. Patch payoffs of species two
depend only on densities of species one and two there, etc.
For example, the three species of hummingbirds (bluethroated,
blackchinned, and Rivoli’s) studied by Pimm et al. (1985)
constitute a hierarchical system. Such systems will have a
unique multi-species ESS (Cressman et al., 2001; Cressman,
2006) and it will be globally asymptotically stable under the
class of multi-species best response dynamics (and so a multi-
species IFD).

3.5.2. Boundary and interior IFD
For fixed positive population sizes M and N , every habitat

selection game with H habitats has at least one NE (p∗, q∗).23

Suppose the second species is absent from some patch (say,
patch H , q∗

H = 0) at this species’ distribution. Then (p∗, q∗)

is a boundary NE and WH (p∗, q∗) ≤ W ∗ (recall that W ∗ is
the payoff to species two in each occupied patch at the NE).
23 This follows from the fact that these habitat selection games are (two-
species) population games (Sandholm, 2007). A sufficient condition to
guarantee the existence of a NE is the continuity of the payoffs (such as in
(11)) as functions of the species’ distributions.
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Unless we have a degenerate situation such as in Fig. 3 (panel
C), this inequality will be strict. In this case, the payoff of an
individual in species two that occasionally stays in habitat H
will be lower than the payoff of an individual that avoids this
patch (i.e. q · W (p, q) < q∗

· W (p, q) for all (p, q) sufficiently
close to (p∗, q∗) with qH > 0). Thus, to confirm that (p∗, q∗)

is an ESS, it is sufficient to check condition (16) for those
(p, q) with qH = 0. In other words, the analysis of the ESS
condition at a boundary NE simplifies since the mathematical
problem is reduced by at least one dimension. Moreover, the
asymptotic stability of a boundary NE is also determined by
stability restricted to this lower dimensional face since any best
(or better) response dynamics will satisfy dqH

dt < 0 if qH is
positive and sufficiently close to 0 (because all other patches
are better than patch H for species two). Thus, both the ESS
and IFD concepts simplify mathematically at a boundary NE.

In the extreme case where species two occupies only one
patch at the boundary NE (p∗, q∗), the iterated reduction in
dimension implies that (p∗, q∗) is an IFD if and only if p∗ is
the single-species NE of species one with respect to the payoff
function Vi (p) that assumes q is fixed at q∗. In particular, this
argument applies to Parker’s multi-patch matching principle
mentioned at the end of Section 3.4. It also applies to the two-
patch competitive systems of Section 3.1 where it immediately
implies that every boundary NE there is an ESS and IFD (except
when the two equal payoff lines happen to intersect exactly on
the boundary of the unit square such as in Fig. 3, panel C).

By the above discussion, the existence of boundary NE
simplifies the problem of determining ESS and/or IFD. In other
words, the most difficult situation shows that a NE (p∗, q∗)

is an ESS and/or IFD occurs when (p∗, q∗) is in the interior
(i.e. no component of p∗ or q∗ is zero). As mentioned at
the beginning of Section 3.4, no general analysis exists in
the literature in these circumstances. However, some intuitive
results are possible when payoff functions are related.

For example, suppose the payoffs for a multi-patch
competitive system given by (11) satisfy, for some positive
constant c, that ri/Ki = csi/L i for all i = 1, . . . , H . That is,
the ratios of the intrinsic growth rates and carrying capacities
of the two species remain constant across patches. Since the
ratio ri/Ki (si/L i ) defines the slope of the payoff function
for the first (second) species with respect to its own density,
competitive systems with the same intraspecific competition
effect in each patch are included in this example. Then, an
interior NE is an ESS if maxi, j αiβ j < 1.24 Moreover, by
24 From (13), this inequality is sufficient for an interior NE of a two-patch
competitive system to be an IFD without further conditions on the intrinsic
growth rates and carrying capacities. For multiple patches with ri /Ki =

csi /L i , the sufficiency of this inequality follows from the fact that (16) holds
if and only if p∗ (q∗) is a single-species ESS when the other species’ spatial
distribution is fixed at q∗ (p∗) and ((p−p∗)·A(p−p∗))((q−q∗)·D(q−q∗)) >

((p − p∗) · B(q − q∗))((q − q∗) · C(p − p∗)) for all (p, q) 6= (p∗, q∗) where
A, B, C, D are given in (17) (see Definition 3.2.2 (v) in (Cressman (1992),
p. 33)). With x = p − p∗ and y = q − q∗, we have the quadratic expressions
((p − p∗) · A(p − p∗))((q − q∗) · D(q − q∗)) = c

∑
i, j

ri
Ki

r j
K j

x2
i y2

j and

((p − p∗) · B(q − q∗))((q − q∗) · C(p − p∗)) = c
∑

i, j αi β j
ri
Ki

r j
K j

xi yi x j y j .

Thus, the latter inequality results from ‖ u ‖
2

‖ v ‖
2

≥ (u · v)2 with
ui ≡

√
ri /Ki | xi | and vi ≡

√
ri /Ki | yi |.
Section 3.3.1, every ESS is an IFD (i.e. dynamically stable with
respect to the class of best response dynamics). In particular,
if payoffs are the same for patches with identical densities
(i.e. Vi = V j and Wi = W j when pi M = p j M and
qi N = q j N , then the uniform distribution (p∗, q∗) (i.e. p∗

i =

1/H = q∗

i for all i = 1, 2, . . . , H ) is an interior NE. Moreover,
(p∗, q∗) is an IFD if and only if αβ < 1 (where αi = α

for all i and βi = β for all i). That is, if a homogeneous
environment is divided into identical patches, the uniform
distribution (p∗, q∗) is globally asymptotically stable under the
class of best response dynamics if and only if the interspecific
competition coefficients, α and β, satisfy the same inequality
condition that is equivalent to the global asymptotic stability of
the coexistence equilibrium for the population dynamics of a
competitive Lotka–Volterra system in a single patch.

3.6. Habitat selection combined with population dynamics
from the game-theoretic perspective

In this section, we consider the relevance of the NE, ESS
and IFD concepts when overall species d́ensities are not fixed
but evolve according to a population dynamics (c.f. Section 2.4
for the single-species treatment). First, we study whether the
demographic process drives the two-species distribution in two
patches to the IFD even without any dispersal between patches
(Section 3.6.1) before combining the demographic process with
dispersal (Section 3.6.2).

3.6.1. The two-species NE as a result of competitive consumer
population dynamics alone

Let mi and ni be the density of species one and two,
respectively, in patch i . If animal per capita population growth
rate equals the patch payoffs Vi for species one and Wi for
species two, the population dynamics are described by the
following model

dmi

dt
= mi Vi (mi , ni ), i = 1, 2

dn j

dt
= n j W j (m j , n j ), j = 1, 2.

(21)

The above model does not consider resource dynamics
explicitly. Instead, it assumes that the resource levels equilibrate
quickly with consumer densities and that the species are
competitive in that the payoff functions (Vi and Wi ) are all
decreasing in both variables mi and ni . As in Section 2.4, we
write payoffs, Vi and Wi , in patch i as functions of (mi , ni ) =

(pi M, qi N ) instead of (p, q) since M and N are also evolving
here.

It is well known (Theorem 2.2, p. 35 in Smith (1995))
that, for two-species competitive systems such as (21), all
trajectories that start with both species present in a particular
patch converge to equilibrium densities (m∗

i , n∗

i ). Then, from
(21), Vi (p∗

i M∗, q∗

i N∗) = 0 and W j (p∗

j M∗, q∗

j N∗) = 0 for
every occupied patch. Furthermore, Vi (p∗

i M∗, q∗

i N∗) ≤ 0 in
any unoccupied patch i by species one (otherwise dmi

dt > 0
near the equilibrium which implies pi does not evolve to
0). Combined with the analogous result for species two, we
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conclude that (p∗, q∗) is a NE of the completely different
model which assumes that there is only animal dispersal and
that the overall population densities are fixed at M∗ and N∗.

Thus, we see that the same animal distribution (namely,
the NE) may emerge either due to demographic processes
without any actual dispersal between patches, or, alternatively,
by dispersal alone. In Section 3.6.2, we investigate the relation
between the stability of the species distribution with respect to
either the population dynamic process modeled by (21), or to
the dispersal process modeled by (12) (or a combination of the
two).

3.6.2. The two-species IFD when animal dispersal and
population dynamics are combined

When there is a coexistence equilibrium of the competitive
process (21) in each of the separate patches, Section 3.6.1
shows that it is also a NE of the dispersal process (12) when
consumer densities are fixed at their equilibrium values. That
is, this NE is an equilibrium of two different independent
processes: dispersal dynamics and population dynamics.
Correspondingly, there are also two different types of dynamic
“stability” of the resulting distribution. The first “stability”
relates to stability with respect to dispersal dynamics. That
is, is the distribution an IFD at fixed equilibrium population
densities? The second type of stability of the distribution is with
respect to population dynamics (21).

A question arises then whether or not animal dispersal can
destabilize stable population equilibrium of the model (21)
without dispersal. We have already seen in Section 2.4 this
cannot happen for a single species when the dispersal process
is a better response dynamics. However, for two competing
species, Cressman et al. (2004) showed that dispersal can
destabilize the demographic process because the condition for
dynamic stability of the population equilibrium for the model
without dispersal does not in general imply that the animal
distribution is an IFD. Specifically, for two-patch competitive
systems, the interior IFD condition (13) that guarantees stability
of the distribution with respect to small perturbations requires
not only products αiβi of interspecific competition coefficients
to be small in either patch, but also products of interspecific
competition coefficients in different patches (e.g., α1β2) to be
small. Heuristically, this latter condition is needed because an
animal encounters heterospecific animals in both patches due
to dispersal. However, the familiar condition for population
stability of two competing species (in a single patch) requires
that only the products of interspecific competition coefficients
in this patch are small. Thus, Cressman et al. (2004) were
able to construct examples of two competing species with a
globally stable equilibrium and coexistence in both patches
when animals do not disperse between patches (i.e. for model
(21)). However, in these examples, this spatial distribution
was not the IFD for the model which assumed dispersal only
(i.e. model (12)).

These results are illustrated clearly by the following
simulations of the dynamics based on Abrams et al. (2007).
The dispersal dynamics when both competing species are at
their population equilibrium are qualitatively similar to those
shown in Fig. 4B. In particular, at these fixed population sizes,
the interior NE is not an IFD but there are two alternative
boundary IFDs. If population dynamics (21) are combined with
distribution dynamics (12), we get the following model (cf. (9))

dmi

dt
= mi Vi (mi , ni ) + ν

(
H∑

j=1

Ii j (m, n)m j − mi

)
,

dni

dt
= ni Wi (mi , ni ) + ξ

(
H∑

j=1

Ji j (m, n)m j − mi

) (22)

for i = 1, 2. In analogy to Section 2.4, ν and ξ are positive
parameters that characterize the relative time scale between
population and dispersal processes.

Numerical simulations of model (22) with best response
distributional dynamics reveal that the stable equilibrium for
the population dynamics (Fig. 6, top panel, no dispersal, ν =

ξ = 0) is destabilized when individuals start to disperse (Fig. 6,
middle, ν = ξ = 0.01), leading to periodic cycling in both
animal distribution and abundance. As the dispersal process
becomes even faster with respect to the population dynamics
time scale (Fig. 6, bottom panel, ν = ξ = 0.1), animal
distribution fluctuates wildly (see also Abrams et al. (2007)).

In summary, the instability of the interior NE for the disper-
sal dynamics suggests that the combined population/dispersal
dynamics will also be unstable at the population equilibrium,
especially as the rate of dispersal relative to the population dy-
namics increases. Moreover, since the boundary IFDs do not
correspond to stable population equilibria, we do not expect
the combined system to approach an equilibrium solution (and
this is illustrated in Fig. 6, middle and bottom panels). That
is, unless the population equilibrium corresponds to an IFD,
the game-theoretic perspective predicts non-convergent system
behavior. This conclusion contrasts markedly with the single-
species results of Section 2.4 where we showed that dispersal
dynamics cannot destabilize population dynamics.

By analogous reasoning, an interior IFD which corresponds
to an unstable population equilibrium will also be unstable in
the combined dispersal and population dynamical system when
dispersal rates are low. In fact, Cressman et al. (2004) show by
example that such an interior IFD remains unstable even when
dispersal rates are very high.

On the other hand, for predator–prey systems with linear
functional response (as in Fig. 5, panel B), an interior NE
corresponding to a population equilibrium is an IFD as well
as neutrally stable for the population dynamics. Simulations
confirm the intuition that this NE is asymptotically stable for all
choices of dispersal rates, a result that was shown analytically
by Cressman et al. (2004) when dispersal rates are high. Finally,
it is easy to construct examples of unstable interior NE under
the combined dynamics for two-patch predator–prey systems
where predators have a Holling type II functional response
(Abrams, 2007). This is intuitively clear since, as noted in
Section 3.2, this functional response has a destabilizing effect
both for the spatial distribution of predator and prey and for the
population dynamics.
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Fig. 6. Dependence of combined dispersal and population dynamics (see model (22)) on dispersal and population time scales. The left panel shows animal
distribution (p1-solid line, q1-dashed line) and the right panel shows total animal abundance (M-solid line, N -dashed line). The upper panel illustrates population
dynamics with no animal dispersal (ν = ξ = 0). Here, the system approaches the population equilibrium M = N = 10 even though the corresponding interior
NE is not an IFD at these densities. The middle panel assumes low animal dispersal (ν = ξ = 0.01) and the bottom panel assumes faster dispersal dynamics
(ν = ξ = 0.1). In both these panels, the system appears to be evolving to a limit cycle with the population switching quickly in the bottom panel between the two
unstable boundary NE where the two species are segregated into separate patches. Other parameters are r1 = 1, r2 = 0.1, s1 = 0.1, s2 = 1, K1 = 19, K2 = 2,
L1 = 2, L2 = 19, α1 = 9, α2 = 0.1, β1 = 0.1, β2 = 9.
4. Discussion

In this article, we reviewed and synthesized theoretical
works on the IFD from the game-theoretical point of view. For
a single species, the Fretwell and Lucas (1970) IFD concept is
given in game-theoretic terms as a NE of the habitat selection
game (i.e. a distribution among the patches such that the
“suitabilities” in all occupied patches are equal and at least
as large as the suitability in any unoccupied patch). Although
it was often assumed in the literature that the IFD is also
an ESS, to our knowledge, a formal proof was given just
recently (Cressman et al., 2004; Cressman and Křivan, 2006).
This guarantees that the IFD concept is robust with respect to
invasions of individuals with different strategies but the same
payoffs. In other words, the observed animal distribution is
stable when the ability to find better patches is adaptive and
there are small spatial perturbations to IFD patch preferences.
Since the ESS concept is independent of the dispersal process
per se, we have also surveyed some explicit dispersal processes
and compared their stability with the game-theoretical stability
of the IFD.

A classical approach to model animal dispersal assumes
passive dispersal between patches (e.g., Hastings (1983), Holt
(1985), Johnson and Gaines (1990), Houston et al. (1995) and
Holt and Barfield (2001)). Under the IFD there will be more
individuals in the better patch when compared with the poorer
patch. Since passive dispersal between patches tends to equalize
animal densities across patches, animal density is lower in the
best patch (and higher in the worst patch) when compared with
the IFD. This phenomenon of “undermatching” necessarily
leads to a decrease in fitness of those dispersing animals that
leave the better patch which is the reason why evolution of
dispersal should select against dispersal in spatially varying
but temporally constant environments (Hastings, 1983; Holt,
1985; Holt and Barfield, 2001). On the contrary to such passive
dispersal, we reviewed in this article some recent work on



V. Křivan et al. / Theoretical Population Biology 73 (2008) 403–425 423
dispersal dynamics that assumes an active dispersal to patches
with a higher fitness. The choice of such dispersal dynamics
is not unique and, in principle, one can think of infinitely
many possible dispersal dynamics. We discussed in detail
dispersal dynamics that are consistent with the ideal and free
assumptions made by Fretwell and Lucas. In particular, these
dynamics assume that animals are omniscient and they move
always to the patch with the highest fitness. Such dynamics
are well known in game theory under the name, best response
dynamics (Hofbauer and Sigmund, 1998). For each animal
distribution, animals move to the patch which provides them
with the best response (=highest fitness) for the current state
(=distribution). In fact, these best response dispersal dynamics
are an example of a more general class of “better response”
dispersal dynamics which assume that animals never disperse to
patches with a lower payoff and some animals always disperse
to a patch with the highest payoff. These assumptions on
local myopic behavior relax the original Fretwell and Lucas
assumption of globally omniscient animals. All better response
dynamics lead to the IFD. This can then explain why the
IFD is observed in cases where consumers do not have global
information about their environment. Thus, for a single species
the IFD is stable from two different perspectives: (1) it is stable
in the static sense of being Evolutionarily Stable, and (2) it is
the stable equilibrium of a wide class of distribution dynamics
that we call better response dynamics. The static nature of the
first perspective makes the IFD a very robust concept from
the biological point of view because it does not consider any
distribution dynamics.

The relationship between static and dynamic stability is not
so clearcut in the case of multiple species. First, in contrast
to the single-species case, there can now be a two-species
distribution that corresponds to a NE which is not stable with
respect to either the game-theoretical point of view (i.e., it is
not an ESS) or the best response dynamics (i.e. distribution
dynamics described by the best response dynamics do not
converge to this NE). That is, the intuitive description (p.
22, Fretwell and Lucas, 1970) of an IFD by saying “the
distribution is stable only when suitabilities are equal in all
habitats” is correct for single-species habitat selection games
but not for two species. By examining two-patch models
of both competitive and predator–prey systems, we showed
that the IFD for two species is given through the ESS
introduced by Cressman (1992) (see also Cressman (2003)).
The IFD is then asymptotically stable for all best response
dynamics irrespective of different species’ dependent rates of
movement to the best patch (i.e., irrespective of species specific
differences in time scales of dispersal). A second complication
for two-patch predator–prey systems is that the IFD is not
asymptotically stable for all better response dynamics. These
complications emphasize that the ideal free assumptions are
more crucial for two-species models as compared to the single-
species case and that stability of the IFD depends on properties
of the dispersal dynamics.

Using the two-species IFD, we also examined how the
single-species Parker’s matching principle extends to two
species. Under this extension, it is quite unlikely that two
exploitatively competing species will distribute over both
patches. That is, either they completely segregate, or one
species occupies both patches while the second species
occupies one patch only. In the ecological literature, this
exclusion principle was termed “the ghost of competition past”
(Connell, 1980; Morris, 1999). The case where both species
occupy both habitats can happen only under some special
conditions (e.g., the two patches differ in the resource input
rate only and functional responses of both competing species
are linear). If these conditions hold, the resulting distribution is
not uniquely given and it is not an IFD because it is not stable
with respect to mutant invasions.

One interesting prediction which emerges from recent work
on the IFD is the fact that the IFD can be reached even if
animals do not disperse between patches but they undergo
population dynamics. This is because, if every patch reaches its
population equilibrium, the animal fitness there must be zero,
and thus it equalizes across all occupied habitats. Although
this is a very simple observation, it can be another reason why
observed distributions are often close to the IFD. That is, the
IFD can be reached by two different processes: on a short time
scale by animal dispersal, on a longer time scale by population
dynamics.

Accordingly, there are two different types of dynamic
stability related to the two-species IFD concept: demographic
and dispersal. For a single species, these two types of stability
are the same. That is, if the animal distribution is the outcome
of demographic processes only, it is also the IFD of the pure
dispersal process and vice versa. However, this is no longer
true for two-species models (Cressman et al., 2004), because
the mathematical conditions for the two types of stability of
the animal distribution are not the same. In fact, dispersal can
destabilize a stable population distribution which was reached
solely by a demographic process, and, similarly, population
dynamics can destabilize an IFD of a system which does not
consider population dynamics. Such results (see also Abrams
et al. (2007)) show that ecologists need to pay attention to
dispersal mechanisms and time scales on which near-to-IFD
distributions are observed. The reason is that the IFD can be
reached either on a short time scale (which is the case of
most experimental work on the IFD), or on a longer population
dynamical scale by different processes.

The game-theoretic perspective developed in this paper is
most successful when either applied to single-species habitat
selection games with two or more patches or applied to
two-species games in a two-patch environment. As we have
seen (e.g. the hierarchical competitive systems and those with
boundary NE in Section 3.5), the IFD approach also shows
potential to explain observed spatial distributions in multi-patch
systems with two or more species, although the theory here is
far from complete. IFD theory also needs to be tested for multi-
species systems where within-patch interspecific interactions
are not of competitive or predator–prey type (e.g., mutualistic
systems).

There are several other directions for future research where
the game-theoretic perspective will prove useful. For instance,
an underlying assumption of the IFD approach is that the payoff
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to an individual is the same for all animals of the same species
in the same patch. Furthermore, our dispersal dynamics assume
that all such animals have the same dispersal probabilities
between patches. These assumptions mean that each species is
monomorphic. The question arises as to the effect of having
a polymorphic species with multiple phenotypes in the same
patch whose payoffs and dispersal probabilities depend on the
phenotypic distribution (as well as the spatial distribution) of
the species. An extreme example has some phenotypes within
the population that specialize in a particular patch and do not
disperse. An animal’s strategy is then a simultaneous choice
of habitat and phenotype from the game-theoretic perspective,
which is the natural setting to explore connections between NE,
ESS and possibly IFD in such circumstances.

Another assumption of the IFD is that movement between
patches is free. In particular, there is no cost either in terms of
energy spent by, or added danger to, the dispersing individual.
Initially, phenotypes that avoid such costs by specializing in
one patch would seem to have an advantage. However, as
differences in patch payoffs increase, it will eventually pay
individuals to be mobile (e.g. in a bacterial culture that feeds
on two types of sugar, some bacteria switch their metabolism
to produce enzymes that process the alternative type if the
preferred type is at low density). In theory, such costs and
benefits can be incorporated into the payoff structure of the
underlying habitat selection game. The effects of such changes
on the IFD and on the stability of the system need to be further
examined.
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