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The classic Hawk-Dove game is a symmetric game in that it does not distinguish between the winners
and losers of Hawk-Hawk or Dove-Dove contests. Either of the two interacting Hawks or the two inter-
acting Doves have the same probability to win/lose the contest. In addition, all pairwise interactions take
the same time and after disbanding, the individuals pair instantaneously again. This article develops an
asymmetric version of the Hawk-Dove model where all costs are measured by the time lost. These times
are strategy dependent and measure the length of the conflict and, when a fight occurs between two
interacting Hawks, the time an individual needs to recover and pair again. These recovery times depend
on whether the Hawk won or lost the contest so that we consider an asymmetric Hawk-Dove game where
we distinguish between winners and losers. However, the payoff matrix for this game does not corre-
spond to the standard bimatrix game, because some entries are undefined. To calculate strategy payoffs
we consider not only costs and benefits obtained from pairwise contests but also costs when individuals
are disbanded. Depending on the interacting and recovery times, the evolutionary outcomes are: Hawk
only, both Hawk and Dove, and a mixed strategy. This shows that measuring the cost in time lost leads
to a new prediction since, in the classic (symmetric) Hawk-Dove model that does assume positive cost
(C > 0), both Hawk and Dove strategy is never an evolutionary outcome.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In evolutionary ecology, the classic Hawk-Dove model
(Maynard Smith and Price, 1973) plays an important role to
explain, from the Darwinian point of view, the evolution of aggres-
siveness. The model, which is one of the most celebrated in evolu-
tionary game theory (e.g., Hofbauer and Sigmund, 1998; Broom
and Rychtář, 2013; McNamara and Leimar, 2020), assumes that
individuals behave either aggressively (Hawk strategy), or cooper-
atively (Dove strategy) and they compete for some benefit of value
V. The winner obtains the benefit and the loser pays a cost C if they
fight.1 The model predicts that, if the cost is higher than the benefit
(C > V), individuals should play a mixed strategy where they use the
aggressive strategy with probability V=C while, when fighting is not
costly (C < V), individuals should be aggressive. Although the model
proved very instrumental to explain evolution of aggressiveness
(e.g., Sirot, 2000; Hsu et al., 2006; Kokko et al., 2014), it is difficult
to imagine how to measure the benefits and costs in the same units.
E.g., two stags can compete for females and the benefit of winning
the contest can be measured by the number of females a stag gets,
while the cost of a fight can lead to injuries of one or both stags,
or even to death. Expressing these two in a common currency seems
to be impossible. This makes applications of game theory in biology
more difficult when compared to economic applications where util-
ity theory allows one to define a preference relation on possible out-
comes of the game. Utilities are often expressed in money with the
natural preference order.

The Hawk-Dove game is also one of the models often used to
describe cultural evolution of social behavior and structure (e.g.,
Molleman et al., 2014; Herold and Kuzmics, 2020; Perepelitsa,
2021) where it stands as a prototype of an evasion game
(Molleman et al., 2013) in which the relative payoff of each pure
strategy decreases with the frequency of this strategy in the popu-
lation which results in a unique mixed evolutionarily stable equi-
librium or an evolutionarily stable state.

Two-player games assume that players obtain payoffs through
pairwise interactions that last the same time, irrespective of strate-
gies the players use. This is an important assumption, because it
leads to an equilibrium pair distribution that corresponds to the
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Hardy–Weinberg distribution of population genetics (Hofbauer
and Sigmund, 1998; Broom and Rychtář, 2013). Game theory
assumes that pairs are formed instantaneously and payoffs are
evaluated at the equilibrium pair distribution. Křivan and
Cressman (2017) (see also Garay et al., 2017) extended this
approach by assuming that interaction length is strategy depen-
dent. This leads to distributional dynamics that are much more
complicated when compared to the case of uniform interaction
times. This theory has been applied to the Hawk-Dove model
(Křivan and Cressman, 2017; Broom and Křivan, 2020), the Prison-
er’s dilemma game (Křivan and Cressman, 2017; Broom and
Křivan, 2020; Křivan and Cressman, 2020), the Battle of the Sexes
(Cressman and Křivan, 2020), and the Owner-Intruder game
(Cressman and Křivan, 2019). These applications show that differ-
ences in interaction times lead to novel predictions for the evolu-
tionary outcomes for these games when compared to the classic
model outcomes (e.g., in the case of the repeated Prisoner’s
dilemma game, cooperation can evolve if pairs of cooperators stay
together for enough rounds). For the Hawk-Dove model (Křivan
and Cressman, 2017), a mixed strategy evolutionary outcome
exists even when the cost of the fight is low and the interaction
time between two Hawks is high enough. The classic model that
assumes all interactions take the same time predicts that Hawk
is the evolutionary outcome in this case.

The classic (symmetric) Hawk-Dove game as well as the asym-
metric version called the Owner-Intruder game (Broom and
Rychtář, 2013) assume that a Hawk wins a contest with a Dove,
but they do not distinguish between winners and losers in
Hawk-Hawk and Dove-Dove interactions where individual payoffs
are equally shared between the two contestants. This is because
standard two-player game theory assumes payoffs are obtained
only through pairwise interactions and all individuals are paired,
i.e., single individuals that are disbanded from a pair find partners
instantaneously. In this article, we consider a more realistic scenar-
io, where disbanded individuals do not pair instantaneously and
fitness of each strategy depends on costs and benefits (also called
‘‘payoffs”) not only obtained from pairwise interactions but also
obtained when individuals are single. Because these costs and ben-
efits when single can depend on whether the individual won or lost
the contest, we need to keep track of who is the winner and who is
the loser. Thus, we need to consider an asymmetric game where an
individual is either in the position of the winner or the loser. How-
ever, unlike the payoff bimatrix of a standard two-player asym-
metric game (e.g., the Owner-Intruder game; Broom and Rychtář,
2013), our asymmetric game does not have all entries defined.
For example, in the case of the Hawk-Dove game, payoff to loser
playing Hawk and winner playing Dove is undefined (see payoff
bimatrix (1) below) since this event never occurs.

In this article, we assume that when two Hawks fight, the indi-
viduals need some resting time when the pair disbands. E.g., when
the fight is for some food, the winner of the contest receives the
resource and needs some time to ‘‘process” it. In this case, the rest-
ing time can be viewed as the handling time a predator needs
when it captures a prey after a dispute with another predator. In
this analogy, it is important to mention that considering handling
times led to more general functional responses (Holling, 1959)
with strong implications for predator–prey coexistence (Gause,
1934) when compared to the Lotka-Volterra predator–prey model
(Volterra, 1926). In another context, if two stags playing Hawk
fight for females, the loser may require a longer time to recover
from the contest when compared to the winner.

One novelty of this article is that it considers costs, measured in
time lost, of singles in the Hawk-Dove game. Thus, we consider two
types of times (see time bimatrix (4) below). The first is the
strategy-dependent time lost in contest between two individuals
and this time is the same for both contestants, resulting in a time
2

interaction matrix that is symmetric in strategies. When these are
the only times considered in the game, Křivan and Cressman
(2017) showed that strategy-dependent interaction times can
change predictions of the classic Hawk-Dove model. In this article,
we are also interested in the so called ‘‘recovery time” which is the
time an individual needs after it is disbanded from a pair and
before it can form a new pair. It is natural to assume that this time
depends on whether the individual won or lost the contest, so that
we need to track winners and losers of the game without averaging
payoffs as in the classic Hawk-Dove game. All costs in this article
are measured by time lost, i.e., C ¼ 0 in the classic model. Thus,
we separate units in which benefits are measured from units in
which costs are measured. From the time bimatrix, we are able
to calculate the equilibrium pair distribution of our asymmetric
Hawk-Dove game in different model scenarios (Sections 2.1 and
2.3) and analyze what effect these have on the evolutionary out-
come (Section 2.2) when the payoff bimatrix is given by (3) below.
2. Models

In this article, we consider a contest competition between two
individuals with two phenotypes called Hawk and Dove. In the
classical model (Maynard Smith and Price, 1973) the benefit of
winning a contest is V and the cost to the loser in a fight, which
only occur in Hawk-Hawk contests, is C. Hawks always win con-
tests with Doves and in the symmetric game, individual payoffs
in Hawk-Hawk or Dove-Dove contests are equally shared between
the two contestants, as there is no distinction between the winner
and the loser.

For our purposes, it is necessary to consider an asymmetric ver-
sion of the Hawk-Dove game where we distinguish between the
winner and the loser in the Hawk-Hawk and Dove-Dove contests.
We denote by Hw (H‘) a Hawk individual who wins (loses) the con-
test. Similarly, Dw (D‘) denotes a Dove individual who wins (loses)
the contest. The game is then represented by the following payoff
bimatrix

ð1Þ

That is, when two Hawks meet, a fight occurs and the winner
receives the benefit and the loser bears the cost. Moreover, when
a Hawk and Dove encounter each other, the Hawk always wins
the contest without a fight. For this reason, the entry in the payoff
matrix when a Dove who wins encounters a Hawk who loses is not
defined (NDF). Finally, when two Doves meet, one wins the benefit
without a fight.

We remark that the above winner-loser game defined by payoff
matrix (1) does not correspond to the standard asymmetric (bima-
trix) game. Asymmetric games (Maynard Smith and Parker, 1976)
assume either there are real differences between the two contes-
tants (e.g., different sexes in the Battle of the Sexes; Dawkins,
1976), different species in predator–prey games (Vincent and
Brown, 2005; Broom et al., 2016), or the two individuals are iden-
tical, but play different roles (e.g., the Owner-Intruder game as an
asymmetric version of the Hawk-Dove game; Broom and Rychtář,
2013). In particular, in the standard asymmetric game, all row
strategies interact with all column strategies so that all entries in
the bimatrix are defined. The game defined by (1) does not con-
sider any such differences between the players. The winner gets
payoff V irrespective of the strategy it plays while the loser does
better when it plays Dove.

If, in the Hawk-Hawk and Dove-Dove encounters, each player is
equally likely to be in the position of the winner or the loser, the
expected payoff to the row player is then given by the standard



2 In particular, individuals who interact with a Dove require no recovery time since
these individuals do not engage in a fight. This is consistent with the story behind the
classic Hawk-Dove model. However, Appendix A shows that our methods can be
extended to include resting times for winner Hawks (Doves) and resting times for
loser Hawks (Doves). When these times are independent of the pairs from which
individuals disbanded, the extended model again has a unique positive equilibrium of
the pair formation dynamics generalizing (5) below and qualitatively the same
evolutionary outcomes found in Section 2.2 where it is assumed that individuals who
interact with a Dove require no recovery time. Our methods are general enough to
treat other models, but in this article we focus on those that are consistent with the
classic Hawk-Dove model assumptions.

3 We assume that both winners and losers enter recovery periods whose lengths
depend on whether the Hawk is a loser or a winner.
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payoff matrix for the symmetric Hawk-Dove game (Maynard Smith
and Price, 1973); namely,

ð2Þ

This standard payoff matrix does not distinguish between the
winner and the loser of the game. However, there may be other
costs/benefits that may be different for winners and losers. For
example, if individuals do not pair instantaneously after they dis-
band, they may accrue some payoff as singles and this payoff
may depend on whether the individual won or lost the contest.
Thus, to calculate the average fitness for each strategy, we need
to consider winners and losers explicitly without averaging the
payoff matrix first (as is done to obtain the above standard payoff
matrix).

In this article, we take another approach which assumes all
costs to an individual (e.g., the cost of fighting or the cost of recov-
ery) are measured as the time taken in these activities. In particu-
lar, we set C ¼ 0 in the payoff bimatrix (1) to obtain

ð3Þ

The payoff matrix (3) then provides the payoffs per interaction,
where the payoff of either player does not depend on the strategy it
plays, as the winner always receives full benefit V while the loser
does not get anything.

The classic Hawk-Dove model assumes that all interactions take
the same amount of time and there is no recovery time. The change
in the individual fitness after each interaction is then given directly
by the payoff. In this article, individual fitness is defined as the
expected payoff received per unit of time spent in interaction
and in recovery activities (see Section 2.2) when distribution of
players in the population is at an equilibrium (see Section 2.1).
Contrary to the classic result where the only evolutionary outcome
when C ¼ 0 is the population consisting of all Hawks, Křivan and
Cressman (2017) showed that an interior stable mixed strategy
(i.e., a coexistence equilibrium of Hawks and Doves) exists when
interaction times between Hawks last long enough.

In this article, besides costs associated with time lost due to
interactions, we focus on the case where a fight between two
Hawks leads to a period of recovery during which individuals can-
not enter new contests. Moreover, our model includes the situation
where the recovery times for the winner Hawk and the loser Hawk
are different. For example, the loser Hawk may need more time to
recover from a fight if it is injured than the winner Hawk, or the
winner Hawk may need more time to process contested resource.
Interaction and recovery times are given by the time bimatrix

ð4Þ

where sij (i; j 2 fH;Dg) measures interaction time between two indi-
viduals and sw (s‘) is the resting time the winner (loser) Hawk
needs to recover before pairing with a new individual. Following
the usual assumption of the classic Hawk-Dove model, we assume
that pairs are formed instantaneously, i.e., all individuals that are
ready to pair find their partner immediately. Thus, the searching
time is neglected and there are no searching individuals.

In the following, we consider the two cases where Hawk losers
and winners both have recovery times (Section 2.1) and where
only the losing Hawks require a recovery time (Section 2.3). Since
our model includes recovering individuals, we must consider sin-
gles explicitly. We consider very fast pairing so that the distribu-
3

tion of pairs and recovering singles is at equilibrium. In the next
section, we calculate this equilibrium.

2.1. Pair distribution when both the loser and the winner Hawk need
recovery time

In order to investigate the evolutionary outcome(s) of our
model, individual fitness functions need to be determined at the
equilibrium activity distribution for the current numbers of Hawks
and Doves. To this end, we first describe the pair formation dynam-
ics in (5) below when these numbers are fixed and then calculate
its equilibrium distribution.

The numbers of pairs are denoted as nHH , nHD, and nDD where the
subindices denote strategies of the two paired individuals, and nHw

(nH‘
) is the number of recovering Hawks that won (lost) their

Hawk-Hawk contest and are not yet ready to pair.2 In general, we
assume these two recovery times can differ. Thus, per unit of time,

there will be nHD
sHD

þ nHw
sw þ nH‘

s‘
single Hawk individuals ready to pair

immediately, 2 nDD
sDD

þ nHD
sHD

single Dove individuals that will immedi-

ately form new pairs, and 2 nHH
sHH

Hawk individuals that enter the

recovery period.3 The total number of individuals forming new pairs

is 2 nHD
sHD

þ 2 nDD
sDD

þ nHw
sw þ nH‘

s‘
. The proportion of newly formed nHH pairs

among all newly formed pairs is

nHD
sHD

þ nHw
sw þ nH‘

s‘

2 nHD
sHD

þ 2 nDD
sDD

þ nHw
sw þ nH‘

s‘

 !2

:

To obtain the number of newly formed nHH pairs, we multiply
this proportion by the number of all newly formed pairs

ðnHDsHD
þ nDD

sDD
þ nHw

2sw þ nH‘
2s‘

Þ. Similar considerations for nHD and nDD pairs

lead to the following dynamics of pairs and recovering winner
and loser Hawks

dnHH

dt
¼ �nHH

sHH
þ

nHD
sHD

þ nHw
sw þ nH‘

s‘

� �2
4 nHD

sHD
þ nDD

sDD
þ nHw

2sw þ nH‘
2s‘

� �
dnHD

dt
¼ �nHD

sHD
þ
2 nHD

sHD
þ nHw

sw þ nH‘
s‘

� �
nHD
sHD

þ 2nDD
sDD

� �
4 nHD

sHD
þ nDD

sDD
þ nHw

2sw þ nH‘
2s‘

� �

dnDD

dt
¼ �nDD

sDD
þ

nHD
sHD

þ 2nDD
sDD

� �2
4 nHD

sHD
þ nDD

sDD
þ nHw

2sw þ nH‘
2s‘

� �
dnHw

dt
¼ �nHw

sw
þ nHH

sHH
dnH‘

dt
¼ �nH‘

s‘
þ nHH

sHH
:

ð5Þ

Since the total numbers of Hawks (NH ¼ 2nHH þ nHD þ nHw þ nH‘
)

and Doves (ND ¼ 2nDD þ nHD) do not change in dynamics (5), this
reduces to a three-dimensional system, e.g., in variables nHD;nHw ,
and nH‘

. Indeed, substituting nHH ¼ ðNH � nHD � nHw � nH‘
Þ=2 and
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nDD ¼ ðND � nHDÞ=2 in (5), we obtain the following reduced system
of differential equations
dnHD

dt
¼ ðND � nHDÞs2HDðnH‘

sw þ nHws‘Þ � n2
HDsDDs‘sw

sHDðs‘swðNDsHD þ 2nHDsDD � nHDsHDÞ þ nH‘
sDDsHDsw þ nHwsDDsHDs‘Þ

dnHw

dt
¼ NH � nHD � nH‘

� nHw

2sHH
� nHw

sw
dnH‘

dt
¼ NH � nHD � nH‘

� nHw

2sHH
� nH‘

s‘
:

ð6Þ
Provided sDD –
2s2HD

2sHHþs‘þsw, there exists a unique positive equilib-

rium4 of system (6) (and, consequently, unique equilibrium of sys-
tem (5))
n�
HD ¼

s2HDðND þ NHÞ � sHD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

Ds2HD þ 2NDNH sDDð2sHH þ s‘ þ swÞ � s2HD
� �þ N2

Hs2HD
q

2s2HD � sDDð2sHH þ s‘ þ swÞ

n�
Hw

¼
sw s2HDðND � NHÞ þ NHsDDð2sHH þ s‘ þ swÞ � sHD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

Ds2HD þ 2NDNH sDDð2sHH þ s‘ þ swÞ � s2HD
� �þ N2

Hs2HD
q� �

ð2sHH þ s‘ þ swÞ sDDð2sHH þ s‘ þ swÞ � 2s2HD
� �

n�
H‘

¼
s‘ s2HDðND � NHÞ þ NHsDDð2sHH þ s‘ þ swÞ � sHD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

Ds2HD þ 2NDNH sDDð2sHH þ s‘ þ swÞ � s2HD
� �þ N2

Hs2HD
q� �

ð2sHH þ s‘ þ swÞ sDDð2sHH þ s‘ þ swÞ � 2s2HD
� � :

ð7Þ
This unique equilibrium is plotted as a function of the propor-
tion of Hawks pH ¼ NH

NHþND
in Fig. 1A for a particular choice of model

parameters. When sDD ¼ 2s2HD
2sHHþs‘þsw, the unique equilibrium simpli-

fies to
n�
HD ¼ NDNH

ND þ NH

n�
Hw

¼ N2
Hsw

ðND þ NHÞð2sHH þ s‘ þ swÞ

n�
H‘

¼ N2
Hs‘

ðND þ NHÞð2sHH þ s‘ þ swÞ :

ð8Þ

We observe that in this special case, the number of n�
HD and n�

DD

pairs do not depend on the interaction times. Note that (7) or (8)
also determine n�

HH and n�
DD.

In order to determine individual fitness functions, we conjec-
ture that the distribution of pairs and singles converges to this
equilibrium. Unfortunately, we are not able to show this analyti-
cally or to verify its local asymptotic stability for arbitrary time
4 We calculated and verified this equilibrium is the only positive solution using
Mathematica computer algebra software. We observe that, at the equilibrium, the
number of pairs satisfies

nHH

sHH
nDD

sDD
¼ 1

4
nHD

sHD

� �2

:

This is a generalization of the classic Hardy–Weinberg equilibrium proportions that

assumes sHH ¼ sHD ¼ sDD .

4

bimatrix (4) and positive resting times sw and s‘. As we are espe-
cially interested in this article on the effect of resting times, we
were able to show local asymptotic stability of the distributional
equilibrium when sHH ¼ sHD ¼ sDD.5 On the other hand, our exten-
sive numerical simulations of the distributional dynamics support
this conjecture for general positive interaction times too.
2.2. Payoffs and evolutionary outcomes

Following Křivan and Cressman (2017), we define fitnesses as
the expected payoff per unit of time an individual obtains when
the pair distribution is at the unique equilibrium (7). The probabil-
ity that a Hawk is paired with another Hawk is 2nHH

2nHHþnHDþnHwþnH‘
and

the payoff per unit of time in this case is pw
HH

sHHþsw for the winning

Hawk and p‘
HH

sHHþs‘ for the losing Hawk. We assume that each Hawk

is equally likely to win or lose the contest so that the average pay-
off per unit of time for a Hawk paired with another Hawk is

nHH
2nHHþnHDþnHwþnH‘

ð pw
HH

sHHþsw þ
p‘
HH

sHHþs‘Þ. Similar calculations hold also for

Doves, i.e., probability that a Dove is paired with another Dove is
2nDD

2nDDþnHD
as we assume that Doves do not need any resting time,

and the payoff per unit of time in this case is pw
DD
sDD

for the winning

Dove and p‘
DD
sDD

for the losing Dove. Again, we assume that each Dove

is equally likely to win or lose the contest so that the average pay-
off per unit of time for a Dove paired with another Dove is

nDD
2nDDþnHD

ðpw
DD
sDD

þ p‘
DD
sDD

Þ. If pDD denotes the average of pw
DD and p‘

DD, we

get that the average payoff per unit of time for a Dove paired with
another Dove is 2nDD

2nDDþnHD
pDD
sDD

. A Hawk is paired with a Dove with

probability nHD
2nDDþnHD

and the payoff per unit of time in this case is
5 Using command Reduce of Wolfram Mathematica, we verified the Routh-
Hurwitz stability criteria applied to system (6) at equilibrium (7).



Fig. 1. Pair and singles equilibrium distribution (5) as a function of proportion of
Hawks pH in the population of fixed size N ¼ 100 (Panel A). Solid (dashed) curve in
Panel B is Hawk (Dove) payoff (9) as a function of pH in the population of fixed size
N ¼ 100. Interior NE occur when PH intersects PD; namely, a stable NE (black dot)
at pH � 0:48 and an unstable one (gray dot) at pH � 0:92. Parameters: V ¼ 2,
pw

HH ¼ pHD ¼ V ¼ 2, p‘
HH ¼ 0, pDH ¼ 0, pDD ¼ V=2 ¼ 1, sHH ¼ 1, sDD ¼ 1, sHD ¼ 1,

sw ¼ 0, s‘ ¼ 10.
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pHD
sHD

for the Hawk and pDH
sHD

for the Dove. When fitnesses PH and PD

for Hawks and Doves, respectively, are defined as average payoffs
calculated at the equilibrium pair distribution we obtain
PH ¼ n�
HH

2n�
HH þ n�

HD þ n�
Hw

þ n�
H‘

pw
HH

sHH þ sw
þ p‘

HH

sHH þ s‘

� �
þ n�

HD

2n�
HH þ n�

HD þ n�
Hw

þ n�
H‘

pHD

sHD

PD ¼ 2n�
DD

2n�
DD þ n�

HD

pDD

sDD
þ n�

HD

2n�
DD þ n�

HD

pDH

sHD

ð9Þ

6 Stability of NE is typically considered to be dynamic stability (e.g., local
asymptotic stability) with respect to an evolutionary dynamics such as the replicator
equation (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998; Broom and Rychtář,
2013). For two-strategy games, an interior NE is stable if and only if the fitness of a
strategy whose frequency is slightly less (more) than at the NE is larger (smaller) than
the fitness of the other strategy. Thus, for the parameters of Figure 1, panel B shows
there are two interior NE, one stable at pH � 0:48 and one unstable at pH � 0:92. This
panel also shows the Hawk only population is a stable NE since the fitness of Hawks
there is larger than the fitness of Doves (i.e., Doves cannot invade). A stable NE is then
as we assume that resting Hawks do not accrue any fitness. These
fitnesses (cf. Figure 1B) are evaluated at the unique equilibrium
distribution ðn�

HH;n
�
HD;n

�
DD;n

�
Hw
;n�

H‘
Þ (cf. Figure 1A) given in (7). By

pH (pD ¼ 1� pH), we denote the proportion of Hawks (Doves) in
the population, i.e., NH ¼ pHN and ND ¼ ð1� pHÞN where
N ¼ NH þ ND is the total population.

First, suppose that the population consists entirely of Hawks,
i.e., pH ¼ 1. The equilibrium pair distribution is then

ðn�
HH;n

�
HD;n

�
DD;n

�
Hw
;n�

H‘
Þ

¼ NHsHH
2sHH þ s‘ þ sw

;0;0;
NHsw

2sHH þ s‘ þ sw
;

NHs‘
2sHH þ s‘ þ sw

� �
:

5

At this equilibrium, Hawk fitness is

PH ¼ sHHðp‘
HH sHH þ swÞ þ pw

HHðsHH þ s‘Þ
� �

ðsHH þ s‘ÞðsHH þ swÞð2sHH þ s‘ þ swÞ :

Let us consider a Dove mutant in the Hawk only population. The
mutant will interact only with Hawks, i.e., there will be no Dove
pairs, and fitness of such Dove mutant is PD ¼ pDH

sHD
. Thus, the Dove

mutant can invade the Hawk only populationwhenPD > PH which
yields

pDH

sHD
2þ s‘ þ sw

sHH

� �
>

p‘
HH

sHH þ s‘
þ pw

HH

sHH þ sw
:

We observe that, for our asymmetric Hawk-Dove game given by
bimatrix (3) where pDH ¼ p‘

HH ¼ 0 and pw
HH ¼ V , the above inequal-

ity simplifies to V < 0. As we assume that V > 0, Doves cannot
invade the Hawk only population in our game, i.e., Hawk is always
a Nash equilibrium (NE) as illustrated in Fig. 2.

Similarly, we consider when a Hawk mutant can invade the
Dove only population. In a Dove only population, average fitness
is PD ¼ pDD

sDD
and fitness of a Hawk mutant that can be paired only

with Doves is PH ¼ pHD
sHD

as there are no resting Hawks. Thus, from

(3) with pDD ¼ 1
2 ðpw

DD þ p‘
DDÞ, Hawks can invade provided

V
sHD

¼ pHD

sHD
>
pDD

sDD
¼ V=2
sDD

; ð10Þ

i.e., when sHD < 2sDD (Fig. 2A,B). In the classic Hawk-Dove game
which assumes sHD ¼ sDD, this inequality always holds. Fig. 2C, D
shows the case where sHD > 2sDD and Hawks cannot invade a Dove
only population. This is because the cost of time lost when a Hawk
interacts with a Dove is too high. All four panels of Fig. 2 (but espe-
cially Panels B and D) show that, as the resting time of the Hawk
losers gets large, the domain of attraction of the Hawk NE becomes
quite small. Then, even if the initial proportion of Hawks is high (i.e.,
above the dashed curve), random perturbations to the evolutionary
dynamics or stochastic effects due to finite population size are
likely to bring the population distribution below the dashed curve,
from where the population will tend to the mixed NE (solid curve in
Fig. 2A,B) or the Dove only NE (Fig. 2C,D).

The interior (i.e. mixed) NE are obtained by solving PH ¼ PD. In
particular, Fig. 2A, B shows thatwhenHawks can invade aDove only
population (i.e., when sHD < 2sDD), there exist two interior NEwhen
the loser resting time is high enough. One of these interior NE is
stable (shown by the solid curve) and the other unstable (shown
as the dashed curve).6 Since panel A assumes that winner Hawks do
not need any resting time (sw ¼ 0), we observe that when loser Hawk
resting time is long enough, Hawks do not take over the population
considered to be an evolutionary outcome.



Fig. 3. Continuation of fold points in sw–s‘ (Panel A) and sHD–s‘ (Panel B)
parameter space. The three possible structures to the evolutionary outcomes are:
Hawk only, both Hawk only and Dove only (denoted as Hawk and Dove equilibria),
and coexistence of a mixed evolutionary outcome with Hawk only (denoted as
Hawk only + Mixed equilibrium). Panel A assumes sHD ¼ 1 and panel B assumes
sw ¼ 1. Other parameters: V ¼ 2, pw

HH ¼ pHD ¼ V ¼ 2, p‘
HH ¼ 0, pDH ¼ 0,

pDD ¼ V=2 ¼ 1, sHH ¼ 1, sDD ¼ 1.
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when they invade the Dove only population. Instead, the evolutionary
outcome is then the interior stable NE. In fact, as loser Hawks spend
more time resting, the proportion of Doves increases at this evolution-
ary outcome and the domain of attraction of this evolutionary out-
come also increases until it eventually attracts almost all initial
distributions consisting of a mixture of Hawk and Dove individuals.

Panel B in Fig. 2 is similar to panel A except that it assumes that
winner Hawks spend some time resting (sw ¼ 5). This further pro-
motes the Dove strategy in the population. We stress that since
sHH ¼ sHD ¼ sDD ¼ 1 in panels A and B, the classic Hawk-Dove
model that does not consider resting times predicts the Hawk only
population is the unique evolutionary outcome. In fact, when all
ig. 2. Proportion of Hawks at Nash equilibria as a function of the recovery time for
he loser Hawk s‘ for distributional dynamics (5) with payoffs (9). Solid (dashed)
urves indicate stable (unstable) NE. Arrows indicate the direction of the
volutionary dynamics at fixed s‘ . Panel A assumes sHD ¼ 1; sw ¼ 0, panel B
HD ¼ 1; sw ¼ 5, panel C assumes sHD ¼ 3; sw ¼ 5, and panel D assumes
HD ¼ 3; sw ¼ 10. Other parameters: V ¼ 2, pw

HH ¼ pHD ¼ V ¼ 2, p‘
HH ¼ 0, pDH ¼ 0,

DD ¼ V=2 ¼ 1, sHH ¼ 1, sDD ¼ 1.
3
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V. Křivan and R. Cressman Journal of Theoretical Biology 547 (2022) 111162
interaction times are equal as in the classic Hawk-Dove model,
inequality sHD < 2sDD holds and our results show that resting times
have a strong effect on evolution of aggressivity because as resting
times increase (cf. panel C vs. panel D), the proportion of Hawk
strategy at the interior equilibrium decreases and the domain of
attraction of the Hawk only strategy diminishes.

Panels C and D show the situation where Hawks cannot invade
the Dove only population because they spend too much time inter-
acting with Doves (i.e., sHD > 2sDD). In this case, there is one inte-
rior NE, which is unstable, and both Hawk only and Dove only
are evolutionary outcomes depending on the initial distribution.
Again we observe that as loser Hawks spend more time while rest-
ing, the domain of attraction of Dove only equilibrium increases.
So, when resting times are high, it is more likely that the Dove only
population will be achieved.

Fig. 3A considers the case where all interaction times are equal
(when sHH ¼ sHD ¼ sDD ¼ 1), i.e., the Hawk only equilibrium is the
only evolutionary outcome in the classic Hawk-Dove game. As
shown in Fig. 2A there may be two interior NE in this case. Fig. 3A
shows the dependence of the fold point where the two interior NE
coincide as a function of s‘ and sw. Above the curve, the stable inte-
riorNE (i.e., amixed equilibriumofHawkandDove strategies) exists
while, below the curve, Hawk only is the unique evolutionary out-
come. This shows that provided the resting time(s) are long enough,
Hawks can coexistwithDoves evenwhen there is nopayoff cost (i.e.,
C ¼ 0). The cost is now in time lost after the fight. Fig. 3B shows all
three possible structures to the evolutionary outcomes in sHD � s‘
parameter space. These structures are (i) Hawk only, (ii) Hawk only
and Dove only and (iii) Hawk only plus mixed strategy evolutionary
outcome.

Although distributional dynamics (5) assume that all interac-
tion and resting times are positive, Figs. 2 and 3 include cases when
some resting times are 0, e.g., when winner Hawk does not need
any recovery time. The following section examines the distribu-
tional dynamics in this case.
dnHD

dt
¼ s2HDs‘ðND � nHDÞðNH � nHD � nH‘

Þ þ 2nH‘
s2HDsHHðND � nHDÞ � 2n2

HDsDDsHHs‘
sHDðs‘ð2sHHðNDsHD þ nHDð2sDD � sHDÞÞ þ sDDsHDðNH � nHD � nH‘

ÞÞ þ 2nH‘
sDDsHDsHHÞ

dnH‘

dt
¼ NH � nHD � nH‘

2sHH
� nH‘

s‘
:

ð12Þ
2.3. Distributional dynamics when only the loser Hawk needs recovery
time

In this section, we assume that only the loser Hawk needs some
recovery time to pair again while all other individuals pair instan-
n�
HD ¼

sHD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2HDðN2

D þ N2
HÞ � 2NDNH s2HD � 2sDDðsHH þ s‘Þ

� �q
þ sHD ðND þ

�
2s2HD � 2sDDðsHH þ s‘Þ

n�
H‘

¼
s‘ sHD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2HDðN2

D þ N2
HÞ � 2NDNH s2HD � 2sDDðsHH þ s‘Þ

� �q
þ s2HDðND

�
2ðsHH þ s‘Þ sDDðsHH þ s‘Þ � s2HD

� �

7

taneously after a contest, i.e., sw ¼ 0 and s‘ > 0. As we cannot set
sw ¼ 0 in distributional dynamics (5), we derive distributional
dynamics for this case anew. Since winning Hawks are ready to

pair immediately after a contest, there will be nHH
sHH

þ nHD
sHD

þ nH‘
s‘

single

Hawk individuals and 2 nDD
sDD

þ nHD
sHD

single Dove individuals per unit

of time that will immediately form new pairs, and nHH
sHH

loser Hawk

individuals that enter the recovery period. The total number of

individuals forming new pairs is nHH
sHH

þ 2 nHD
sHD

þ 2 nDD
sDD

þ nH‘
s‘
. The propor-

tion of newly formed nHH pairs among all newly formed pairs is

nHH
sHH

þ nHD
sHD

þ nH‘
s‘

nHH
sHH

þ 2 nHD
sHD

þ 2 nDD
sDD

þ nH‘
s‘

 !2

:

To obtain the number of newly formed nHH pairs we multiply this
proportion by the number of all newly formed pairs

ð nHH
2sHH

þ nHD
sHD

þ nDD
sDD

þ nH‘
2s‘

Þ. Similar considerations for nHD and nDD pairs

lead to the following pair dynamics

dnHH

dt
¼ �nHH

sHH
þ

nHH
sHH

þ nHD
sHD

þ nH‘
s‘

� �2
4 nHH

2sHH
þ nHD

sHD
þ nDD

sDD
þ nH‘

2s‘

� �
dnHD

dt
¼ �nHD

sHD
þ
2 nHH

sHH
þ nHD

sHD
þ nH‘

s‘

� �
nHD
sHD

þ 2nDD
sDD

� �
4 nHH

2sHH
þ nHD

sHD
þ nDD

sDD
þ nH‘

2s‘

� �

dnDD

dt
¼ �nDD

sDD
þ

nHD
sHD

þ 2nDD
sDD

� �2
4 nHH

2sHH
þ nHD

sHD
þ nDD

sDD
þ nH‘

2s‘

� �
dnH‘

dt
¼ �nH‘

s‘
þ nHH

sHH
:

ð11Þ

Since the total number of Hawks NH ¼ 2nHH þ nHD þ nH‘
, and

Doves ND ¼ 2nDD þ nHD do not change, system (11) reduces to a
two-dimensional system, e.g., in variables nHD and nH‘
For s‘ – 2 s2HD
sDD

� sHH , system (12) has a unique positive distribu-

tional equilibrium
NHÞ
�
;

� NHÞ þ 2NHsDDðsHH þ s‘Þ
�
:

ð13Þ
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When sDD ¼ 2 s2HD
sHHþs‘, the equilibrium is

n�
HD ¼ NDNH

ND þ NH
;

n�
H‘

¼ N2
Hs‘

ðND þ NHÞð2sHH þ s‘Þ :
ð14Þ

In contrast to Section 2.1 where we are unable to verify analyt-
ically local asymptotic stability of equilibrium (7), equilibrium (13)
is asymptotically stable in the positive part of the phase space.7
3. Discussion

In this article, we analysed a Hawk-Dove model under the
assumption that all costs are measured by time lost. These costs
comprise the time spent in interactions and the time fighting
Hawks need to recover and form new pairs. We focus on the time
a fighting Hawk needs to recover and start a new interaction. Such
time can be needed due to possible injuries, or fatigue after a fight.
In the case of predators competing for a prey, the recovery time can
also capture the handling time the winner of the fight needs to
handle the resource. As the recovery time depends on whether
the Hawk won or lost the fight, we must distinguish between the
winner and the loser of the contest. Such differences in recovery
times between winners and loser lead to an asymmetric evolution-
ary game. As there are also payoff consequences when individuals
are resting, we cannot use the usual approach of symmetrising the
payoff matrix by assuming that each individual is equally like to be
in the position of the winner or the loser. Instead, we have to deal
with the asymmetric payoff bimatrix (with some undefined
entries) to calculate payoffs for both winners and losers and then
calculate fitnesses of Hawks and Doves as average payoffs (averag-
ing over winners and losers payoffs).

In this article, we do not consider any other payoff costs associ-
ated with the fight which corresponds to setting C ¼ 0 in the clas-
sic Hawk-Dove game. We also do not consider any additional
payoffs for resting individuals, although these could be easily
included in our general setup. All costs are given by time lost either
in interacting or resting state. To calculate probabilities with which
individuals interact with other individuals (i.e., probabilities of the
four possible interacting pairs), we define distributional dynamics
that describe changes in the numbers of pairs and of single loser
and winner Hawks. Following the implicit assumption of evolu-
tionary game theory, we assume that distributional dynamics
operate on a fast time scale when compared with evolution and
calculate the unique distributional equilibrium. We then calculate
Nash equilibria for the game at this distributional equilibrium and
equate stable NE with evolutionary outcomes.

We focus on the effect that resting time has on these evolution-
ary outcomes and show that, depending on parameters, there are
three possible structures to the evolutionary outcomes (Figs. 2
and 3). First, Hawk only may be the unique evolutionary outcome.
Second, both elementary strategies (i.e., Hawk, Dove) are evolu-
tionary outcomes. Third, a mixed strategy evolutionary outcome
exists together with the Hawk only evolutionary outcome.
Fig. 3A shows that the mixed strategy exists when the resting
times are long enough. In particular, Fig. 2A, B and Fig. 3A assume
that all interaction times are the same, which, if there were no rest-
ing times, correspond to the classic Hawk-Dove game with cost set
to zero (i.e., C ¼ 0). The classic model predicts that Hawk strategy
7 We calculated the trace and determinant of the Jacobian of system (12) evaluated
at equilibrium (13). These are quite complex expressions but using command Reduce

of Wolfram Mathematica we verified that for positive values of parameters the trace
is negative and the determinant is positive, i.e., distributional equilibrium (13) is
locally asymptotically stable.
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is the only evolutionary outcome in this case. In fact, the classic
model with any nonnegative value of C never exhibits the second
or third possible structures of the evolutionary outcomes. How-
ever, as we see, considering positive resting times leads to novel
prediction because, as resting times increase, aggressivity in popu-
lation decreases for two reasons. First, there is a mixed evolution-
ary outcome at which individuals play both Hawk and Dove
strategy and the proportion of Dove strategy at this equilibrium
increases with increased resting times. Second, although the strat-
egy Hawk only is still an evolutionary outcome, its domain of
attraction decreases with increased resting times. Fig. 3B shows
the three possible structures of the evolutionary outcomes with
respect to parameters sHD and s‘.

In the main body of the article, we do not consider recovery
times of singles arising from interactions involving Doves,
because in these interactions there is no fight. Recovery or resting
times for single individuals who have interacted with a Dove can
be incorporated into our model. One such extension, analysed in
Appendix A, assumes that both Hawks and Doves have positive
resting times which are independent of the pairs from which
individuals disbanded. The extended model again has a unique
positive equilibrium of the pair formation dynamics and qualita-
tively the same structures to evolutionary outcomes found in Sec-
tion 2.2 where it is assumed that individuals who interact with a
Dove require no recovery time. Our methods are general enough
to treat other situations as well, but in this article we focus on
those that are consistent with the classic Hawk-Dove model
assumptions.

Although Dove only is never the unique evolutionary out-
come, our analysis shows that when both Dove and Hawk are
evolutionary outcomes, the domain of attraction of the Hawk
equilibrium can be very small (e.g. Fig. 2D). In such cases, e.g.,
due to random perturbations or stochastic effects due to finite
populations, it is likely that the population will end at the Dove
only equilibrium.

The story behind the Hawk-Dove game provides an obvious
example where interaction times (e.g., fighting time between
two Hawks) play an integral part of the model. Our approach
incorporates these times as well as times for other activities
(e.g., recovery time) as costs due to time lost. We want to
emphasize that these other activities are the result of the inter-
actions and strategy of the individual, but they also consider the
fitness of an individual who is no longer in a pair. The classic
game theory does not consider the fitness of unpaired individu-
als. Clearly, other evolutionary games also have underlying times
associated to different activities when individuals are unpaired.
E.g., the Battle of the Sexes game (Dawkins, 1976) where philan-
dering males when mated with fast females immediately desert
and look for a new mate while the female cares for the offspring
before mating again. In such circumstances, our novel concept of
integrating these times into the evolutionary game theory model
can be applied. In particular, we hope that this approach will
find applications in the theory of biological, social and cultural
evolution.
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Appendix A. Both Hawks and Doves have resting times

In the main body of the article, we assumed that only Hawks
need some resting times after a fight. One possible extension of
the model is to assume that both Hawks and Doves need resting
times after an interaction which leads to the following interaction
time bimatrix

ðA:1Þ
where we assume that winner Hawks (Doves) have resting time sHw
(sDw) and loser Hawks (Doves) have resting time sH‘ (sD‘) indepen-
dently from which pair they disbanded. Then the distributional
dynamics are

dnHH
dt ¼ � nHH

sHH
þ

nHw
sHw

þ
nH‘
sH‘

� �2

2
nHw
sHw

þ
nH‘
sH‘

þnDw
sDw

þ
nD‘
sD‘

� �

dnHD
dt ¼ � nHD

sHD
þ

nHw
sHw

þ
nH‘
sH‘

� �
nDw
sDw

þ
nD‘
sD‘

� �
nHw
sHw

þ
nH‘
sH‘

þnDw
sDw

þ
nD‘
sD‘

� �

dnDD
dt ¼ � nDD

sDD
þ

nDw
sDw

þ
nD‘
sD‘

� �2

2
nHw
sHw

þ
nH‘
sH‘

þnDw
sDw

þ
nD‘
sD‘

� �
dnHw
dt ¼ � nHw

sHw
þ nHH

sHH
þ nHD

sHD
dnH‘
dt ¼ � nH‘

sH‘
þ nHH

sHH
dnDw
dt ¼ � nDw

sDw
þ nDD

sDD
dnD‘
dt ¼ � nD‘

sD‘
þ nDD

sDD
þ nHD

sHD
:

ðA:2Þ

System (A.2) has a unique positive equilibrium.8 Payoffs evalu-
ated at this unique equilibrium distribution are then

PH ¼ n�HH
2n�

HH
þn�

HD
þn�

Hw
þn�

H‘

pw
HH

sHHþsHw þ
p‘
HH

sHHþsH‘

� �
þ n�HD

2n�
HH

þn�
HD

þn�
Hw

þn�
H‘

pHD
sHDþsHw

PD ¼ n�DD
2n�

DD
þn�

HD
þn�

Dw
þn�

D‘

pw
DD

sDDþsDw þ
p‘
DD

sDDþsD‘

� �
þ n�HD

2n�
DD

þn�
HD

þn�
Dw

þn�
D‘

pDH
sHDþsD‘

ðA:3Þ
where n�

Dw
(n�

D‘
) is the number of single Dove winners (losers) at the

equilibrium.First, suppose that the population consists entirely of
Hawks, i.e., pH ¼ 1. The equilibrium pair distribution is then

ðn�
HH;n

�
HD;n

�
DD;n

�
Hw
;n�

H‘
;n�

Dw
;n�

D‘
Þ

¼ NHsHH
2sHH þsH‘þsHw

;0;0;
NHsHw

2sHH þsH‘þsHw
;

NHsH‘
2sHHþsH‘þsHw

;0;0
� �

:

At this equilibrium, Hawk fitness is
8 We calculated this equilibrium in Mathematica and verified its positivity. We do
not give the formula here as it is quite complex.
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PH ¼ sHHðp‘
HH sHH þ sHwÞ þ pw

HHðsHH þ sH‘Þ
� �

ðsHH þ sH‘ÞðsHH þ sHwÞð2sHH þ sH‘ þ sHwÞ :

Let us consider a Dove mutant in the Hawk only population. The
mutant will interact only with Hawks, i.e., there will be no Dove
pairs, and fitness of such Dove mutant is PD ¼ pDH

sHDþsD‘. Thus, the

Dove mutant can invade the Hawk only population when
PD > PH , which yields

pDHð2sHH þ sH‘ þ sHwÞ
sHHðsD‘ þ sHDÞ >

p‘
HH

sHH þ sH‘
þ pw

HH

sHH þ sHw
:

We observe that, for our asymmetric Hawk-Dove game given by
bimatrix (3) where pDH ¼ p‘

HH ¼ 0 and pw
HH ¼ V , the above inequal-

ity simplifies to V < 0. As we assume that V > 0, Doves cannot
invade the Hawk only population in our game, i.e., Hawk is always
an evolutionary outcome.

Second, suppose that the population consists entirely of Doves,
i.e., pH ¼ 0. The equilibrium pair distribution is then

ðn�
HH;n

�
HD;n

�
DD;n

�
Hw
;n�

H‘
;n�

Dw
;n�

D‘
Þ

¼ 0;0;
NDsDD

2sDDþsD‘þsDw
;0;0;

NDsDw
2sDDþsD‘þsDw

;
NDsD‘

2sDDþsD‘þsDw

� �
:

At this equilibrium, Dove fitness is

PD ¼ sDDðp‘
DD sDD þ sDwÞ þ pw

DDðsDD þ sD‘Þ
� �

ðsDD þ sD‘ÞðsDD þ sDwÞð2sDD þ sD‘ þ sDwÞ :

Let us consider a Hawkmutant in the Dove only population. The
mutant will interact only with Doves, i.e., there will be no Hawk
pairs, and fitness of such Hawk mutant is PH ¼ pHD

sHDþsHw. Thus, the

Hawk mutant can invade the Dove only population when
PH > PD, which yields

pHDð2sDD þ sD‘ þ sDwÞ
sDDðsDw þ sHDÞ >

p‘
DD

sDD þ sD‘
þ pw

DD

sDD þ sDw
:

We observe that, for our asymmetric Hawk-Dove game given by
bimatrix (3) where pHD ¼ pw

DD ¼ V and p‘
DD ¼ 0, the above inequal-

ity simplifies to

2sDD þ sD‘ þ sDw
sDDðsDw þ sHDÞ >

1
sDD þ sDw

:

This formula generalizes a similar result in (10).
From these results and our numerical simulations, we observe

the evolutionary outcomes for the model in this Appendix are
the same three types as for the model in the main text.
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