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1. INTRODUCTION

When constructing models in population biology we are necessarily faced with
the problem of uncertainty. Typically, one starts from a deterministic model, which
is often described by a differential equation,

x′(t) = h(t, x(t)).

The uncertainty, or ‘noise,’ can be formally modeled with a parameteru appearing
in the dynamics

x′(t) = h(t, x(t),u(t)). (1)

There are two different approaches towards equation (1).The stochastic approach
is commonly used, see e.g., Keiding (1975), Pielou (1977), Ricciardi (1977),
Roughgarden (1979), Okubo (1980), Nisbet and Gurney (1982), Denniset al.
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(1991), Lande (1993), Grasman (1996), Chesson (1994) and Foley (1994). In
this setting it is assumed that the noise enters the dynamics linearly, i.e.,

x′(t) = f (t, x(t))+ g(t, x(t))u(t), (2)

andu(t) is the so-calledwhite noise, the formal derivation (i.e., stochastic differen-
tial) of Brownian motionw(t). This allows us to write (2) as a stochastic differential
equation

dx (t) = f (t, x(t))dt + σg(t, x(t))dw(t). (3)

From it one can obtain a diffusion equation describing the evolution of the proba-
bility density functionp(t, x) for the population sizex at timet

∂p(t, x)

∂t
= − ∂

∂x
(m(t, x)p(t, x))+ 1

2

∂2

∂x2
(n(t, x)p(t, x))

where

m(t, x) = f (t, x),n(t, x) = σ 2g(t, x)2,

see Roughgarden (1979). In order to obtain this equation, the noise must enter the
dynamics in a linear way, which is not always true in population models. The so-
lution of (3) is a stochastic process whose sample paths are nowhere differentiable
functions (with unbounded variation in any time interval). This derives from the
peculiarity of Brownian motion, a limit of random walks with independent steps.
Although stochastic approach led to a number of useful results there was also some
criticism concerning its appropriateness in models of population biology. This is
mainly connected with the fact that the white noise is a mathematical construct
which, though a reasonable model of the noise encountered in physics and elec-
tronics, may not be a suitable description of perturbations in biological systems.
For example, Steele (1985) suggested that fluctuations in terrestrial environment
are relatively well approximated by white noise over shorter periods while varia-
tions in marine environment, as well as longer-term terrestrial variations, are better
approximated by ‘red noise’ (i.e., higher variation in low frequencies). Recently, it
was suggested by Halley (1996) that so-called 1/ f noise may be a more appropriate
alternative type of noise for ecological models. While white noise emphasizes short
time scales, 1/ f noise contains equal influences for all time scales (Halley, 1996).
Other situations where the use of a diffusion approximation of a discrete system is
not correct are contained in Gillespie (1989). The problems arise in the limit proce-
dure from a random walk to a continuous time process: a diffusion can be obtained
only if some parameters have a particular order of magnitude, and this is not always
the case. However, the use of white noise leads to mathematically tractable models,
and due to the lack of experimental data, it was used as an effective representation of
noise. Models which are based on (3) allow us to compute several biologically im-
portant characteristics, for example probability of reaching an extinction threshold,
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mean and median times to first extinction etc., which are important for conservation
biology (Denniset al., 1991; Foley, 1994). However, deviations of the actual noise
from the white noise in model (3) will necessarily result in discrepancies between
predictions and observations. Moreover, to give a meaning to (3), standard calculus
has to be replaced by stochastic calculus, where integral over stochastic processes
may be defined in various ways, i.e., non-uniquely. Two commonly used interpre-
tations of (3), namely Itˆo and Stratonovich stochastic integrals, lead to substantially
different results, which also have different biological consequences, for example
concerning mean extinction times (Roughgarden, 1979). This problem, however,
may be settled at the modelling stage—since one can pass from one interpretation
to the other through a correcting term in the equation—and discussions about this
choice can be found in the literature (Turelli, 1977; Braumann, 1983).

In the engineering literature, another approach to uncertain systems is well es-
tablished; it is calleddeterministic noise, in the sense that noise is not assumed
to have any probabilistic structure whatsoever. This setting includes the so-called
unknown-but-bounded noise, which was developed mainly in the framework of the
control of uncertain systems by G. Leitmann and coworkers, as well as theH∞
approach [see, e.g., Ba¸sar and Bernhard (1991)]. In the case of the unknown-but-
bounded noise the only assumption onu in (1) is that it belongs to a prescribed
bounded setU , which may depend on time or even on the state of the system. If
U is a set of sufficiently regular functions (e.g., measurable) with values inU , then
(1) becomes adifferential inclusion

x′(t) ∈ F(t, x(t)) := {h(t, x(t),u(t))|u ∈ U }. (4)

The meaning of (4) is that at each point(t, x) the velocity is not uniquely given but
it belongs to the setF(t, x). There is no ambiguity on what ‘solution’ of the above
differential inclusion means, since for everyu(·) ∈ U we have an ordinary differ-
ential equation. Thus, the collection of all possible solutions of (1), for all different
(measurable) realizations of noiseu(·), forms the solution set of (4). Moreover,
since sample paths of (4) are described by (1), they are almost everywhere dif-
ferentiable functions. The theory of differential inclusions is well established and
does not require a special calculus (Aubin and Cellina, 1984; Aubin, 1991; Deim-
ling, 1992). To illustrate the bounded-noise approach, let us consider the problem
of extinction: letx denote population abundance, subject to a growth law and to
some unknown-but-bounded noise, according to

x′ = f (x)+ cg(x)u, x(0) = x0, u(t) ∈ [−1,1], (5)

and letη be a given positive extinction threshold for the population. A first ques-
tion is to determine those critical values ofc and x0 for which extinction may
occur, i.e., for which there are solutions of (5) that reachη. Thus, we may ar-
rive, for example, at a qualitative conclusion, that for smallc extinction does
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not occur, while for largec extinction is possible. Moreover, we may compute
the first time of possible extinction and study its dependence on parameters, e.g.,
c, x0 etc., without any information about the noise distribution. We note that,
in the stochastic case, there exist trajectories of the process which reach the ex-
tinction threshold in any positive time, i.e., the first time to extinction is zero.
However, since in the stochastic approach the first time to extinction is a ran-
dom variable, we can ask what is the mean (median) of it, which is then called
the mean (median) time to extinction. We emphasize that the computation of
the mean (median) time to extinction requires us to have some information on the
noise, i.e., that it is white. In the stochastic case this is assumed to be known,
but model (5) does not assume such information. In fact the admissible velocities
which are in the setf (x) + cg(x)[−1,1] are not distinguished one from another,
i.e., all of them are ‘equally likely’. In theH∞ setting noa priori bound on the
noise is given, but its size is penalized by a quadratic cost; more precisely, let us
again consider (5). In this framework, one may consider the functional

J(u) = x2
u(T)+

∫ T

0
u2(t)dt,

xu being the trajectory of (5) corresponding to the noiseu(·). The minimum ofJ,
among thosex which are solutions of (5) and satisfy the initial conditionx(0) = x0,
is always uniquely attained, due to the quadratic nature ofJ. The meaning of
J is: if the unperturbed system does not lead to the given threshold, then to ob-
tain a lowerx2(T) one must spend a largeu. Minimizing J is a way to bal-
ance the unboundedness of the noise: the minimizeru∗ is a square integrable, but
not necessarily a bounded function. The solutionx∗ corresponding to the mini-
mizer u∗ can be seen as a kind of worst-case solution of the perturbed equation
x′ = f (x) + g(x)u, x(0) = x0, and one may say that extinction occurs before
time T if x∗(T) ≤ η. This approach is effective from the point of view of calcu-
lations, even in higher dimensions and with the presence of a control [see Bardi
and Capuzzo Dolcetta (1997, Appendix B)]. It is motivated also through a connec-
tion with a kind of stochastic approach, calledrisk-sensitive, containing a Gaussian
noise with vanishing variance, see Whittle (1990).

An a priori bound on the noise, however, can sometimes be estimated from data,
and model (5) takes this fact into account. Therefore, the approach with unknown-
but-bounded noise seems to be very natural, when the data are too few to validate
white noise as a good representation of the observed noise, but are numerous enough
to estimate a bound on it. On the other hand, it may be criticized because it seems
rather poor, with respect to the information which can be obtained from it. Instead,
a method exists [see Bressan (1990) and Cellina and Colombo (1990)] which allows
us precisely to ‘distinguish’ among trajectories, and so to mimic some probability-
like concepts. This method relies on the definition of a function in the solution set,
which is calledmetric likelihood(here the term likelihood has nothing to do with the
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likelihood used in probability). This function has an integral representation, which
makes the approach similar to theH∞ setting, and allows several calculations.

Here we present how the unknown-but-bounded noise approach, together with
the metric likelihood, can be used to model uncertainty in population models. Since
this approach does not require in principle any probabilistic knowledge of the noise,
it may be applied also in those cases where insufficient data do not allow reliable
estimates of the statistical properties of the noise. The only assumption which is
requested is that the bound on the noise is known; this bound can be estimated from
data. Our approach is an alternative to the stochastic approach and it may prove to
be useful, e.g., in conservation biology. The paper is organized as follows. First, we
briefly review the basic concepts concerning differential inclusions, showing that
they can be good continuous approximations of the intrinsically discrete systems
appearing in population dynamics. Then, we describe the metric likelihood func-
tional, and define suitable functions, which—in this setting—are the counterpart
of the probability (density) of reaching a point. With the above tools, we compute
the likelihood of extinction and various extinction times for two classical models
of population dynamics, the exponential and logistic growth, perturbed in different
ways. Finally, using grizzly-bear data (Denniset al., 1991; Foley, 1994) we com-
pare our results with those obtained by using the stochastic approach. We stress
here that no stochastic calculus will be needed, and the methods we will use are
based on deterministic approach; moreover, we do not request that the noise enters
the dynamics linearly. This paper introduces a new, simple methodology and yet
it produces results which are qualitatively, but not quantitatively, similar to results
obtained via the theory of stochastic processes.

2. SOME BASIC MODELS

In theoretical population biology two sources of perturbations areenvironmental
anddemographicnoise. The demographic noise is due to fluctuations in birth and
death processes, while the environmental noise is due to unpredictable changes in
environment. The difference between these two types of noise lies in the fact that
the effect of demographic fluctuations decrease with increasing population size, due
to the Law of Large Numbers, while in the case of environmental fluctuations all
individuals are affected in the same way. Therefore, the environmental fluctuations
swamp demographic ones, unless the population is small.

Let x(t) denote the density of a population at timet . Two models based on (3)
are thoroughly investigated in the literature: exponential and logistic growth, for
which

f (x) = r x, f (x) = r x
(
1− x

K

)
. (6)

The choice ofg(·) depends on the nature of perturbations modeled. In the stochastic
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approach to demographic noise (Nisbet and Gurney, 1982),

g(x) = √(b(x)+ d (x))x,

whereb(x) andd(x) are instantaneous per capita birth and death rates, respectively.
For the exponential growth, this choice gives

g(x) ∝ √x. (7)

The effects of environmental noise are assumed to influence parametersr andK .
Assuming that onlyr is affected, we are led to

g(x) ∝ x (8)

for exponential growth, and to

g(x) ∝ x
(
1− x

K

)
(9)

for logistic growth. IfK is affected by noise, this leads to a model in which noise
u does not enter linearly:

x′ = r x

(
1− x

K + cu

)
.

Such models are not tractable via the stochastic method. In order to overcome this
difficulty, Roughgarden (1979) considers its first-order approximation inu, i.e.,

x′ = r x
(
1−

(
1− cu

K

) x

K

)
which leads to

g(x) ∝ x2. (10)

In stochastic differential equations the noise is represented through the white noise.
Instead, we assume that the noise is bounded by a constantc > 0, and we consider
the differential inclusion

x′ ∈ f (x)+ cg(x)[−1,1]. (11)

After introducing some general concepts we study (11) forf given by (6), andg
given by (7)–(10).



Modeling Uncertainty in Population Dynamics 727

3. DIFFERENTIAL INCLUSIONS, FUZZY SETS AND LIKELIHOOD

First we recall some facts concerning the theory of scalar differential inclusions.
A set-valued mapF is a map which associates with any point(t, x) the setF(t, x).
Having a set-valued mapF(t, x), a solution of the differential inclusion

x′(t) ∈ F(t, x(t))
x(0) = x0

(12)

is an absolutely continuous function defined on an intervalI = [0, T], such that
(12) holds for almost everyt ∈ I . Several existence results for (12) are available
under various continuity assumptions on the set-valued mapF (Aubin and Cellina,
1984; Aubin, 1991; Deimling, 1992). In this paper we set

F(t, x) = h(t, x, c[−1,1]), (13)

or, in the linear case

F(t, x) = h(t, x)+ cg(t, x)[−1,1], (14)

whereh, f, g are single-valued and Lipschitz continuous maps. Under these as-
sumptions there exist solutions of (12) for each initial condition. It is well known
that the setSof all solutions of differential inclusion (12) coincides with the set of
all solutions of the control system (2) for all measurable controlsu : I 7→ [−1,1],
(Aubin and Cellina, 1984, p. 91). Moreover, for each timet > 0 the reachable set
of (12)

R(t) := {x(t)|x ∈ S }
is an interval, which we denote

R(t) = [x−(t), x+(t)].

Thenx−, x+ are called the minimal and the maximal solutions of (12), i.e.,

x′+(t)=max{h(t, x+(t), cu)|u ∈ [−1,1]}
x′−(t)=min{h(t, x−(t), cu)|u ∈ [−1,1]},

which gives in the linear (inu) case (we assume thatg is positive)

x′+(t)= f (t, x+(t))+ cg(t, x+(t))

x′−(t)= f (t, x−(t))− cg(t, x−(t)).
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Any continuous model in population biology is an idealization of the real system,
which is discrete in its nature. However, such models are more tractable than
discrete ones, and allow us to obtain more easily some qualitative statements. To
be an approximation of a discrete system, any continuous model must satisfy the
following condition: as the time discretization tends to zero, the solutions of the
discrete problem must approach a solution of the continuous model and vice versa
(Turelli, 1977). This criterion says that if we take a sequence of piecewise-constant
functionsun which is converging to a functionu, then the corresponding solutionsxn

of (2) converge to a solution of (12) and, conversely, for every solutionx of (12) there
exists a sequence of piecewise-constant functionsun such that the corresponding
solutionsxn of (2) converge tox. This is exactly the case for our model based
on differential inclusions, (Aubin and Cellina, 1984, Theorem 1, p. 60). Let us
consider piecewise-constant functionsun which may have values of only 1 or−1.
This case corresponds roughly to the discrete random walk, where a particle moves
either to the right, or to the left. Thus, the discrete model for population dynamics
would be

xn+1 = xn + f (tn, xn)1+ cg(tn, xn)un1.

As 1 tends to zero, the trajectories of the above discrete model will converge to
trajectories of the following differential inclusion

x′(t)= f (t, x(t))+ cg(t, x(t))u(t)

u(t) ∈ [−1,1] (15)

x(0)= x0.

This convergence property also holds for models in which noise enters nonlinearly.
The difference with the diffusion approximation is clear: the displacement is of the
order of1 instead of that of

√
1.

We consider now the differential inclusion (12), and assume that some additional
information on the noiseu, besides its boundc, is available. For instance, one
may assume—or obtain from data, see Section 8—that the ‘extreme’ values of
u, namely those which are closer to the endpoints of the interval[−1,1], occur
less frequently than those which are more interior; in other words, they are less
likely. More generally, following Colombo and Kˇrivan (1992), we assume that a
continuous functionρ : [−1,1] 7→ [0,1] is given, which measures the likelihood
of points in[−1,1]. A prototype of a such a function on the set of perturbations,
which assigns larger likelihood to smaller perturbations, is

ρq(u) = 1− u2. (16)

For each solutionxu of (12) which corresponds to a functionuwe define itslikelihood
L(T, xu) on the interval[0, T] to be the average likelihood of the control function
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u which represents the noise, i.e.,

L(T, xu) := 1

T

∫ T

0
ρ(u(t))dt. (17)

We remark that one can make such an assumption without supposing that the noise
described byu be a stochastic process. The choice ofρ appearing in (16) also has
an intrinsic interpretation, namely it takes into account ‘how many’ trajectories are
aroundx. Indeed, forε > 0 a way to ‘measure’ the set of those solutions of (12)
which are in theε neighborhood ofx is given by the following considerations. In
general, the number of such solutions is infinite, and there is no standard measure
defined on this set. In Bressan (1990) a measure of non-compactness (of the set of
controlsu which give such solutions) was chosen to this end; its limit forε → 0
was defined as the likelihood ofx. It was proved that, under certain conditions,
this measure of non-compactness may be represented as an integral functional,
which is essentially the same as (17), withρ = ρq. In this setting, a solution is
more likely than another one if there are more (according to the above concept of
measure) solutions around it. The choice in (16) ofρ also keeps the analogy with
the quadratic cost of theH∞ approach; therefore, it seems to be motivated enough.
We call the solution of (12) which maximizes (17) the most likely path of (12); we
note that it is the solution ofx′ = h(t, x,0), and has likelihood 1. We call this
trajectorydeterministic.

Other choices of membership functions are also possible. With an argument
similar to that of Bressan (1990), Cellina and Colombo (1990) derived a triangular
membership function

ρt(u) = 1− |u|;
we will make use of it in Section 8.

The functionL(T, ·) maps the set of all solutions of (12) into[0,1]. Note that
the functionρ may be considered as amembership functionof the fuzzy set[−1,1]
(Wang and Klir, 1992). Similarly, the setS is a fuzzy set with membership function
L; in other words, (12) is a fuzzy differential inclusion (Aubin, 1990). The function
L can be used to define the likelihood of sets. For example, the reachable setR(T)
at timeT can also be regarded as a fuzzy set, if we define, forξ ∈ R(T),

L(T, ξ) := sup{L(T, x)|x ∈ S, x(T) = ξ}.

We considerL as the membership function ofR(T), i.e., L(T, ξ) is the metric
likelihood of reaching a pointξ at time T . L can be computed either by using
Pontryagin’s principle or the Hamilton–Jacobi equation, since it is the value function
of an optimal control problem. If the integrandρ is concave, or the dynamics is
linear, the supremum is attained (see Cesari, 1983, Theorem 16.4.i). In contrast
with stochastic theory, the reachable set of (12) is a bounded set. Outside of it we
setL to be zero.



730 V. Křivan and G. Colombo

Let η > 0 be a given threshold of extinction. We may ask: What is the likelihood
that solutions of (12) will reach the extinction threshold before some fixed timeT?
We define thelikelihood of extinction before time Tto be

Le(T, η) := sup
t∈[T0(x0,η),T]

L(t, η),

whereT0(x0, η) denotes thefirst time of extinction, i.e., the first time when the
minimal solutionx− of (12) reaches the extinction thresholdη. If L(·, η) is an
increasing function thenLe(T, η) = L(T, η). By computing the supremum of
Le(T, η) in [T0(x0, η),+∞) we obtain the likelihood that solutions of (12) will
become extinct in future

Le(η) := sup
T≥T0(x0,η)

Le(T, η).

We may also be interested to know the first extinction timeTk of trajectories of
(12) which have a likelihood larger or equal to some given valuek. This can be
computed by solving

Le(Tk, η) = k.

We note thatT0 = T0(x0, η). If the time at which the deterministic solution of (12)
reaches the extinction threshold is finite, then it satisfies

Le(T1, η) = 1.

All trajectories which will eventually reach the extinction threshold have a likelihood
between 0 andLe(η). Thus, we may be interested to compute the first extinction
time T1/2Le(η) of those trajectories which have a likelihood1

2 Le(η) in analogy with
the median extinction time of stochastic calculus (Denniset al., 1991). We call
Tm = T1/2Le(η) the median metric likelihood extinction time.

4. EXPONENTIAL GROWTH WITH ENVIRONMENTAL NOISE

We consider the exponential growth model, where the growth rater undergoes
unknown-but-bounded perturbations with rangec > 0, namely

x′ = r x + cu x

u ∈ [−1,1] (18)

x(0)= x0.

At time t > 0, the reachable set is

R(t) = [e(r−c)t x0,e
(r+c)t x0].
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Thus, ifc < r , both the lower and the upper bound tend to infinity whent −→∞,
while for c > r , R(t) tends to(0,∞). Let us assume that a threshold for extinction
η > 0 is given. We will always assume that the initial population densityx0 is
above the extinction thresholdη. Then (18) predicts that, forc > r , extinction of
the population is possible, and that the first time of possible extinction is

T0(x0, η) = 1

c− r
ln(x0/η). (19)

We see that the first time of extinction is proportional to the logarithm of the initial
density of the population. The use of the concept of ‘likelihood’ allows for some
further analysis of the model. Choosing the membership function (16), for a given
realization of the noiseu : [0, T] 7→ [−1,1] the likelihood of the corresponding
solutionx of (18) is

L(T, x) = 1

T

∫ T

0
1− u(t)2 dt. (20)

To find the likelihoodL(T, ξ) of a pointξ at timeT , we have to find the solution
of (18) which satisfiesx(T) = ξ and which has the highest likelihood. It is shown
in Appendix 1 that the corresponding realization ofu is constant

u0 = 1

c

(
1

T
ln

(
ξ

x0

)
− r

)
∈ [−1,1]. (21)

Consequently, the likelihood of reaching a pointξ ∈ R(T) is

L(T, ξ) = 1− r 2

c2
+ 1

T c2

(
2r ln

(
ξ

x0

)
− 1

T

(
ln
ξ

x0

)2
)
. (22)

The likelihood of reaching the extinction threshold depends on the sign of the
growth-rate parameterr . If r is negative, the deterministic trajectoryx(t) =
x0 exp(r t ) reaches the extinction threshold in a finite time

T1 = 1

r
ln(η/x0) (23)

and, consequently,Le(η) = 1. If r > 0 then the deterministic trajectory will never
reach the extinction threshold, and ifc > r > 0 the likelihood of extinction is

Le(η) = 1− r 2

c2
.

Thus, we see that, forc > r > 0, the likelihood of extinction increases asr/c
decreases. We compute the median metric likelihood extinction timeTm. According
to our definition,Tm satisfies the equation

L(Tm, η) =
{

1/2Le(η), if c > r ≥ 0
1/2, if r < 0
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Figure 1. The median metric likelihood extinction timeTm for the exponential growth
with environmental noise is plotted against the initial conditionx0. Parameters:r = 0.25,
c = 0.5, η = 0.01.

i.e.,

Tm =


ln
(

x0
η

)
2r+
√

2(c2+r 2)

c2−r 2 , if c > r ≥ 0

ln
(

x0
η

) √
2

c−√2r
, if r < 0.

(24)

Therefore the median metric likelihood extinction time is proportional to the loga-
rithm of the initial population, see Fig. 1.

5. EXPONENTIAL GROWTH WITH DEMOGRAPHIC NOISE

We model demographic noise for the exponentially growing population by

x′ = (r + c(x)u)x

u ∈ [−1,1].
Here we assume that the boundc(x) of the noise depends on the population density,
since it is generally assumed that demographic noise decreases with respect to the
density of the population. Namely, we assume that

c(x) = c√
x
. (25)

Thus, forx = 0 the noise is not bounded and it decreases for larger populations.
With this choice our model for demographic noise becomes

x′ = r x + cu
√

x (26)

u ∈ [−1,1],
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which agrees with (7). We note that the above differential equation for fixedu
does not uniquely define solutions from the initial condition 0. However, since our
motivation comes from population biology, we assume that once the population
density reaches zero, then the population cannot recover, i.e., no immigration of
animals is possible. Then the reachable set at timet > 0 is

R(t) =



[(
ert /2(r

√
x0− c)+ c

r

)2

,

(
ert /2(r

√
x0+ c)− c

r

)2
]

if x0 ≥
(c

r

)2[(
ert /2(r

√
x0− c)+ c

r

)2

,

(
ert /2(r

√
x0+ c)− c

r

)2
]

if x0 <
(c

r

)2
and t ≤ 2

r
ln

(
c

c− r
√

x0

)
[

0,

(
ert /2(r

√
x0+ c)− c

r

)2
]

if x0 <
(c

r

)2
and t >

2

r
ln

(
c

c− r
√

x0

)
.

Thus, we see that for

x0 <
(c

r

)2

there are solutions which reach zero in finite time, i.e., extinction is possible only
for low initial densities. Thus, for the demographic noise we could consider the
extinction thresholdη = 0. However, since solutions starting from zero are not
uniquely determined by (26), to avoid some additional technicalities we set the
threshold for extinctionη > 0. Forx0 < (c/r )2, the first time of possible extinction
is

T0(x0, η) = 2

r
ln

(
c− r
√
η

c− r
√

x0

)
.

For further analysis we will use the same functionρ as for the environmental noise.
To computeL(T, ξ) we have to solve an optimal control problem, see Appendix 2.
Let

x1(t)= ert
(
− c

2r
(1− e−r t )+√x0

)2
if
√

x0 ≥ c

2r
or
√

x0 <
c

2r

and t ≤ t1(x0,0),

x1(t)= 0 otherwise

x2(t)= ert
( c

2r
(1− e−r t )+√x0

)2
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where

t1(x0, η) = −1

r
ln

r 2

c2

(
√
η +

√
r 2η − 2rc

√
x0+ c2

r

)2


is the first time whenx1 reachesη. Denoting

A1 := −(r√x0− c)+ r
√
ξe−rT/2, A2 := (r√x0+ c)− r

√
ξe−rT/2

and

τ1 = 2

r
ln

 A1−
√

A2
1− c2e−rT

ce−rT

 , τ2 = 2

r
ln

 A2+
√

A2
2− c2e−rT

ce−rT

 ,
we compute forx−(T) < ξ < x+(T) the likelihood of reachingξ at timeT

L(T, ξ) =



1

T

(
T − τ1+ 1

r
(e−rT − e−r τ1)

)
, if ξ < x1(T)

1

T

(
T + u2

0

r
(e−rT − 1)

)
, if x1(T) ≤ ξ ≤ x2(T)

1

T

(
T − τ2+ 1

r
(e−rT − e−r τ1)

)
, if ξ > x2(T).

(27)

Now we compute the likelihood of reachingη > 0 at timeT , i.e., we assume that√
x0 <

c

2r
and due to (27) we obtain

L(T, η)= 1

T

(
T − τ1+ 1

r

(
e−rT − e−r τ1

))
, if T0(x0, η) ≤ T ≤ t1(x0, η)

(28)

and

L(T, η) = 1

T

(
T − 4r x0

c2(1− e−rT )

)
, if t1(x0, η) ≤ T. (29)

If
√

x0 ≥ c

2r
then forη < x0, t1(x0, η) = ∞ and L(T, η) is given by (28). We

obtain that the extinction likelihood isLe(η) = 1. The median metric likelihood
extinction time cannot be computed analytically, but numerical methods have to be
used, see Fig. 2.
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Figure 2. The median metric likelihood extinction timeTm for the exponential growth
with demographic noise is plotted against the initial conditionx0. Parameters:r = 0.25,
c = 0.25,η = 0.01.

6. LOGISTIC GROWTH—r FLUCTUATING

Now we will consider the logistic growth model with fluctuating growth rater .
Again the range of fluctuations is assumed to be bounded by a constantc > 0. The
calculations follow those for exponential growth. Thus, the model is:

x′ = (r + cu)x
(
1− x

K

)
u ∈ [−1,1] (30)

x(0)= x0 < K .

At time t > 0, the reachable set is

R(t) =
[

K x0

(K − x0)e−(r−c)t + x0
,

K x0

(K − x0)e−(r+c)t + x0

]
.

Thus, forc < r , both the lower and the upper bound tend to the carrying capacity
K whenT −→ ∞, while for c > r , R(t) tends to(0, K ). Let us assume that a
threshold for extinctionη ∈ (0, K ) is given. Forx0 > η extinction is possible if
c > r . The first time of extinction is

T0(x0, η) = 1

c− r
ln

(
(K − η)x0

(K − x0)η

)
.

We note that the first time of extinction is increasing for increasing initial density of
the population as for the exponential growth. Considering functionρ on the set of



736 V. Křivan and G. Colombo

0 1 2 3 4 5
0

20

40

60

80

Figure 3. The median metric likelihood extinction timeTm for the logistic growth with
fluctuatingr is plotted against the initial conditionx0. Parameters:r = 0.25, c = 0.5,
η = 0.1, K = 5.

perturbations and solving the corresponding optimal control problem, see Appendix
3, allows us to find the likelihood of reaching a pointξ ∈ R(T)

L(T, ξ) = 1− r 2

c2
+ 1

T c2

(
2r ln

(
(K − x0)ξ

(K − ξ)x0

)
− 1

T

(
ln

(
(K − x0)ξ

(K − ξ)x0

)2
))

. (31)

Analogously to the exponential growth, we have

Le(ξ) =
{

limT−→∞ L(T, ξ) = 1− r 2

c2 , if c > r ≥ 0,
1, if r < 0,

which means that all points in the reachable set have ultimately the same likelihood.
The median metric likelihood extinction timeTm is

Tm =


ln

(
(K − η)x0

(K − x0)η

) (2r +√2(c2+ r 2)
)

c2− r 2
, if c > r ≥ 0,

ln

(
(K − η)x0

(K − x0)η

) √
2

c−√2r
, if r < 0.

In this case, for small initial conditions the median metric likelihood extinction time
is approximately proportional to the logarithm of the initial population density, while
for x0 tending to the carrying capacity,Tm tends to infinity, see Fig. 3.
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7. LOGISTIC GROWTH—K FLUCTUATING

Now we consider the logistic growth model withK fluctuating, i.e.,

x′ = r x

(
1− x

K + cu

)
. (32)

Sinceu does not enter the dynamics linearly, the corresponding stochastic model is
not tractable. Roughgarden (1979) approximated the above dynamics by

x′ = r x
(
1−

(
1− cu

K

) x

K

)
u ∈ [−1,1] (33)

x(0)= x0.

In order to make our analysis comparable with the stochastic model, we will use
the same approximation. We assume thatc < K . At time t > 0, the reachable set
is

R(t)=
[

K x0

x0(1+ c/K )+ (K − x0(1+ c/K ))e−r t
,

K x0

x0(1− c/K )+ (K − x0(1− c/K ))e−r t

]
.

Thus, fort −→∞, R(t) tends to(
K

1+ c/K
,

K

1− c/K

)
.

Let us assume that a threshold for extinctionη ∈
(

K
1+c/K ,

K
1−c/K

)
is given. The first

time of extinction is

T0(x0, η) = 1

r
ln

(
η(K 2− x0(K + c))

x0(K 2− η(K + c))

)
.

We note that

lim
x0−→∞

T0(x0, η) = 1

r
ln

(
− η(K + c)

K 2− η(K + c)

)
,

i.e., the minimal solution starting from ‘infinity’ reachesη in a finite time. We com-
puteL(T, ξ) by solving the corresponding optimal control problem, see Appendix
4. Let

x1(t)= 2K 2ert x0

cer (2t−T)x0+ 2K x0ert + 2K 2− cx0e−rT − 2K x0
,

x2(t)= 2K 2ert x0

−cer (2t−T)x0+ 2K x0ert + 2K 2+ cx0e−rT − 2K x0
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and

A1 = K 2ξ − erT K 2x0− cerT ξx0− K ξx0+ erT K ξx0,

A2 = K 2ξ − erT K 2x0+ cerT ξx0− K ξx0+ erT K ξx0,

u+0 =
−A1−

√
−c2ξ2x2

0 + A2
1

cξx0
,

u−0 =
−A2+

√
−c2ξ2x2

0 + A2
2

cξx0
,

u0 = −2K (K ξ − erT K x0− ξx0+ erT ξx0)

cx0ξ − cx0ξe2rT
,

τ1 = 1

r
ln

(−1

u−0

)
,

τ2 = 1

r
ln

(
1

u+0

)
.

Then forξ ∈ R(T) we have

L(T, ξ) =


1
T (τ2+ (u+0 )2

2r (1− e2r τ2)), if ξ ≥ x2(T)
1
T (T + u2

0
2r (1− e2rT )), if x1(T) < ξ < x2(T)

1
T (τ1+ (u−0 )2

2r (1− e2r τ1)), if ξ ≤ x1(T).

(34)

The formula forL(T, ξ) does not allow us to express the median metric likelihood
extinction time analytically, but numerical methods have to be used. In Fig. 4 we
compared the median metric likelihood extinction time obtained by using analytical
formula for L(T, ξ) (dashed line), with the approximation of the median metric
likelihood extinction time obtained by approximatingL(T, ξ) numerically. For
numerical simulations we used an algorithm for approximation of the value function
of a control problem developed by Falcone [see Bardi and Capuzzo Dolcetta (1997,
Appendix A)]. An implementation of the same algorithm with more than one control
parameter would allow us to treat several independent noises; in particular, it is in
principle possible to approximate the likelihood function for the logistic growth
with bothr andK independently fluctuating. The end-point constraintu(T) = ξ
was approximated by a penalization of the formk(u(T)− ξ)2.

We now compare this result for linearized equation (33) with the result for the
original, nonlinearized, equation (32). The solution set of (32) is

R(t) =
[

(K − c)x0

(K − c− x0)e−r t + x0
,

(K + c)x0

(K + c− x0)e−r t + x0

]
;
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Figure 4. The median metric likelihood extinction timeTm for the linearized logistic
growth with fluctuatingK is plotted against the initial conditionx0. The full line is based
on analytically computed formula for likelihood function (34), while the dashed line was
obtained by using numerical approximation of the likelihood function. Parameters:r =
0.25,c = 4, η = 3.3, K = 5.

in particular, the asymptotic reachable set differs from that of (33). The first time
of extinction is

T0(x0, η) = −1

r
ln

(
(K − c− η)x0

(K − c− x0)η

)
.

The median metric likelihood extinction time cannot be computed analytically, and
for its approximation we used Falcone’s code, see Fig. 5. We see that the median
metric likelihood extinction times based on the linearized version of the model
(dashed line) are far above those which are predicted by the nonlinear model (full
line).

8. EXAMPLE

Here we give a simple example of how to apply to data the methodology described
here. Denniset al. (1991) consider the exponential growth model with the fluctu-
ating growth-rate parameter, and, using diffusion analysis, they derive formulas for
the mean extinction time, the median extinction time, the most likely time to reach
the extinction threshold and for the probability to reach the extinction threshold.
They apply these result to some population data sets. One data set is 3-year moving
sums of the yearly estimated number of adult grizzly-bear females in the Yellow-
stone National Park between the years 1959 and 1987 which we will use. Dennis
et al. (1991) deleted the transition for 1983–1984 and we do the same in order to
make comparison possible. First, we simplify the exponential growth model (18)
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Figure 5. The median metric likelihood extinction timesTm for the logistic growth model
(32) with fluctuatingK (full line) and its linearized version described by (33) (dashed line)
are plotted against the initial conditionx0. Parameters:r = 0.25,c = 4, η = 3.3, K = 5.

by using logarithmic transformationy = ln x, which gives

y′ = r + cu, y(t1) = y1. (35)

(Heret1 denotes year 1959 andy1 is the number for 1959.) For the sake of compar-
ison we use the estimate of the growth-rate constant given in Denniset al. (1991),
i.e.,

r̂ = −0.007 493.

We want to estimate the bound on fluctuationsc in such a way thatyi+1 belongs to the
reachable set of (35) at timeti+1 when starting at timeti with yi , i = 1, . . . , N− 1,
where{yi }Ni=1 are transformed data for the grizzly-bear population. This choice is
natural in our setting, and goes towards a worst-case type analysis, since it precisely
takes into account all fluctuations. We define the admissible setA(N) that depends
on the number of data (Kˇrivan and Sěda, 1989):

A(N) = {c ∈ R|‖yi − yi−1(ti − ti−1)‖ ≤ c(ti − ti−1), i = 2, . . . , N}.

The setA(N) contains all values of parameterc that are consistent with measure-
mentsyi and with model (35) in the sense that choosing anyc from A(N), every
point yi may be reached fromyi−1 by a trajectory of (35). This means that using
any c from the setA(N), all data{yi }Ni=1 will be in the solution set of (35) with
u ∈ [−1,1]. As an estimate ofc we take the minimal element ofA(N), i.e.,

ĉ = min A(N).
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For the grizzly-bear data we obtainĉ = 0.2. The standard deviation of the growth
rate computed in Denniset al. (1991) is, instead, 0.09.

We compute various extinction times from the initial number of 47 bears and
the extinction thresholds 10 and 1 bear. Sincer̂ < 0, the likelihood of reaching
extinction thresholds is 1 and the deterministic trajectory (which is the trajectory
driven byu = 0) reaches the extinction thresholds in a finite time

T1(47,10) = 207, T1(47,1) = 514.

We note that the formula for the mean time until the threshold population size is
reached [Denniset al.(1991, see formula (18) there)] is the same as is our formula
(23) for the extinction time of deterministic solutionT1.

The first time to extinction is

T0(47,10) = 7.4, T0(47,1) = 18.5.

For computations of extinction times of trajectories with a given likelihood we will
use two types of membership functions: quadratic (ρq) and piecewise linear of a
triangular shape (ρt ). Using the least squares method implemented in Mathematica
III we estimate these two membership functions:

ρq(u) = 0.225− 0.248u2 and ρt(u) = 0.274− 0.264|u|.

In Fig. 6 frequencies of the occurrence of noise are plotted together with these
two membership functions. Since both of these two membership functions are
concave down, the realization of the noise which maximizes likelihood is constant
by Jensen’s inequality (see Appendix 1).

The median metric likelihood extinction times for the quadratic membership func-
tion are

Tq
m(47,10) = 10.8, Tq

m(47,1) = 27

and for the triangular membership function they are

Tt
m(47,10) = 13, Tt

m(47,1) = 34.5.

The likelihood of the trajectory of (35) which passes through points{yi }Ni=1 and
which is driven by piece-wise constant controlsui = (yi+1 − yi − r (ti+1 − ti ))/c,
i = 1, . . . , N − 1 is approximately 0.17 and it is the same for both the quadratic
and triangular membership functions. The corresponding extinction times are

Tq
0.17(47,10) = 15.3, Tq

0.17(47,1) = 38,

Tt
0.17(47,10) = 18.5, Tt

0.17(47,1) = 46.
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Figure 6. Estimation of the quadratic and triangular membership functions from grizzly-
bear data (Foley, 1994).

We may compare these estimates with the results of Denniset al. (1991) which
are based on diffusion approximations. The first extinction time for the stochastic
model would be 0 for any extinction threshold, in the sense that the population
may become extinct before anyt > 0—although with small probability for small
t—while for the median extinction time (which is defined as time such that the
probability of dying before this time is the same as is the probability of dying after
this time) they obtain:

Ts
m(47,10) = 152, Ts

m(47,1) = 448.

The mean time of extinction coincides with the time of extinction of the deterministic
trajectory. We note that the median extinction time obtained with the diffusion
approach is much closer to the extinction time of the deterministic solution than our
Tm. This is of course due to our choice of the boundc, which takes into account
all fluctuations, and is much larger than the corresponding parameter computed in
the stochastic case, the standard deviation of the growth parameter. However, it is
caused also by the quick growth inT of the functionL(T, η) (see Fig. 7), i.e., from
our choice of the membership function. Finally, we note that the standard deviation
of the mean time of extinction for the diffusion case, using formula (19) in Dennis
et al. (1991) together with their estimate of parametersr andσ 2, gives 286 years
for one bear, and 181 years for 10 bears.

Since diffusion assumes that the noise distribution is Gaussian, one may ask
whether it is possible to obtain a larger median metric likelihood extinction time for
bear data when substituting the quadratic (or triangular) noise membership func-
tion by exp(−u2/σ 2) for u ∈ [−1,1] . Since this membership function is not
concave, the supremum in the definition ofL(T, ξ) may not be attained; more-
over, in our case it equals the supremum of another integral functional, called the
upper semicontinuous relaxed functional, which has as its integrand the smallest
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Figure 7. The likelihood of extinction at timeT for the exponential growth with environmen-
tal noise is plotted againstT . The heavy line corresponds to the quadratic approximation of
the noise while the dashed line is for the triangular approximation of the noise. Parameters
correspond to the grizzly-bear data:r = −0.007493,c = 0.2, η = 1.

concave functionρ∗∗ larger thanρ [see Cesari (1983, Theorems 16.4.i, 16.2.i)].
If ρ(u) = exp(−u2/σ 2), σ < 1, the graph ofρ∗∗, for u ∈ [−1,1] is almost tri-
angular. Therefore, the supremum of

∫ T
0 exp(−u2(s)/σ 2)ds is approximated by

the supremum of
∫ T

0 ρt(s)ds and we cannot expect to obtain a substantially larger
median metric likelihood extinction time when choosing the Gaussian-like noise
membership function.

9. DISCUSSION

For conservation biologists it is important to detect endangered species by cat-
egorizing them with respect to their threat of extinction. Mace and Lande (1991)
proposed to redefine categories of threat in terms of the probability of extinction
within a specified time period. These estimates should be based on the theory
of extinction times, which in population biology has been tantamount to the use
of stochastic models (Keiding, 1975; Pielou, 1977; Ricciardi, 1977; Roughgar-
den, 1979; Okubo, 1980; Nisbet and Gurney, 1982; Denniset al., 1991; Lande,
1993; Grasman, 1996; Chesson, 1994; Foley, 1994). Stochastic theory allows com-
putation of the mean (or median) extinction times for simple models of population
growth which are perturbed by white noise. However, as noticed in Mace and Lande
(1991), in most cases there are insufficient data to verify that the noise is white.
Moreover, there is some evidence that the noise may not be white (Steele, 1985; Hal-
ley, 1996). The discrepancies between the real noise and its approximation by white
noise in population dynamical models may lead to substantial differences between
predicted extinction times and observed extinction times. For these reasons we
have envisaged a different methodology, which allows us to model uncertainty in
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population biology without requiring exact probabilistic knowledge of the noise.
This methodology is based on the assumption that the noise is bounded and we
can estimate this bound. For simple models of population growth this information
alone immediately provides us with the following: (i) Which parameters lead to
the possibility of population extinction? (ii) What is the first possible extinction
time? The first time of extinction describes the worst possible case. The approach
with unknown-but-bounded noise has been used widely in engineering literature
as an alternative for modeling uncertainty. The unknown-but-bounded approach is
intrinsically simpler than the stochastic approach, because it does not require any
stochastic integral, but it uses standard calculus. Here we extended the unknown-
but-bounded approach in the sense that if some additional information on noise
distribution is known (which we here call metric likelihood), then we can also de-
fine analogs of some concepts of stochastic theory used in models of population
dynamics, such as the likelihood of reaching a point, the likelihood of extinction
and the median metric likelihood extinction time, which are important character-
istics in conservation biology. This allows us both a qualitative and a quantitative
comparison between results obtained by using the diffusion approach and ours.
First, in the stochastic approach, population may become extinct in any positive
time independent from the extinction threshold because white noise is not bounded.
Thus, the first time of extinction when using the stochastic approach is always zero;
in contrast, our approach gives a positive first extinction time. In order to compute
the first extinction time noa priori knowledge on the noise distribution is assumed,
except a bound on it. Of course, the first extinction time will be much shorter than
the mean (or median) extinction time computed by diffusion approximation, since it
describes the worst possible case in which perturbations are supposed to act. If the
solution with maximal likelihood reaches the extinction threshold in a finite time
(as in Section 8), this time may be another estimate of the extinction time. Since the
most likely solution does not take into account the noise distribution, this extinction
time may be quite large. For this reason we introduce another characteristic, that
which we call median metric likelihood extinction time, which is larger than the
first extinction time but smaller than the extinction time of the most likely trajec-
tory. We compute these various extinction times both theoretically and numerically.
For a numerical comparison we take a population of grizzly bears for which dif-
fusion estimates were given in Denniset al. (1991). This allows for comparison
of various extinction times which are based on two different methodological ap-
proaches. The underlying dynamical model was in both cases exponential growth
with a fluctuating growth-rate parameter. Computations show that the deterministic
unknown-but-bounded approach leads to much smaller median metric likelihood
extinction times than the stochastic approach, while the time of extinction of our
most likely solution coincides exactly with the mean time of extinction computed
in Denniset al. (1991).

Attempts to extend the analytical results obtained for exponential growth, and also
for logistic growth using diffusion analysis, were made by Foley (1994). However,
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since analytical formulas for this case cannot be obtained, he considered a simplified
model by assuming that the population grows exponentially below its carrying
capacity, which acts as a reflecting boundary. In contrast, our approach allows us
to treat the logistic case directly. However, a comparison of our and Foley’s result
is difficult, because the two models differ in their dynamics. Computations similar
to those for exponential growth reveal that our median metric likelihood extinction
time is much smaller than Foley’s mean extinction time. As initial data approach the
carrying capacity, median metric likelihood extinction time starts sharply to grow to
infinity, while mean extinction time converges to a finite value. However, we would
like to note that there are quite big differences also between the Foley (1994) and the
Denniset al.(1991) results. For a qualitative comparison, we note first that typically
we obtain some critical values of parameters, such that beyond them extinction is
not possible, i.e., the minimum time of extinction is infinite. This effect is due to the
dynamics of the original (deterministic) models, and to the boundedness of the noise.
In particular, for both exponential and logistic growth withr fluctuating, extinction
is possible only if the bound on the noise is larger than the intrinsic growth-rate
parameterr . If this is satisfied, extinction for the exponential growth may occur
from any initial population density. In the case of the logistic growth with fluctuating
growth parameter extinction cannot occur fromx0 = K , which is an equilibrium
point exactly as in the deterministic case. This is the reason why the median metric
likelihood extinction time grows to infinity forx0 tending toK . For the exponential
growth with demographic noise extinction is not possible if the initial population
size is above some critical value, which has a clear explanation: for larger initial
populations demographic perturbations do not have enough ‘strength’ to counteract
the positive growth tendency. The fact that the extinction time is infinite for a finite
population size in some of our models is a clear difference between our approach and
the stochastic one. On the other hand, our methods lead to median metric likelihood
extinction times which for exponential and logistic growth increase slowly with the
initial population. In particular, for fluctuating growth rate, the dependence on initial
condition is logarithmic for the exponential growth and approximately logarithmic
for the logistic growth with small initial densities (see formulae (19) and (24)). This
qualitatively agrees with other results obtained via stochastic approach (Pakeset
al., 1979; Brockwell, 1985; Mangel and Tier, 1993).
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APPENDIX 1: COMPUTATIONS FOR EXPONENTIAL GROWTH WITH

ENVIRONMENTAL NOISE

We note that substitutiony = ln x transforms (18) toy′ = r + cu. Moreover, we
note that maximization of (20) is equivalent to minimization of

∫ T
0 u2(t)dt under

the constraintsy(0) = ln(x0), y(T) = ln(ξ). Sinceu2 is convex function, we can
use Jensen’s inequality

(
1

T

∫ T

0
u(t)dt

)2

≤ 1

T

∫ T

0
u2(t)dt.

Thus the minimum of the functional is(
1

T

∫ T

0

y′(t)− r

c
dt

)2

=
(

1

c

(
1

T
ln

(
ξ

x0

)
− r

))2

,

which is reached by a constant control

u0 = 1

c

(
1

T
ln

(
ξ

x0

)
− r

)
∈ [−1,1].

APPENDIX 2: COMPUTATIONS FOR EXPONENTIAL GROWTH WITH

DEMOGRAPHIC NOISE

We note that substitutiony = √x transforms (26) to a linear control system

y′(t) = 1
2(r y + cu). (36)

We note that (36) together with
∫ T

0 u2(t)dt→ min is so-called the linear regulator,
for which the optimal control can be found in the feedback form

u(t) = −c

2
K (t)x(t),

whereK (t) is a solution of the Riccati equation

K ′(t) = −r K (t)+ K 2(t)
(c

2

)2
,

(Fleming and Rishel, 1975). Considering boundary conditionsy(0) = √x0, y(T) =√
ξ we obtain optimal control

u(t) = u0e
−r/2t , (37)
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and the corresponding optimal trajectory is

x(t) = ert
( c

2r
u0(1− e−r t )+√x0

)2
, (38)

where

u0 =
2r
(√
ξe−rT −√x0

)
c(1− e−rT )

.

We note that (37) is the optimal control for the unconstrained problem, i.e., for the
problem which does not consider any bound onu.

The optimal control for the constrained problem, i.e.,u ∈ [−1,1] can be easily
computed. First, we consider the set of all points which can be reached from the point
x0 by the optimal solution (38) for which the corresponding optimal control satisfies
the constraintu(t) ∈ [−1,1]. This set at timet is given by[x1(t), x2(t)], where
x1, x2 are optimal solutions corresponding to controlsu1(t) = −e−r t /2,u2(t) =
e−r t /2, respectively. Let

t1(x0,0) = 1

r
ln

(
c

c− 2r
√

x0

)
denote the first time whenx1 reaches zero. We note that whenx1 reaches zero, the
solution is not uniquely defined due to the non-Lipschitzianity of the right-hand
side of (26). We compute

x1(t) = ert
(− c

2r (1− e−r t )+√x0
)2
, if

√
x0 ≥ c

2r or
√

x0 <
c
2r

and t ≤ t1(x0,0),
x1(t) = 0 otherwise

x2(t) = ert
(

c
2r (1− e−r t )+√x0

)2
.

For ξ = 0 there are infinitely many solutions leading toξ at timeT . The most
likely one is given by the smallest|u0|, i.e.,

u0 = − 2r
√

x0

c(1− e−rT )
.

If ξ < x1(T) (or ξ > x2(T)) then the optimal control isu = −1 on[0, τ1] (u = 1
on [0, τ2]) and on[τ1, T], ([τ2, T]) it is given by (37). Denoting

A1 := −(r√x0− c)+ r
√
ξe−rT/2, A2 := (r√x0+ c)− r

√
ξe−rT/2

we compute timesτ1 andτ2, namely

τ1 = 2

r
ln

 A1−
√

A2
1− c2e−rT

ce−rT

 , (39)

τ2 = 2

r
ln

 A2+
√

A2
2− c2e−rT

ce−rT

 .
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APPENDIX 3: COMPUTATIONS FOR LOGISTIC GROWTH WITH r
FLUCTUATING

We note that substitutiony = ln(x/(K − x)) transforms equation (30) toy′ =
r + cu. Using the same approach as in Appendix 1 we may prove that the optimal
control is constant satisfying

u0 = 1

T c

(
ln

(
(K − x0)ξ

(K − ξ)x0

)
− rT

)
∈ [−1,1] (40)

for ξ ∈ R(T). The corresponding optimal trajectory is then

x(t) = K x0

x0+ (K − x0)e−t (r+cu0)
.

APPENDIX 4: COMPUTATIONS FOR LOGISTIC GROWTH WITH K
FLUCTUATING

After substitutiony = (K − x)/x), system (33) is transformed to

y′ = −r y − cr

K
u.

Using the same approach as in the case of the exponential growth with demographic
noise we obtain that the optimal control which minimizes the quadratic criterion is
u(t) = u0ert , the corresponding optimal trajectory is

x(t) = 2K 2x0ert

−ce2r t x0u0+ 2Kert x0+ 2K 2+ cu0x0− 2K x0
, (41)

where

u0 = −2K (K ξ − erT K x0− ξx0+ erT ξx0)

cx0ξ(1− e2rT )
. (42)

We consider optimal solutionsx1 andx2 on the interval[0, T] which correspond
to controlsu1(t) = −er (t−T) andu2(t) = er (t−T), respectively. At timet , the set
of all points which may be reached by the optimal trajectory which corresponds to
the optimal control satisfyingu(t) ∈ [−1,1] is [x1(t), x2(t)]. We obtain

x1(t)= 2K 2ert x0

cer (2t−T)x0+ 2K x0ert + 2K 2− cx0e−rT − 2K x0

x2(t)= 2K 2ert x0

−cer (2t−T)x0+ 2K x0ert + 2K 2+ cx0e−rT − 2K x0
.
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Thus, limt−→∞ x1(t) = 2K 2

2K+c and limt−→∞ x2(t) = 2K 2

2K−c . If ξ > x2(T) then there
exists a timeτ2, 0< τ2 < T such that the optimal control is

u(t) =
{

u0ert , for 0≤ t ≤ τ2

1, for τ2 ≤ t ≤ T.
(43)

We may compute bothτ2 andu0. Denoting by

A1 = K 2ξ − erT K 2x0− cerT ξx0− K ξx0+ erT K ξx0

we obtain

u+0 =
−A1−

√
−c2ξ2x2

0 + A2
1

cξx0

and

τ2 = 1

r
ln

(
1

u+0

)
.

For ξ < x1(T) similar calculations give

u−0 =
−A2+

√
−c2ξ2x2

0 + A2
2

cξx0

and

τ1 = 1

r
ln

(−1

u−0

)
,

for

A2 = K 2ξ − erT K 2x0+ cerT ξx0− K ξx0+ erT K ξx0.

Thus, forξ ∈ R(T) we have

L(T, ξ) =


1

2T (τ2+ (u+0 )2
2r (1− e2r τ2)), if ξ ≥ x2(T)

1
2T (T + u2

0
2r (1− e2rT )), if x1(T) < ξ < x2(T)

1
2T (τ1+ (u−0 )2

2r (1− e2r τ1)), if ξ ≤ x1(T).

(44)
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}}Aubin, J.-P. and A. Cellina (1984).Differential Inclusions, Berlin: Springer-Verlag.
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