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Abstract

A population dynamical model describing growth of bacteria on two substrates is analyzed. The model assumes that bacteria choose

substrates in order to maximize their per capita population growth rate. For batch bacterial growth, the model predicts that as the

concentration of the preferred substrate decreases there will be a time at which both substrates provide bacteria with the same fitness and

both substrates will be used simultaneously thereafter. Preferences for either substrate are computed as a function of substrate

concentrations. The predicted time of switching is calculated for some experimental data given in the literature and it is shown that the fit

between predicted and observed values is good. For bacterial growth in the chemostat, the model predicts that at low dilution rates

bacteria should feed on both substrates while at higher dilution rates bacteria should feed on the preferred substrate only. Adaptive use

of substrates permits bacteria to survive in the chemostat at higher dilution rates when compared with non-adaptive bacteria.

r 2005 Elsevier Inc. All rights reserved.
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0. Introduction

There is a growing realization in ecology that an
understanding of the basic mechanisms that influence
species coexistence cannot be achieved without considering
animal behavior. Most of the classical models of popula-
tion ecology do not include details of animal behavior
despite the fact that it has been clearly demonstrated that
animal behavior changes in response to a changing
environment (e.g., with response to changing population
numbers). There are clear examples where changes in
population numbers cause changes in animal behavior. For
example, in systems with one predator and multiple prey
species, the predator switches its attacks to the most
abundant prey (Murdoch, 1969; Murdoch et al., 1975). In
food chains, in response to an increase in the number of top
predators, the middle species in a tri-trophic food chain
may decrease its activity level or undergo a habitat shift
(e.g., Bolker et al., 2003; Werner and Peacor, 2003; Schmitz
et al., 2004). What is less clear is whether animal behavior,
e front matter r 2005 Elsevier Inc. All rights reserved.
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in turn, influences population dynamics, i.e., whether
interactions between population ecology and behavioral
ecology are predominantly mutual, or one way only.
Predator–prey models suggest that in two-patch environ-
ments, optimal predator foraging promotes species persis-
tence by relaxing the apparent competition between prey
species (Holt, 1977,1987,1996; Abrams and Matsuda, 1996;
Gleeson and Wilson, 1986; Křivan, 1996, 1997; Fryxell and
Lundberg, 1997; Křivan, 2003a,b). On the other hand, the
effect of the adaptive behavior of the middle species in a
food chain does not seem to lead to such strong
dependencies (Křivan and Sirot, 2004) but see Abrams
(1984). These theories are based on the basic postulate of
evolutionary ecology which assumes that evolution works,
through natural selection, toward a higher individual
fitness. Thus, evolution favors those phenotypes that
achieve the highest fitness and that cannot be replaced by
different phenotypes with the same fitness (these pheno-
types correspond to Evolutionarily Stable Strategies;
Maynard Smith, 1982).
Diauxic growth (Monod, 1942) refers to the phenomen-

on in which bacteria growing on a mixture of two
substrates utilize these substrates sequentially in two
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V. Křivan / Theoretical Population Biology 69 (2006) 181–191182
exponential growth cycles separated by an intermediate lag
period called ‘‘diauxic lag’’. This phenomenon gave rise to
a so-called cybernetic framework which assumes that
microbial regulatory processes are optimized (Kompala
et al., 1984, 1986; Dhurjati et al., 1985; Ramkrishna et al.,
1987; Straight and Ramkrishna, 1994a; Ramakrishna et al.,
1996; Narang et al., 1997a,b,c). All these references are
based on the assumption that microbes act to optimize
their cellular growth rate. Although maximization of the
per capita population growth rate can give an optimal
bacterial foraging strategy (Kompala et al., 1984), the
research on cybernetic modeling defines bacterial strategy
in another way. Following microeconomic theory, these
authors assumed that when presented with a multiple
choice, microbes will invest available resources in order to
maximize the returns from their investment. This assump-
tion leads to a matching law which states that the fractional
allocation of resources equals the fractional returns
(Straight and Ramkrishna, 1994a). Thus, if r1 and r2 are
the per capita bacterial population growth rates on two
substrates then the growth on the mixture of these two
substrates is described as u1r1 þ u2r2 where u1 þ u2 ¼ 1 are
controls which define allocation of critical resources for
utilization of either resource. Cybernetic modeling assumes
that these controls are given explicitly as ui ¼ ri=ðr1 þ r2Þ.
This is a special case of the input matching principle used in
ecology which predicts that the number of competitors in a
patch should be proportional to the total resource input
received by that patch (Parker, 1978). This matching
principle is a special form of the Ideal Free Distribution
(IFD, Fretwell and Lucas, 1970) that describes animal
distribution among several food patches. However, the
input matching principle considers a very particular
situation where resources continuously arrive in thesystem
and then they are immediately consumed (Tregenza, 1994).
Thus, there is no standing crop of resources which is
certainly not the case of most systems including those in
which bacteria are cultivated on several sugars either in a
batch or in a chemostat. Moreover, it was shown that when
resource dynamics are considered, consumers may not
drive resources to the level where the matching principle
holds (Křivan and Schmitz, 2003) because the IFD may
dictate that consumers feed on one resource only. This
means that, when applying the matching law to predict
bacterial preferences for resources, such a strategy may not
be evolutionarily stable (Maynard Smith, 1982).

In contrast to the results of batch culture experiments
where substrates are typically assumed to be sequentially
utilized (but see, Egli, 1995), in continuous cultures
simultaneous utilization of different substrates typically
occurs at low dilution rates while at higher dilution rates
bacteria become selective and they utilize only the preferred
substrate (for a review see, Ramkrishna et al., 1987; Egli,
1995; Ramakrishna et al., 1996).

In this article I will analyze a two-substrate bacteria
model which assumes that bacteria feed on the substrate
that maximizes bacterial fitness measured as the per capita
bacterial population growth rate. In particular, I will
discuss the following aspect of the model:
1.
 For batch growth, bacteria should use first the substrate
that provides them with the highest per capita popula-
tion growth rate. However, there is a critical concentra-
tion of the preferred substrate below which bacteria will
feed on both substrates. Thus, at a low concentration of
the preferred substrate both substrates will be used
simultaneously which leads to the IFD of bacteria over
the two substrates.
2.
 Using some experimental data taken from the literature,
I will compare the predicted times when bacteria should
switch from the preferred substrate to both substrates
with observed times.
3.
 For continuous cultivation, I will analyze dependence of
equilibrial species densities on the dilution rate when
bacteria behave adaptively. I will show that at low
dilution rates bacteria should feed on both substrates
while at a higher dilution rates they should use the more
profitable substrate only. Moreover, adaptive bacterial
behavior allows bacteria to survive in the chemostat at
dilution rates for which they would die out if they were
non-adaptive (i.e., if their preferences for either sub-
strate were fixed).
1. Model

I consider a bacterial population with biomass concen-
tration C growing on a mixture of two substrates (e.g.,
sugars, carbon sources, etc.) with concentrations S1 and S2;
respectively. The equations governing the dynamics of the
model are

dS1

dt
¼ DðS01 � S1Þ �

1

Y 1

S1

K1 þ S1
u1C,

dS2

dt
¼ DðS02 � S2Þ �

1

Y 2

S2

K2 þ S2
u2C,

dC

dt
¼

m1S1

K1 þ S1
u1 þ

m2S2

K2 þ S2
u2 �D

� �
C. ð1Þ

This model is general enough to describe both batch
culture as well as chemostat culture. In the case of
chemostat culture the model assumes that the inflow
substrate concentrations are S01 and S02, respectively, the
uptake of substrates is described by the Monod equation,
ui (u1 þ u2 ¼ 1) is a control variable which describes
bacterial preference for the ith substrate, and D is the
dilution rate. The batch culture is modeled by setting
dilution rate D equal to zero. Here mi and Ki are maximum
specific growth and saturation Monod constants, respec-
tively, and Y i is the yield of cell mass per unit of substrate
Si for the case where cells are grown on Si alone. Controls
ui are not fixed but they change in time as substrate
concentrations change. Model (1) is highly simplified. For
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Fig. 1. Switching curve (dashed line) for the growth of K. oxytoca on a

mixture of glucose (m1 ¼ 1:08, K1 ¼ 0:01, Y 1 ¼ 0:52) and arabinose

(m2 ¼ 1:00, K2 ¼ 0:05, Y 2 ¼ 0:5). The two solid lines are solutions of

model (1) for batch bacterial growth (D ¼ 0). Parameters taken from

Kompala et al. (1986).
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example, it does not take into consideration the kinetics of
enzymes that are necessary for the degradation of
substrates. In fact, this model assumes that the enzyme
kinetics are very fast with respect to substrate degradation,
which may not be true in reality. However, these
simplifications lead to a tractable model (1) as we will see.

The question is whether it is possible to predict the time
evolution of microbial preferences (ui) as substrates and
bacterial concentrations change. The crucial assumption is
the choice of the bacterial fitness function. Following
Kompala et al. (1986), I assume that bacterial fitness is
proportional to the per capita population growth rate
1=C dC=dt. This implies that if bacteria grow faster on
substrate 1, i.e.,

m1S1

K1 þ S1
4

m2S2

K2 þ S2
(2)

then fitness is maximized by utilizing substrate 1 (u1 ¼ 1)
alone, while if the opposite inequality holds than fitness is
maximized by utilizing substrate 2 alone (u2 ¼ 1). Bacteria
that mimic this strategy most closely will have a higher per
capita population growth rate than those with different
strategies and should therefore spread in the population.

In this article, I will always assume that the intrinsic per
capita bacterial growth rate on substrate 1 is higher than
that on substrate 2 (i.e., m14m2). Because miSi

KiþSi
�mi

(i ¼ 1; 2) for high substrate concentrations, it follows that
at high substrate levels, substrate 1 will be preferentially
used by bacteria since inequality (2) then holds. In this
sense, substrate 1 is the preferred substrate. However,
which substrate will actually be used depends on the
environmental conditions, i.e., on the relative proportion
of the two substrates in the environment. For example, at
low concentrations of the preferred substrate, the alter-
native substrate can be used by bacteria. The ‘‘switching’’
curve (which is a curve in the substrate 1–substrate 2 phase
plane and a manifold in the substrate 1–substrate
2–bacteria phase space) defined by

m1S1

K1 þ S1
¼

m2S2

K2 þ S2

(dashed line in Fig. 1) divides the substrate 1–substrate 2
concentration phase space in two parts.

2. Batch culture

First, I consider a batch culture which corresponds to
setting the dilution rate in model (1) equal to zero (i.e.,
D ¼ 0). Fig. 1 shows the switching curve (dashed line) for
the growth of Klebsiella oxytoca on glucose and arabinose.
Below this curve, the bacterial per capita population
growth rate is higher on substrate 1 (glucose) while above
the curve utilizing substrate 2 (arabinose) gives a higher
bacterial growth rate. Fig. 1 shows two trajectories of
model (1). Let us consider the one which starts below the
switching curve. As bacteria feed initially only on substrate
1, the concentration of substrate 2 does not change initially
along the trajectory. As substrate 1 is used up, bacterial
fitness decreases along the trajectory. When the trajectory
hits the switching curve, feeding on either substrate leads to
exactly the same bacterial fitness. Because trajectories that
start above the switching curve also tend to the switching
curve it is clear that once a trajectory hits the switching
curve it cannot leave (Appendix A). As substrate concen-
trations cannot leave the switching curve, I can compute
explicitly bacterial preferences for either substrate as a
function of substrate concentrations. Calculations given in
Appendix A show that along the switching curve bacterial
preference for substrate 1 is

u1 ¼
Y 1ðS1m1 � ðK1 þ S1Þm2Þ

2

S2
1Y 1m21 � 2S1ðK1 þ S1ÞY 1m1m2 þ ððK1 þ S1Þ

2Y 1 þ K1K2Y 2Þm22
.

(3)

This gives the following IFD of bacteria across the two
substrates

u1

u2
¼

Y 1ðS1m1 � ðK1 þ S1Þm2Þ
2

K1K2Y 2m22
. (4)

Bacterial kinetics along the switching curve

dC

dt
¼

m1S1

K1 þ S1
u1 þ

m2S2

K2 þ S2
u2

� �
C ¼

m1S1

K1 þ S1
C

¼
m2S2

K2 þ S2
C

are again described by the Monod law.
Preference ui for the ith substrate has theoretically two

meanings. In the case of a monomorphic bacterial
population it is the preference of an average individual
for substrate i. In the case of a polymorphic population it is
the proportion of the population feeding on substrate i.
Arguments given in Egli (1995) suggest that it is more likely
that the bacterial population remains monomorphic when
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it uses two or more substrates, e.g., each individual bacteria
utilizes both substrates simultaneously.

Model (1) allows me to estimate, for any initial
concentrations of substrates and bacteria, the switching
time, i.e., the first time when the corresponding trajectory
hits the switching curve. To see whether actual bacteria
switch optimally, I compare predicted switch times from
model (1) with those given in Kompala et al. (1986).
Kompala et al. (1986) gave 10 figures for growth of K.

oxytoca on a mixture of two substrates under different
initial substrate concentrations. These data are graphically
presented in Figs. 6–14 and Fig. 18 in Kompala et al.
(1986). I scanned these figures (see solid data points in
Fig. 2, left panel) and estimated from these data the time of
switching as the first time when there was a visible decrease
in the slope along the bacterial growth curve. The predicted
and observed times of switching are given in Table 1. The
predicted time of switching is insignificantly lower (Student
two sided t-test failed to reject null hypothesis at
significance level 0.05; t-stat ¼ 0:5, P-value ¼ 0:6) than
the observed time of switching. It is clear that the overall
agreement is good.

The curves shown in Fig. 2 are simulations of model (1)
for parameter values and initial substrate and bacterial
concentrations given in Kompala et al. (1986). These
parameters were estimated from the growth of K. oxytoca

on a single substrate. The main discrepancy between the
observed values and model predictions are due to diauxic
lag which is not incorporated in model (1).

The time evolution of bacterial preference for the more
profitable substrate 1 (glucose, u1) is shown in Fig. 2, right
panel. Initially, only glucose is used (u1 ¼ 1). As the
concentration of this substrate decreases the two substrates
will become equally profitable. At this time there is a sharp
decrease in bacterial preference for substrate 1. This is
exactly at the time when the corresponding trajectory of
model (1) hits the switching curve (see Fig. 1). From then
on, bacteria use both substrates and the preference for
substrate 1 is given by formula (3). The preference for
substrate 1 tends to increase to an asymptotic level as
substrate 1 concentration converges to zero. The asympto-
tic preference can be computed explicitly from formula (3)
to be

K1Y 1

K1Y 1 þ K2Y 2
. (5)

This asymptotic value is 0.0025 for glucose and lactose
(Fig. 2D–G), 0.05 for glucose and xylose (Fig. 2A–C), 0.17
for glucose and arabinose (Fig. 2H–I) and 0.5 for glucose
and fructose (Fig. 2J).

3. Chemostat culture

Second, I consider the effect of optimal substrate
switching on bacterial growth in the chemostat (in which
case the dilution rate D40 in model (1)). I start with
analyzing equilibria of model (1). The switching curve
(shown as a dashed line in Fig. 3) divides the substrate
phase space in two parts: below the switching curve
bacteria feed on substrate 1 only (u1 ¼ 1) while in the
region above the switching curve they feed on substrate 2
only (u2 ¼ 1). At the points on the switching curve
bacterial preferences are not a priori given. I will assume
that when at very low concentrations (i.e., when substrate
concentrations are almost equal to inflow concentrations
S01 and S02 as if there were no bacteria, see model (1))
bacteria achieve a higher growth rate when feeding on
substrate 1, i.e.,

m1S01

K1 þ S01
4

m2S02

K2 þ S02
. (6)

Appendix B shows that for any dilution rate D there exists
at most one equilibrium at which bacteria achieve a
positive concentration.
For low dilution rates (Do m2S02

K2þS02
), calculations given in

Appendix B show that model (1) has a non-trivial
equilibrium E% which is located on the switching curve
(Fig. 3A). This equilibrium can be explicitly computed (see
Appendix B)

S%

1 ¼
DK1

m1 �D
,

S%

2 ¼
DK2

m2 �D
,

C% ¼ S01Y 1m1 þ S02Y 2m2 �DðK1Y 1 þ K2Y 2Þ

þD2 K1Y 1

D� m1
þ

K2Y 2

D� m2

� �
. ð7Þ

The bacterial preferences for either substrate at population
equilibrium E% are (Appendix B)

u%

1 ¼
Y 1m1½S01m1 �DðK1 þ S01Þ�

ðm1 �DÞC%
; u%

2 ¼ 1� u%

1 . (8)

Besides equilibrium E%, model (1) has two other potential
equilibria. One corresponds to the case where bacteria feed
on substrate 1 alone

E1 ¼
DK1

m1 �D
;S02;

Y 1m1ðS01m1 �DðK1 þ S01Þ

m1 �D

� �
(9)

and one where bacteria feed on substrate 2 alone

E2 ¼ S01;
DK2

m2 �D
;
Y 2m2ðS02m2 �DðK2 þ S02ÞÞ

m2 �D

� �
.

However, neither E1 nor E2 is an equilibrium under the
assumption that dilution rate is small because point E1 is
above the switching curve, i.e., in the region where bacteria
should feed on substrate 2 alone, and point E2 is below the
switching curve, i.e., in the region of the phase space where
bacteria should feed on substrate 1 alone (Fig. 3A). Thus,
trajectories of model (1) which start below the switching
curve tend initially to E1 and trajectories that start above
the switching curve tend initially to E2. However, when
they reach the switching curve they cannot cross it and they
slide along this curve to the equilibrium E%:
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feeding on two substrates

Bacterial preference for
glucose (u1)

Fig. 2. The batch growth of K. oxytoca on two substrates (data shown as solid dots were scanned from Kompala et al. (1986)). Substrates corresponding

to each panel are specified in Table 1. The lines are predictions based on model (1) for batch bacterial growth. The parameters for simulations are those

given in Kompala et al. (1986) for the growth of K. oxytoca on a single substrate (glucose: m ¼ 1:08, K ¼ 0:01, Y ¼ 0:52; arabinose: m ¼ 1:00, K ¼ 0:05,
Y ¼ 0:5; fructose: m ¼ 0:94, K ¼ 0:01, Y ¼ 0:52; xylose: m ¼ 0:82, K ¼ 0:2, Y ¼ 0:5; lactose: m ¼ 0:95, K ¼ 4:5, Y ¼ 0:45). The preferred substrate

(glucose, solid line), the alternative substrate (dashed line) and K. oxytoca (dot line) are shown in the left panel. The right panel shows predicted preference

of K. oxytoca for the preferred substrate (u1).
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Fig. 2. (Continued)
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For intermediate dilution rates ( m2S02
K2þS02

oDo m1S01
K1þS01

),
the point E1 is below the switching curve and it is therefore
an equilibrium of model (1) (Fig. 3B). I remark that for
these dilution rates neither E2 nor E% are equilibria
because they are not positive. Numerical simulations such
as those given in Fig. 3B show that trajectories converge to
E1 in this case.
For high dilution rates ( m1S01

K1þS01
oD) bacteria are washed

out and the trajectories of model (1) converge to
equilibrium ðS01;S02; 0Þ (Fig. 3C).
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Table 1

Estimated time of switching from data given in Kompala et al. (1986) and predicted time of switching from model (1)

System in Kompala et al. (1986) Panel in Fig. 2 Estimated time Predicted time

glucose–xylose (Fig. 6) A 4.2 4.2

glucose–xylose (Fig. 7) B 1.7 1.6

glucose–xylose (Fig. 8) C 2 1.8

glucose–lactose (Fig. 9) D 5 4.1

glucose–lactose (Fig. 10) E 4.2 3.8

glucose–lactose (Fig. 11) F 4.2 3.8

glucose–lactose (Fig. 12) G 4.6 4.2

glucose–arabinose (Fig. 13) H 4 3.7

glucose–arabinose (Fig. 14) I 4 3.8

glucose–fructose (Fig. 18) J 4.5 4.8

Figure numbers refer to those given in Kompala et al. (1986).

V. Křivan / Theoretical Population Biology 69 (2006) 181–191 187
3.1. Persistence of inflexible bacteria

In this section, I study under which conditions bacteria
can survive in the system. I will consider two scenarios with
respect to bacterial adaptivity. First, I assume that bacterial
preferences for substrates are fixed (by which I mean that
the preference for the first substrate u1 is fixed and
independent of substrate concentrations which implies that
u2 ¼ 1� u1 is fixed too). A necessary condition for bacterial
persistence is a positive bacterial growth rate at the substrate
equilibrium ðS01;S02; 0Þ: In other words, this condition
requires that bacteria can invade the chemostat. This
happens if the dilution rate is below an upper threshold

Do
S01m1u1

K1 þ S01
þ

S02m2u2

K2 þ S02
. (10)

Above this threshold, bacteria are washed out from the
system (see model (1)). Thus, in the preference (u1)—dilution
(D) parameter space the set of those parameters for which
bacteria persists in the chemostat is shown as the lower
lightly shaded triangular area in Fig. 4.

3.2. Persistence of adaptive bacteria

Second, I consider adaptive bacteria that maximize their
fitness. Due to assumption (6), equilibrium ðS01;S02; 0Þ is in
the region of the substrate phase space where bacteria,
when introduced in a small concentration, should consume
substrate 1, i.e., (u1 ¼ 1, u2 ¼ 0) in model (1). The
condition for bacteria to invade this equilibrium is

Do
S01m1

K1 þ S01
. (11)

This threshold is always above the threshold for non-
adaptive bacteria (which is given by the right handside of
inequality (10)) for any fixed bacterial preferences
0ouio1, u1 þ u2 ¼ 1. Thus, the range of dilution rates
for which bacteria persist is larger for adaptive bacteria
(both shaded regions in Fig. 4) when compared with non-
adaptive bacteria (light shaded region in Fig. 4).
Fig. 5 compares the equilibrium species concentrations
for non-adaptive (left upper panel) with adaptive (right
upper panel) strategies. The bottom panel shows corre-
sponding preference for substrate 1. This figure documents
that the upper dilution threshold for bacterial extinction is
higher when bacteria behave adaptively (D�1:1) when
compared with non-adaptive bacteria (D�0:75, cf. Fig. 4
with Fig. 5). This figure also documents that at low dilution
rates bacteria will feed on both substrates and bacterial
preference for the better resource increases with increased
dilution rate.

4. Discussion

In this article, I have constructed a population dynami-
cal model describing bacterial growth on two substrates
both in a batch and in a chemostat culture. The model
assumes that bacteria instantaneously maximize their per
capita population growth rate. For the batch type of
cultivation, the model predicts that as the preferred
substrate is used up there will be time at which both
substrates provide bacteria with the same fitness. From
then on bacteria will use both substrates simultaneously.
There are two possibilities how to interpret this result.
Either the bacterial population becomes polymorphic and
each morph will feed on a single substrate only, or the
population stays monomorphic in which case each
individual bacteria will use both substrates simultaneously.
As it was documented (for a review see, Egli, 1995),
bacteria are able to simultaneously utilize several sugars
and therefore, the second scenario seems to be more
plausible. Whether bacteria become polymorphic or not,
the model allows us to compute explicitly the preference for
either substrate as a function of the two substrate
concentrations using data on the bacterial growth on a
single substrate only. Thus, I can predict the time at which
bacteria should switch from feeding on the more profitable
substrate to feeding on both substrates. Using some
experimental data on bacterial growth on two substrates
(Kompala et al., 1986), I tested the agreement between
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of model (1) for various dilution rates. (A) represents a low dilution rate

(D ¼ 0:9) for which trajectories of model (1) converge to the population

equilibrium E% given by formula (7) at which bacteria feed on both

substrates. (B) represents an intermediate dilution rate (D ¼ 1:04) for

which trajectories converge to equilibrium E1 (see formula 9) at which

bacteria feed on substrate 1 only, and (C) represents a high dilution rate

(D ¼ 1:1) under which bacteria are washed out from the chemostat.

Parameters: S01 ¼ 1, S02 ¼ 1:1, K1 ¼ 0:01, K2 ¼ 0:05, Y 1 ¼ 0:52,
Y 2 ¼ 0:5, m1 ¼ 1:08, m2 ¼ 1:07:
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Fig. 4. Set of parameters in the bacterial preference for substrate 1—

dilution rate parameter space for which bacteria persist in the chemostat.

The light shaded lower triangular region delimits parameters for which

non-adaptive bacteria with fixed substrate preferences survive in the

chemostat. The upper dark region shows the added set of parameters for

which adaptive bacteria survive in the chemostat. Parameters are those for

glucose and lactose: S01 ¼ 1, S02 ¼ 1:1, K1 ¼ 0:01, K2 ¼ 4:5, Y 1 ¼ 0:52,
Y 2 ¼ 0:45, m1 ¼ 1:08, m2 ¼ 0:95:
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predicted and observed times of substrate switching. The
observed times of switching agree well with those that were
predicted by using the model (Fig. 2, Table 1).

In the case of chemostat cultivation, the model predicts
that for low dilution rates adaptive bacteria feed on both
substrates while for higher dilution rates bacteria will feed
on the preferred substrate only. For yet higher dilution
rates, bacteria are washed out of the system. This
prediction agrees qualitatively with observations (Egli,
1995). In particular, my model predicts that at low dilution
rates the bacteria will feed on both substrates keeping their
concentrations in the chemostat independent of the input
concentrations. This qualitatively agrees with results
reviewed by Egli (1995), because the residual substrate
concentrations will then be directly proportional to the
inflow substrate concentrations. As dilution rate increases,
one substrate is completely dropped off from bacterial diet
which means that the bacterial food web topology may not
be fixed but it can depend on external forces (e.g., on
bacterial mortality rate). At lower mortality rates, bacteria
are less selective while, at higher mortality rates, they
become more selective feeders. Accordingly, the food web
topology changes from a food web with two substrates to a
food chain (Křivan and Schmitz, 2003). Adaptive feeding
also increases the range of parameters for which bacteria
will persist in the chemostat when compared with inflexible
bacteria with fixed food preferences. This is because
substrate switching relaxes apparent competition between
substrates (Holt, 1977). Indeed, at higher dilution rates,
bacteria exclude the less profitable substrate from their diet
and this relaxes apparent competition between substrates
when compared to the situation of fixed bacterial
preferences for substrates.
There is a large literature on ‘‘cybernetic modeling’’

which also describes bacterial growth on multiple sub-
strates (Kompala et al., 1984, 1986; Dhurjati et al., 1985;
Straight and Ramkrishna, 1994a,b; Ramakrishna et al.,
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D when bacteria behave adaptively (right panel) or when their preferences for substrates are fixed (left panel). The bottom panels show corresponding

preferences for substrate 1. Parameters are the same as in Fig. 4.

V. Křivan / Theoretical Population Biology 69 (2006) 181–191 189
1996; Narang et al., 1997a,b,c; Narang, 1998a, b). As in
this article, cybernetic modeling is based on the assumption
that microbes generally act to optimize their cellular
growth rate (Kompala et al., 1984). However, there are
two important differences between cybernetic models and
the present work.

First, cybernetic models assume that bacterial prefer-
ences for each substrate follow the so-called input
matching principle. This means that bacterial preferences
for substrate i are given as ui ¼ miSi=ðKi þ SiÞ=½m1S1=
ðK1 þ S1Þ þ m2S2=ðK2 þ S2Þ�: I showed that provided
bacteria maximize their per capita population growth rate
this assumption holds only along the switching cure, i.e.,
only for substrate densities for which feeding on either
substrate gives the same fitness. However, if the matching
principle is used for any substrate densities, then the
corresponding strategy is not optimal. In the case of a
batch cultivation, this problem is not so serious because, as
I showed in this article, population dynamics drive
substrate concentrations to the levels at which both
substrates provide the same bacterial growth rate. How-
ever, in the case of chemostat I showed that for
intermediate dilution rates (Fig. 3B) this is not so, because
at the population equilibrium bacteria should feed on
resource 1 only.

Second, in contrast to the present article, cybernetic
models consider explicitly enzyme dynamics. In fact, they
consider two types of control: one control regulating
enzyme synthesis, the other control regulating the enzyme
activity, i.e., the actual preference of microbes for either
substrate. My approach to deal with multiple substrates in
this article is based on a less detailed model which does not
consider explicitly enzyme dynamics. However, this leads
to a direct link between substrate choice and bacterial
fitness (while this link involves enzyme dynamics in the case
of cybernetic models), resulting in simpler models amen-
able to analysis. Thus, the present model is too simple to
describe diauxic lag caused by delay in enzyme synthesis,
but it is general and analyzable enough to describe a
feedback between bacterial adaptivity and its population
growth. Despite its simplicity, the agreement between
model predictions and observed bacterial dynamics is
pretty good which leads to some optimism about predic-
tions of models that integrate animal behavior with
population dynamics.
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Appendix A. Batch growth

Here I analyze population dynamics along the switching
curve for the batch growth (D ¼ 0). Vector

n ¼
m1K2

1

ðK1 þ S1Þ
2
;�

m2K
2
2

ðK2 þ S2Þ
2

� �

is perpendicular to the switching curve in the substrate
1–substrate 2 phase space. Let f 1 and f 2 denote the vector
given by the right hand side of model (1) when u1 ¼ 1 and
u1 ¼ 0; respectively, are substituted. Then

hn; f 1i ¼ �
CK2

1S1m1
Y 1ðK1 þ S1Þ

3

and

hn; f 2i ¼
CS1m1ðS1m1 � ðK1 þ S1Þm2Þ

2

Y 2m22ðK1 þ S1Þ
3

,

where h�; �i denotes the scalar product. As hn; f 1io0 and
hn; f 2i40 it follows that as a trajectory of model (1) reaches
the switching curve it cannot leave it. The preference for
substrate 1 along the switching curve can be calculated as
follows. When a trajectory of model (1) moves along the
switching curve

m1S1ðtÞ

K1 þ S1ðtÞ
¼

m2S2ðtÞ

K2 þ S2ðtÞ
.

Differentiating this equality with respect to time gives

m1K1
dS1
dt

ðK1 þ S1Þ
2
¼

m2K2
dS2
dt

ðK2 þ S2Þ
2
.

Substituting for dSi=dt the corresponding expression from
model (1) and solving for the unknown u1 (u2 ¼ 1� u1)
gives bacterial preference for substrate 1 as a function of
substrate concentrations

u1 ¼
Y 1ðS1m1 � ðK1 þ S1Þm2Þ

2

S2
1Y 1m21 � 2S1ðK1 þ S1ÞY 1m1m2 þ ððK1 þ S1Þ

2Y 1 þ K1K2Y 2Þm22
.

Using this expression yields the IFD of bacteria over the
substrates given by formula (4).
Appendix B. Chemostat growth

I study equilibria of the bacterial growth in the
chemostat (D40 in model (1)). The switching manifold
divides the substrate–bacterial phase space into two
regions. I study equilibria in both of these regions and
also on the switching manifold which leads to three distinct
cases. First, I consider the region of the phase space below
the switching manifold where bacteria feed on substrate 1
only. Substituting u1 ¼ 1 in model (1) and solving for an
equilibrium gives

E1 ¼
DK1

m1 �D
;S02;

Y 1m1ðS01m1 �DðK1 þ S01ÞÞ

m1 �D

� �
.

However, this equilibrium is positive and below the

switching manifold only if m1S01
K1þS01

4D4 m2S02
K2þS02

: When the

second inequality is reversed (i.e., for low dilution rates),

E1 is above the switching manifold and it is not an
equilibrium of model (1). I call such an equilibrium a
virtual equilibrium. Similarly, the equilibrium for popula-
tion dynamics in the region of the phase space above the
switching manifold where bacteria feed on substrate 2 only
(u1 ¼ 0, u2 ¼ 1) is

E2 ¼ S01;
DK2

m2 �D
;
Y 2m2ðS02m2 �DðK2 þ S02ÞÞ

m2 �D

� �
.

For this equilibrium to be positive and located above the

switching manifold the inequalities m2S02
K2þS02

4D4 m1S01
K1þS01

have to be satisfied. However, due to assumption (6),

these inequalities never hold and equilibrium E2 does not
exist.
Now I search for a possible equilibrium on the switching

manifold. A point on the switching manifold is an
equilibrium of (1) if there exists a fixed control ui

(i ¼ 1; 2, 0puip1, u1 þ u2 ¼ 1) for which the right hand
side of (1) equals zero. Such a point must satisfy the
following system of equations (for unknowns S1, S2, C,
and u):

DðS01 � S1Þ �
1

Y 1

S1

K1 þ S1
u1C ¼ 0,

DðS02 � S2Þ �
1

Y 2

S2

K2 þ S2
u2C ¼ 0,

m1S1

K1 þ S1
u1 þ

m2S2

K2 þ S2
u2 �D

� �
C ¼ 0,

m1S1

K1 þ S1
¼

m2S2

K2 þ S2
.

Solving these equations gives equilibrium E% (see formula
(7)) and the corresponding bacterial preference for
substrate 1 (see formula (8)). For equilibrium E% to exist
the bacterial preference for substrate 1 (u%

1 ) must be
between 0 and 1. When the dilution rate equals 0, the
corresponding bacterial preference for substrate 1 is
positive (see formula (8)) and equal to S01Y 1m1=
ðS01Y 1m1 þ S02Y 2m2Þ: Moreover, u%

1 ¼ 1 when D ¼ m1 or
D ¼ S02m2=ðK2 þ S02Þ. Similarly, u%

1 ¼ 0 when D ¼ m2 or
D ¼ S01m1=ðK1 þ S01Þ. Due to assumption (6), it is clear
that S02m2=ðK2 þ S02ÞominfS01m1=ðK1 þ S01Þ;m1;m2g and,
consequently, for DpS02m2=ðK2 þ S02Þ bacterial prefer-
ence u%

1p1 and equilibrium E% exists. I summarize these
results about existence of equilibria into the following three
possibilities:
1.
 For Do m2S02
K2þS02

; the only equilibrium at which bacteria

exist is E%.

2.
 For m2S02

K2þS02
oDo m1S01

K1þS01
; the only equilibrium at which

bacteria exist is E1.



ARTICLE IN PRESS
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3.
 For m1S01
K1þS01

oD; bacteria are washed out from the

system.
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