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Abstract

This study examines the influence of optimal patch choice by consumers on resource population dynamics and on consumer

distribution in a two patch environment. The evolutionarily stable strategy which describes animal distributions across habitat

patches is called the ideal free distribution (IFD) strategy. Two mechanisms that lead to the IFD are: (1) direct consumer

competition such as interference, and (2) exploitative competition for resources. This article focuses on the second mechanism by

assuming that resources undergo population dynamics while consumer abundance is fixed. Two models of resource growth are

considered in detail: the exponential and the logistic. The corresponding consumer IFD is derived for each of these two models,

assuming that consumers behave adaptively by moving to the patch which provides them with the highest fitness. This derivation

does not require that resources are at an equilibrium, and it provides, for each resource density, the corresponding distribution of

consumers. The article suggests that adaptive patch choice by consumers decreases between patch heterogeneity in resource levels

and weakens the apparent competition between resources. The results for a single consumer population are extended for two

competing consumer populations. The corresponding IFD is computed as a function of the two consumer densities. This allows for

the analytical description of isolegs which are the boundary lines, in the two consumer density phase space, separating regions where

qualitatively different habitat preferences are predicted.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The evolutionarily stable strategy (ESS; Maynard
Smith, 1982) for animal distribution across habitat
patches has been termed the ideal free distribution
strategy (IFD, Fretwell and Lucas, 1970). It assumes
that animals move freely and instantaneously between
patches, they have a perfect knowledge of the qualities
of all patches, and they settle in the patch which
provides them with the highest resource intake rate. This
results in a spatial animal distribution under which no
individual can unilaterally increase its fitness by chan-
ging its strategy, and which is stable with respect to
small spatial fluctuations. There are two main mechan-
isms that lead to the IFD. The first mechanism is direct
competition among consumers (also called interference).
A typical example is territorial defense. This approach

does not require the inclusion of resource dynamics to
derive a corresponding IFD because patch suitability is
directly related to the number of consumers in that
patch (Sutherland, 1983; Parker and Sutherland, 1986;
Sutherland, 1996). The second mechanism is exploitative
competition under which the suitability of occupied
patches decreases due to the exploitation of resources.
Thus, the effect of consumers on their own spatial
distribution is mediated through the effect of consumers
on resource densities. To model this mechanism, the
resource standing crop has to be considered.
Because under the IFD, the resource intake rate is the

same across all occupied patches this allows derivation
of the ‘‘input matching rule’’ (Parker, 1978; Sutherland,
1996) which states that the ratio of resource input rates
‘‘matches’’ the consumer distribution across occupied
patches. This rule was derived for ‘‘continuous systems’’
in which resources are immediately consumed upon
their arrival in the system and there is a zero standing
crop in either patch (Parker and Stuart, 1976; Parker,
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1978; Milinski and Parker, 1991). Lessells (1995)
extended Parker’s rule to situations in which resources
exist at positive levels. She assumed that resources are
input to patches at a fixed rate and that demographic
forces together with resource consumption drive re-
sources to an equilibrium. Then she showed that the
Parker’s matching rule also holds at this equilibrium.
Recently, Adler et al. (2001) studied the IFD for size
structured populations under various additional con-
straints such as the presence of predators, competition,
and two limiting food resources.
Contrary to these matching rules, I derive in this

article a matching rule which does not assume that the
population numbers are at an equilibrium. I focus on the
case in which a fixed number of consumers compete for
two resources located in spatially separated patches. The
case in which both resources and consumers are dynamic
variables was considered by Křivan (1997). The assump-
tion of fixed consumer numbers is realistic provided
resource generation times are much shorter than is the
generation time of consumers which is the case of many
natural systems including that of herbivores. Assuming
that consumers are omniscient and they move to the
patch which provides them with the highest resource
input rate I study resource dynamics and consumer
distributions without assuming a resource equilibrium. I
will derive a matching rule for non-equilibrium popula-
tion dynamics and I will study the effect of consumer
adaptive behavior on apparent competition between the
two resource types (Holt, 1977). Moreover, I will also
study effects of the adaptive consumer patch choice on
the resource heterogeneity across patches.
The IFD for a single species can be extended for two

or more competing species (Lawlor and Maynard Smith,
1976; Possingham, 1992; Grand and Dill, 1999, Grand,
2002; Guthrie and Moorhead, 2002; Křivan and Sirot,
2002). For two competing species it can be graphically
analysed by using isolegs, which are the lines separating
regions of the two consumer phase space where
qualitatively different habitat preferences are observed
(Rosenzweig, 1979,1981,1991). In general, for each of the
two consumer species many isolegs can be defined.
Following Křivan and Sirot (2002) I use two prominent
ones. Consider one of the two consumer species. The first
isoleg, which delimitates the part of the consumer phase
space in which the species specializes in patch 1, is called
the 0% isoleg. The second isoleg, which delimitates
specialization in patch 2, is called the 100% isoleg.
Křivan and Sirot (2002) derived the IFD for two species
assuming that the individual fitness is derived from the
classic Lotka–Volterra competition model which con-
siders consumer dynamics but does not consider resource
dynamics. They showed that isolegs are piece-wise linear
and that for high levels of interspecific competition the
IFD cannot be uniquely predicted in some regions of the
population density space because two possible distribu-

tions exist. This is not surprising because the Lotka–
Volterra competition model predicts multiple population
equilibria for high levels of interspecific competition. In
this article I derive the IFD for the resource exploitation
model (Tilman, 1982) which considers resource dynamics
instead of consumer dynamics.

2. The IFD for a single population

In this section I consider two simple models of
reproducing resources. The first model assumes that
resource growth is unlimited and that it is described by
the exponential function while the second model
assumes logistic resource growth. For simplicity assume
that handling times are zero and functional responses
are linear. These assumptions allow for a great deal of
insight, but along the same lines more complicated
systems can be analyzed too (non-zero handling times,
more patches, other types of resource growth rates, etc.).
The choice of the two simple examples presented here is
mainly to illustrate the methodological approach which
is applicable to more complex situations as well.

2.1. Exponential resource growth

Consider two patches with resource densities R1 and
R2; respectively. Assume that these resources grow
exponentially with intrinsic per capita growth rates r1
and r2: The overall consumer density is C and assume
that consumers can freely and instantaneously move
between the two patches. The corresponding Lotka–
Volterra system is described by the following model:

dR1

dt
¼ R1ðr1 � l1u1CÞ;

dR2

dt
¼ R2ðr2 � l2u2CÞ;

ð1Þ

where ui is the proportion of the consumer population
currently in patch i and li is the cropping rate. Thus
Ci ¼ uiC denotes the consumer abundance in patch i

ði ¼ 1; 2Þ: At the individual level, ui describes the
preference of a consumer for patch i measured by the
time an average consumer would spend in this patch in
its lifetime. For adaptive consumers ui is not fixed but it
changes as the resource levels change. As the travel time
between patches is zero, I have u1 þ u2 ¼ 1: In what
follows the patch suitability is measured by the food
intake rate in that patch. Assuming a linear functional
response, the quality of patch i is described by liRi:
Provided that consumers are equal competitors and
there are no other constraints (such as those discussed
by Adler et al., 2001) this leads to the following animal
strategy: If patch 1 is more profitable than patch 2
ðl1R14l2R2Þ then consumers should spend all their
time in patch 1 ðu1 ¼ 1Þ; and, conversely. If the two
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patches are of the same suitability ðl1R1 ¼ l2R2Þ then
the consumer strategy is not uniquely given. Note that
this is exactly the case for which I will derive below a
corresponding input matching rule, because only under
this condition are both patches inhabited. However, the
assumption of omniscient consumers alone does not
readily provide us with any matching rule. In order to
derive a matching rule, I need to consider resource
dynamics described by Eq. (1). In this section assume,
without any loss of generality, that the intrinsic per
capita resource growth rate in patch 1 is higher than in
patch 2, i.e.,

r14r2:

If consumer density is low

Co
r1 � r2

l1
ð2Þ

then predation pressure is not strong enough to drive
resources to the level at which patch suitabilities
equalize (Appendix A) and all consumers eventually
occupy the patch with the higher intrinsic resource
growth rate which is patch 1 in our case (Fig. 1).
Corresponding resource population dynamics are shown
in Fig. 2A. Depending on the initial resource population
densities, consumers upon introduction distribute either
to patch 1 (if the initial resource densities are below the
dashed line in Fig. 2) or to patch 2 (if the initial resource
densities are above the dashed line). I remark that the
dashed line describes the resource levels which make
both patches equally profitable for consumers. In the
first case consumers stay in patch 1 forever, because
their density is not high enough to decrease the resource
level in patch 2 so that both patches are equally
profitable. In the case where, initially, the resource
density in patch 2 is high, consumers move to this patch
which, in turn, decreases the standing crop there to the
level which makes both patches equally profitable for
consumers. At this moment, all consumers move to
patch 1 where they stay forever (Fig. 2A). Because the
consumer density is low, consumers cannot control
resource growth and resources in both patches increase
exponentially. I conclude that when at low numbers,
consumers prefer, in the long run, the patch with the
higher intrinsic resource growth rate.
Next consider the situation in which the consumer

density is so high that inequality (2) is reversed.
Depending on the initial resource densities, consumers
after introduction move to the more profitable patch. If
the initial resource densities are above the dashed line
(see Fig. 2B) consumers move to patch 2, if they are
below the dashed line then consumers move to patch 1.
The presence of consumers in either patch decreases
resource growth in that patch so that, after some time,
resources reach levels at which both patches are equally
profitable for consumers. Contrary to the case of low

consumer densities, the consumer density is now high
enough to keep resources in both patches at the levels that
neither of them becomes more profitable. Technically
speaking, in the resource density phase space, the
trajectories of model (1) are pushed from both sides to
the equal profitability line (the dashed line in Fig. 2;
Appendix A). Thus, any spatial perturbation in the
consumer distribution is swept away and the resource
densities return to the dashed line. This is the consequence
of the fact, that the consumer density is high enough to
keep resource densities in both patches at such levels to
make both patches equally profitable for consumers. The
fact that resource dynamics are such that both patches are
equally profitable ðl1R1 ¼ l2R2Þ allows derivation of the
proportion of consumers in patch 1:

u1 ¼
r1 � r2 þ l2C
ðl1 þ l2ÞC

ð3Þ

and in patch 2

u2 ¼
r2 � r1 þ l1C
ðl1 þ l2ÞC

; ð4Þ
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Fig. 1. Consumers patch preferences as a function of the total

consumer density. For low consumer densities all consumers are in the

more suitable patch 1. For higher consumer densities consumers

spread over the two patches. (A) is for exponentially growing resources

(r1 ¼ 2; r2 ¼ 1; l1 ¼ 1; l2 ¼ 0:5) while (B) is for logistically growing

resources (r1 ¼ 2; r2 ¼ 1; l1 ¼ 1; l2 ¼ 0:5; K1 ¼ 20; K2 ¼ 10). Solid

and dashed lines show preferences for patch 1 and patch 2,

respectively.
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see Appendix A and Fig. 1. I get the following ‘‘matching
rule’’

C1

C2
¼ u1

u2
¼ r1 � r2 þ l2C

r2 � r1 þ l1C
:

This matching rule depends on the intrinsic resource
growth rates, consumers cropping rates and on the overall
consumer density. Note that if the two resources were

exactly the same ðr1 ¼ r2; l1 ¼ l2Þ then C1=C2 ¼ 1; i.e.,
consumers distribute equally over the two patches.
Unequal distributions of consumers are due to differences
in the two resources.
Substituting the consumer IFD described by (3) and

(4) in model (1) gives resource population dynamics at
the consumers IFD:

dR1

dt
¼ R1

l1l2
l1 þ l2

r1l2 þ r2l1
l1l2

� C

� �
;

dR2

dt
¼ R2

l1l2
l1 þ l2

r1l2 þ r2l1
l1l2

� C

� �
:

ð5Þ

This implies that for

r1 � r2

l1
oCo

r1l2 þ r2l1
l1l2

resources are exponentially increasing in both patches
despite their consumption by consumers (Fig. 2B). For
high consumer densities satisfying

r1l2 þ r2l1
l1l2

oC

consumers drive resource levels in both patches to zero
(Fig. 2C). When

C ¼ r1l2 þ r2l1
l1l2

ð6Þ

every point on the IFD line (the dashed line in Fig. 2) is
an equilibrium point. This means that once resource
densities reach the level under which both patches are
equally profitable (i.e., the dashed line in Fig. 2) then
they do not change anymore. Of course, equality (6) is
unrealistic but for consumer densities which are close to
this critical value changes in resource abundances will be
very slow.
The model with exponential resource growth and

adaptive consumers predicts that for all consumer
densities and all combination of parameters there are
only two possibilities with respect to resource popula-
tion dynamics: either resources in both patches grow
exponentially, or they are depleted. Now I compare this
result with a system in which consumers do not behave
adaptively, i.e., their preferences for either patch are
fixed and independent of the resource standing crop.
For the latter case there are the following qualitative
possibilities: for low consumer densities both resources
grow exponentially, for intermediate consumer densities
the resource with lower ratio ri=li is depleted due to
apparent competition via shared consumers (Holt, 1977)
and the other resource grows exponentially, and for high
consumer densities both resources are depleted. This
suggests that adaptive consumer behavior tends to
decrease resource heterogeneity measured by the ratio
R1=R2 of resource levels in the two patches. Indeed, this
ratio is given for non-adaptive consumers (with fixed
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Fig. 2. Resource dynamics (R1 ¼ resource in patch 1, R2 ¼ resource in

patch 2) when resources grow exponentially. In (A) the consumer

population is low ðC ¼ 0:3Þ and all consumers move eventually to the

patch with a higher intrinsic growth rate. In (B) the consumer

population is intermediate ðC ¼ 3Þ and it splits over the two patches

while resources are growing. In (C) the consumer population is large

ðC ¼ 6Þ and it drives resources in both patches to extinction. The

dashed line (the IFD line) denotes the resource densities for which

the two patches are equally profitable for consumers. Parameters:

r1 ¼ 1:5; r2 ¼ 1; l1 ¼ 1; l2 ¼ 0:5:
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patch preferences ui) by

R1ðtÞ
R2ðtÞ

¼ eðr1�l1u1C�ðr2�l2u2CÞÞt:

If r1 � l1u1C4r2 � l2u2C then this ratio tends to
infinity, while the same ratio for adaptive consumers is
constant and given by l2=l1 (because when the resources
are suppressed to the level where both patches are
equally profitable for consumers, R1=R2 ¼ l2

l1
). Similarly,

if r1 � l1u1Cor2 � l2u2C then the above ratio tends to
zero, while the same ratio for adaptive consumers is
again constant. This implies that adaptive consumer
behavior decreases resource heterogeneity among
patches.

2.2. Logistic resource growth

The assumption on exponential resource growth is
not realistic if resources are limited also by bottom up
forces. For this reason I compute the IFD for the case in
which resources grow logistically. Model (1) becomes

dR1

dt
¼ r1R1 1� R1

K1

� �
� l1u1CR1;

dR2

dt
¼ r2R2 1� R2

K2

� �
� l2u2CR2

ð7Þ

and the consumer strategy is the same as in the previous
section. If there are no consumers ðC ¼ 0Þ then the
resource level in either patch reaches its environmental
carrying capacity Ki ði ¼ 1; 2Þ: Without loss of general-
ity assume that K1l14K2l2 which implies that for low
consumer densities patch 1 is more profitable than patch
2 and the interior resource equilibrium of system (7)
without any consumers is below the dashed line (Fig.
3A). When consumers are introduced, the resource
equilibrium shifts to the left (Fig. 3B) because the
resource 1 equilibrium density decreases as consumers
prefer to stay in patch 1. Moreover, isoclines (dotted
lines in Fig. 3) become discontinuous (cf. Fig. 3A vs.
Fig. 3B, and C). The corresponding resource equili-
brium with consumers present is

R%
1 ¼ K1 1� l1

r1
C

� �
;

and

R%
2 ¼ K2;

(Fig. 3B). This is so until the consumer density reaches
the critical density

C% ¼ r1ðK1l1 � K2l2Þ
K1l

2
1

: ð8Þ

At this critical consumer density, the resource equili-
brium is exactly on the IFD line and both patches are
equally suitable for consumers. It can be proved that for
consumer densities higher than the critical density C%

the corresponding resource equilibrium cannot leave the
IFD line, because consumer densities are high enough to
equilibrate suitability of both patches. The consumer
population splits across the two patches in such a way
that the fitness of individuals in either patch is the same
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Fig. 3. Resource dynamics when resources grow logistically. In (A) no

consumers are present (C ¼ 0) and resources reach environmental

carrying capacities K1 and K2: The dashed line denotes the resource

densities for which the two patches are equally profitable for

consumers. In (B) the consumer population is low ðC ¼ 0:4Þ and all

consumers move eventually to the more suitable patch 1 (the patch

with higher value liKi). This leads to a decreased equilibrium resource

density in this patch and the resource equilibrium moves toward the

dashed line. In (C) the consumer population is large enough ðC ¼ 1:3Þ
and it splits over the two patches. The adaptive behavior of consumers

keeps the resource equilibrial densities at the dashed line. Parameters:

r1 ¼ 1:5; r2 ¼ 1;K1 ¼ 10;K2 ¼ 10; l1 ¼ 1; l2 ¼ 0:5:
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(Appendix B, Fig. 3C). This is so for all consumer
densities which are higher than the critical value given
by C%: The corresponding resource equilibrium den-
sities are given by

R%
1 ¼ K1K2l2ðr2l1 þ r1l2 � Cl1l2Þ

K1r2l
2
1 þ K2r1l

2
2

and

R%
2 ¼ l1

l2
R%
1 ;

(Appendix B). These resource equilibrial densities are
positive if

Co
r2l1 þ r1l2

l1l2
: ð9Þ

If the opposite inequality holds, resources in both
patches are depleted because of heavy consumption.
Fig. 3C shows that resource densities are driven to the
IFD line and when they reach it they move along it
towards the equilibrium. The corresponding ‘‘matching
principle’’ which relates the proportion of consumers in
the two patches at the resource equilibrium is given by
(Appendix B)

u1

u2
¼ r1r2ðl2K2 � l1K1Þ � Cl22r1K2

r1r2ðl1K1 � l2K2Þ � Cl21r2K1

:

If K1l1 is not very different from K2l2; or C is not too
low, the above matching principle can be approximated
by

u1

u2
B

r1K2l
2
2

r2K1l
2
1

:

Once again, the above results suggest that there are
only two possibilities with respect to the long-term
resource population dynamics. Either the consumer
density is such that it allows positive equilibrial resource
densities in both patches, or, for high consumer densities
resources in both patches are depleted. This is a similar
result as in the case for exponentially growing resources.
The consumer IFD is reached at the population
equilibrium provided the consumer density is above
the critical threshold given by formula (8).
Now I compare these results with resource dynamics

when consumers are non-adaptive. For non-adaptive
consumers with fixed preferences for either patch the
corresponding equilibrial resource densities are given by

Kiðri � liuiCÞ
ri

; i ¼ 1; 2:

This implies that for low consumer densities equilibrial
resource levels in both patches are positive, for
intermediate consumer densities resources in one patch
are depleted while they are kept at a positive equilibrium
in the other patch, and for high consumer densities
resources in both patches are depleted. For adaptive
consumers the case in which only one patch is depleted

cannot happen. This implies that adaptive consumer
behavior weakens the apparent competition between
resources and that adaptive consumer behavior tends to
decrease spatial heterogeneity between resources.
Another observation is that resource densities are

positive in systems with adaptive consumers for
consumer densities for which non-adaptive behavior
implies resource extinction at least in one patch. Indeed,
resource equilibrial densities in systems with non-
optimal consumers are positive if

Comin
r1

u1l1
;

r2

u2l2

� �
:

When consumers are adaptive, equilibrial resource
densities are positive if inequality (9) holds. Because
for all ui between zero and one

min
r1

u1l1
;

r2

u2l2

� �
p

r2l1 þ r1l2
l1l2

this implies that when consumer behavior is adaptive,
resources coexist at a positive equilibrium density for
such consumer densities for which they could not coexist
if consumers were non-adaptive because of apparent
competitive exclusion (Holt, 1977).

2.3. Comparison with Parker’s matching rule

Parker (1978) derived an input matching rule which
relates the consumer distribution to patch resource input
rates for continuous input systems. For the case in
which resources are not consumed immediately, i.e.,
when there is a standing resource crop, Parker’s rule was
extended by Lessells (1995). Now I will compare
matching rules predicted by my models with those of
Parker and Lessells. First, consider a continuous input
system with no standing resource crop, which is the
condition under which Parker matching rule applies. His
rule assumes that the resource input rate to patch i is
given by Si and that consumers are at the IFD. As the
per capita consumer intake rate Si=ðuiCÞ ði ¼ 1; 2Þ
should be the same in both patches I get Parker’s
matching rule:

u1

u2
¼ C1

C2
¼ S1

S2
:

When there is a positive standing resource crop,
Lessells (1995) extended the above matching rule by
assuming that resources are input to a patch at a
constant rate and that the standing resource crop settles
at an equilibrium. In fact, her argument can be also
extended to my systems which do not assume a constant
resource input. Let riðRiÞ denote the growth of resources
and fi the functional response in patch i; i.e., the
resource dynamics in patch i are described by

dRi

dt
¼ riðRiÞ � fiðRiÞuiC:
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Assuming that population dynamics are such that
resources converge to an equilibrium R%

i ; I obtain at
the equilibrium

riðR%
i Þ ¼ fiðR%

i ÞuiC; i ¼ 1; 2:

If I assume that consumers are distributed across both
patches then, according to the IFD, per capita consumer
intake rate of resources must be the same in both
patches, i.e.,

f1ðR%
1 Þ ¼ f2ðR%

2 Þ:

This implies the following input matching rule:

u1

u2
¼ r1ðR%

1 Þ
r2ðR%

2 Þ
:

Thus, this rule provides the same input matching rule as I
obtained for the logistically growing resources, because in
this case resource dynamics settle at an equilibrium.
However, the above matching rule does not predict the
IFD for exponentially growing resources, because re-
sources do not settle at an equilibrium in this case. My
approach presented in this article, when compared with
the Parker’s matching principle is more general, because
it is not limited to the case in which resources settle at an
equilibrium and it allows us to compute patch preferences
for non-equilibrium resource densities. Thus, it can be
used to study population dynamics even if they do not
converge to equilibrial densities (Křivan, 1997; Boukal
and Křivan, 1999; van Baalen et al., 2001).

3. IFD for two competing species

Now I will extend the previous analysis to the case of
two competing consumer species. Thus, instead of a
single consumer with density C; I consider two
competing species whose overall densities are denoted
by N and P: Again I assume that the densities of these
two species are constant in time and the resource level in
patch 1 is R1 and in patch 2 is R2: The extension of
model (1) in a two consumer environment is described
by the following population dynamics:

dR1

dt
¼ r1R1 1� R1

K1

� �
� lN1

u1NR1 � lP1
v1PR1;

dR2

dt
¼ r2R2 1� R2

K2

� �
� lN2

u2NR2 � lP2
v2PR2:

ð10Þ

In this model resources in both patches without
consumers grow logistically with intrinsic per capita
growth rates ri and carrying capacities Ki ði ¼ 1; 2Þ:
Parameters lN1

; lN2
; lP1

; lP2
are resource cropping rates

where the first subindex refers to a species and the
second to a patch. Controls u1 ðv1Þ and u2 ðv2Þ describe
the average proportion of a lifetime that an individual of
the first (second) consumer species spends in patch 1 and
in patch 2, respectively. Thus, u1 þ u2 ¼ v1 þ v2 ¼ 1:My

aim is to derive these controls for each population
density of species N and P: To approach this problem, I
need to define a fitness measure for these two species.
Following the case of a single consumer population I
assume that individual fitness is directly proportional to
the food intake rate which gives

WN ¼ lN1
u1R1 þ lN2

u2R2

for species N and

WP ¼ lP1
v1R1 þ lP2

v2R2

for species P: Maximization of these fitness functions
gives the optimal strategy for the two species. If
lN1

R14lN2
R2 then individuals of species N should stay

in patch 1, while if the opposite inequality holds they
should stay in patch 2 and similarly for species P: By
patch switching consumers can, if their density is high
enough, suppress resource levels in the two patches so
that both patches give the same fitness. On the contrary
to the case of a single consumer population there are
now two switching lines; one for species N (the dotted
line in Fig. 6A) and one for species P (the dashed line in
Fig. 6A). The qualitative analysis depends on the
position of these two switching lines. Without loss of
generality I will assume that

lN1

lN2

o
lP1

lP2

ð11Þ

which means that the switching line for species N is (in
the resource ðR1;R2Þ phase space) below the switching
line for species P (which is the case shown in Fig. 4).
Thus, consumers N switch from patch 1 to patch 2 at
lower densities of resource 2 than consumers P if the
density of resource 1 is the same. Analysis of Appendix
C shows that provided densities of species N and P are
not too high, one positive resource equilibrium of model
(10) exists. This equilibrium corresponds either to one of
three ‘‘pure’’ consumer species distributions (all indivi-
duals of both species are in patch 1, and all individuals
of species N are in patch 2 and all individuals of species
P are in patch 1, and all individuals of both species are
in patch 2) or to one of the two ‘‘mixed’’ distributions
under which one species occupies both patches. Note
that because of assumption (11) the case in which all
individuals of species N occupy patch 1 and all
individuals of species P occupy patch 2 is impossible
(because in this case the inequalities lN1

R14lN2
R2 and

lP1
R1olP2

R2 cannot hold simultaneously).
Now I will study isolegs, which are the lines

separating regions in the consumer phase space where
qualitatively different habitat preferences are observed
(Rosenzweig, 1979,1981,1991). Křivan and Sirot (2002)
analyzed the 0% isoleg (the curve which delimitates in
the consumer phase space specialization in habitat 1)
and the 100% isoleg (the curve which delimitates
specialization in habitat 2) for the Lotka–Volterra
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model of two competing species. Their model assumed
that consumer populations undergo population dy-
namics but the resources are constant. In this article I
consider the opposite case: resources undergo popula-
tion dynamics but consumers do not. I will study two
cases: one patch is more profitable for both consumer
species (shared preferences), and each consumer species
prefers different patch (distinct preferences).

3.1. The shared-preference case

Here I consider the case in which both consumer
species prefer the same patch at low densities. At very
low consumer densities resources almost reach their
carrying capacities and the fitness of species N is given
approximately by

WN ¼ lN1
u1K1 þ lN2

u2K2

and the fitness of species P by

WP ¼ lP1
v1K1 þ lP2

v2K2:

Firstly I assume that patch 1 is more profitable than
patch 2 for both species. This means that at low
consumer densities the fitness of both species is higher in
patch 1 than in patch 2 (i.e., lN1

K14lN2
K2 and

lP1
K14lP2

K2 ) so that all individuals prefer this patch.
Due to inequality (11) this happens provided

lN1

lN2

4
K2

K1
:

Under this assumption there are three isolegs whose
position is qualitatively the same as shown in Fig. 5A.
There is the 0% isoleg for species N (solid line), the
100% isoleg for species N (long-dashed line) and the

0% isoleg for species P (short-dashed line). For low
consumer densities (lower left corner) individuals of
both species occupy the more profitable patch 1. Let us
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and the second number shows the preference of species P for patch 1)

in the resource density phase space provided inequality (11) holds. The

dashed line denotes the resource densities for which the fitness of

consumer P is the same in both patches and the dotted line denotes the

resource densities for which the fitness of consumer N is the same in

both patches.
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Fig. 5. Patch selection maps for two competing species in a two patch

environment. The 0% (solid line) and the 100% (long-dashed line)

isolegs for species N and the 0% (dashed line) and the 100% (dotted

line) isolegs for species P separate regions with qualitatively different

species distributions. Proportions of species N (u1) and P (v1) in the

first patch are given in parentheses. In (A) the first patch is better for

both species at low densities ðlP1
=lP2

4lN1
=lN2

4K2=K1; K2 ¼ 5Þ; in
(B) the second patch is better for both species at low densities

ðK2=K14lP1
=lP2

4lN1
=lN2

; K2 ¼ 15Þ; and in figure (C) the first patch
is better for species P and the second patch is better for species N when

at low densities ðlP1
=lP2

4K2=K14lN1
=lN2

; K2 ¼ 10Þ: Other para-

meters: lN1
¼ 0:4; lN2

¼ 0:7; lP1
¼ 1; lP2

¼ 0:9; r1 ¼ 1; r2 ¼ 0:8;

K1 ¼ 10:
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consider IFD along a gradient in species P density (see
the transect line in Fig. 5A). As density of species P

increases the resource level in patch 1 decreases while it
stays constant in patch 2 (because all consumers are in
patch 1; Fig. 6, segment of the solid line I). For some
density of species P the resource equilibrium reaches the
switching line lN1

R1 ¼ lN2
R2 (the dotted line in Fig.

6A). At this moment both patches become equally
profitable for species N and this population splits across
them in the ratio

u1

u2
¼ K2r1lN2

ðNlN2
� r2Þ þ K1r2lN1

ðr1 � PlP1
Þ

r2ðK2r1lN2
þ K1lN1

ðNlN1
þ PlP1

� r1ÞÞ
;

see Appendix C. As density of species P increases
further, the resource levels decrease in both patches
because more individuals of species N move to patch 2
due to strong competition in patch 1 (Fig. 6, segment II).
The resource equilibrium ‘‘slides’’ downwards along the
switching line lN1

R1 ¼ lN2
R2: At some density of species

P all individuals of species N are in patch 2 while all
individuals of species P still occupy patch 1 only. As
density of species P increases further on, the resource
level in patch 1 decreases (Fig. 6A, segment III) and for
a critical density of species P the fitness for individuals
of this species will be the same in both patches. This
corresponds to the moment where the resource equili-
brium reaches the switching line lP1

R1 ¼ lP2
R2 (dashed

line in Fig. 6A). Since then on, both patches are equally
profitable for species P and this species spreads over
them in the ratio

v1

v2
¼ r1ðK2lP2

ðr2 � NlN2
� PlP2

Þ � K1r2lP1
Þ

K1r2lP1
ðr1 � PlP1

Þ þ K2r1ðNlN2
� r2ÞlP2

;

Appendix C. As the density of species P increases,
resources in both patches will be depleted (Fig. 6A,
segment IV). A similar analysis can be done for any
transect.
Secondly, I assume that patch 2 is more profitable for

both species (i.e., lN1
K1olN2

K2 and lP1
K1olP2

K2).
This is the case where

K2

K1
4

lP1

lP2

4
lN1

lN2

:

In this case I observe the 100% isoleg for species N

(long-dashed line in Fig. 5B) and the 0% (short-dashed
line in Fig. 5B) and the 100% (dotted line in Fig. 4B)
isolegs for species P: When at low densities both species
occupy the more profitable patch 2.

3.2. The distinct-preference case

Here assume that at low consumer densities patch 1
is more profitable for species N (i.e., lN1

K14lN2
K2)

while patch 2 is more profitable for species P

(i.e., lP1
K1olP2

K2). This happens provided

lP1

lP2

4
K2

K1
4

lN1

lN2

:

In this case there are only two isoclines (Appendix C):
the 100% isocline for species N (long-dashed line in
Fig. 5C) and the 0% isocline for species P (short-dashed
line in Fig. 5C). For low species densities (lower left
corner) species N occupies patch 1 and species P

occupies patch 2.
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Fig. 6. (A) shows dependence of the resource interior equilibrium and

(B) dependence of the consumer distribution (solid line shows the

proportion of consumer N in patch 1 and the dotted line shows the

proportion of consumer P in patch 1, respectively) along the transect

from Fig. 5A. When consumers are at very low densities, resources

reach approximately their environmental carrying capacities

(K1 ¼ 10;K2 ¼ 5; (A, section I) and both consumer species are in the

more profitable patch 1 (B, section I). As density of species P increases,

resource 1 equilibrium decreases and it reaches the switching line

ðlN1
R1 ¼ lN2

R2Þ: Because both resource patches are equally profitable
for consumer N; individuals of species N will inhabit also patch 2 while

patch 1 is still better for species P (section II). As density of species P

increases, species 1 is competed out of patch 1 and it occupies patch 2

only (section III). The resource level in patch 1 decreases and when it

reaches the second switching line ðlP1
R1 ¼ lP2

R2Þ both patches will be
equally profitable for species P which spreads over them (section IV).

Parameters are the same as in Fig. 5A.
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4. Discussion

Assuming constant consumer numbers, I developed
models of the IFD in a two patch environment where
resources undergo population dynamics. On contrary to
some previous studies on IFD that assumed either zero
standing resource crop (Parker and Stuart, 1976; Parker,
1978; Milinski and Parker, 1991), or convergence of
resources to an equilibrium (Lessells, 1995), the meth-
odology used in this article allows derivation of the IFD
for the case in which there is a standing resource crop
that undergoes population dynamics. Most models
assume that the IFD is reached due to a decreased
resource intake rate when number of consumers
increases, e.g., due to consumer interference (Fretwell
and Lucas, 1970; Sutherland, 1996). In this approach the
resource dynamics are not considered, because the
competition among consumers is directly related to the
number of consumers. On the contrary, the mechanism
which drives the consumer distribution outlined in this
article is based on exploitative competition. To derive
the corresponding IFD is more complicated than in the
case in which resources are kept at constant densities
because resource dynamics must be considered. In fact,
there is a feedback loop between the consumer distribu-
tion and the resource densities. The resource densities
are influenced by the consumer distribution which, in
turn, depends on the resource densities. In this article I
have assumed a linear functional response, which allows
for simple analytical treatment of the resulting models,
but the same methodology can be applied to more
realistic functional responses (such as Holling type II
functional response). I have proved that optimal patch
choice by consumers tends to decrease inter-patch
heterogeneity. In particular, when consumers are
adaptive then there are only two qualitatively different
resource population dynamics: either resources coexist
in both patches, or they are driven simultaneously to
extinction. The case in which resources are driven to
extinction only in one patch does not occur for adaptive
consumers. Thus, the exclusion of one resource due to
apparent competition via shared consumers (Holt, 1977)
is not possible because of adaptive consumer behavior.
Also, resources in systems with adaptive consumers
survive for higher consumer densities when compared
with non-adaptive consumers. These results are in line
with previous results which treated both resources and
consumers as dynamic variables (Colombo and Křivan,
1993; Křivan, 1997,1998; Boukal and Křivan, 1999; van
Baalen et al., 2001). These articles showed that adaptive
consumer behavior tends to equalize resource levels in
both patches and also promotes indefinite coexistence
(persistence) of resources in the system when compared
with non-adaptive consumers. The case in which
consumers are not perfect optimizers, i.e., when the
speed of movement between patches is finite was

considered by Abrams (2000). Based on numerical
simulations he suggested that adaptive consumer beha-
vior does not necessarily decrease spatial resource
heterogeneity if consumers are not perfect optimizers.
However, Abrams assumed that resource growth is
described by a model with the growth rate parameter
periodically fluctuating in time, that there was an
immigration of resources from an outside pool, and
that the rate of consumer movement from patch to
patch at a given time was an increasing function of the
difference in food intake rates that the consumer would
experience in these two patches at that time. Then he
examined numerically the dependence of the mean
resource densities on the consumer movement rate.
The complexity of his model does not allow for
analytical treatment and it is difficult to disentangle
the effects of various mechanisms contained in the
model on the observed increased heterogeneity of
resource levels. The effect of gradual switching in
similar food webs was studied by van Baalen et al.
(2001) and Křivan and Eisner (2003). Their analysis
suggests that the qualitative predictions for instanta-
neous switching also hold for gradual switching
provided the switching is fast enough.
Lessells (1995) considered the IFD when resources

undergo population dynamics. Her model is based on
the assumption that the resource input rates are
constant (but they may be different for different
patches). Under this assumption there is a stable
resource equilibrium and it is easy to show that the
Parker’s input matching rule holds at this resource
equilibrium. My model differs from Lessells model as I
do not assume a priori existence of any resource
equilibrium. In fact, my model with exponentially
increasing resources has no non-trivial equilibrium at
all. The difference between my approach and Lessells
approach is that my approach allows prediction of non-
equilibrium consumer distribution, and the existence of
a locally stable equilibrium in my case is an outcome of
the model, not an assumption.
I also derived the IFD when two consumers are

competing in a two patch environment. To visualize the
IFD for two competing species I ploted 0% and 100%
isolegs in the consumers phase space (Fig. 5). These
isolegs separate consumer species densities for which
qualitatively different IFDs are predicted. These results
can be compared with those obtained by Křivan and
Sirot (2002). For the derivation of isolegs they used the
classical Lotka–Volterra competition model for two
consumers which considers population dynamics of
consumers but it assumes that resources do not undergo
population dynamics. They proved that resulting isolegs
are piece-wise linear and they cannot be uniquely
defined in some regions of the consumer density phase
space when interspecific competition is strong compared
to intraspecific competition. This is because there exist
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two possible IFD’s in some regions of the consumer
density space. In general, when interspecific competition
is strong enough the resulting habitat selection map is
very complex. On the contrary, the present article is
based on a Tilman’s type of competition model where
resources are depleted by consumers, i.e., they undergo
population dynamics. The resulting isolegs are far
simpler than those obtained by Křivan and Sirot
(2002). Firstly, they are linear, secondly, they are defined
for every consumer density. The difference in complexity
of isolegs is due to different underlying models. While
the Lotka–Volterra competition model predicts multiple
equilibria, the resource–two-consumer model predicts
only one equilibrium which results in isoleg differences
between these two approaches.
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Appendix A. The IFD when resources grow exponentially

Here I compute the IFD of the consumer population
when resources grow exponentially. The IFD line is
described as l1R1 ¼ l2R2: Along the IFD line the
consumer fitness in both patches equalizes. Vector n ¼
ðl1;�l2Þ is perpendicular to the IFD line. Let vector f1
be the derivative vector ðdR1

dt
; dR2

dt
Þ when the first patch is

more profitable ðl1R14l2R2Þ and hence all the con-
sumers occupy the first patch (u1 ¼ 1 and u2 ¼ 0). Thus,
f1 ¼ ðR1ðr1 � l1CÞ;R2r2Þ denotes the right handside of
(1). Vector f2 ¼ ðR1r1;R2ðr2 � l2CÞÞ is defined similarly
when the second patch is more profitable (l1R1ol2R2).
For Cor1�r2

l1
the scalar product (denoted by /�; �S) of

vectors n and f1 along the IFD line is positive because
ðr14r2Þ
/n; f1S ¼ l1R1ðr1 � l1CÞ � l2r2R2

¼ l1R1ðr1 � r2Þ � l21R1C40

and

/n; f2S ¼ l1r1R1 � l2R2ðr2 � l2CÞ
¼ l1R1ðr1 � r2Þ þ l1l2R1C40:

This implies that trajectories of (1) cross the switching
line and all consumers will eventually stay in patch 1.
Similarly, for C4r1�r2

l1
; /n; f1So0 and /n; f2S40

which implies that trajectories of model (1) move from
both sides to the IFD line and therefore once they reach

it they cannot leave it. This allows us to compute
controls u1 and u2 explicitly. Indeed, as trajectories of (1)
move along the IFD then

l1R1ðtÞ ¼ l2R2ðtÞ: ðA:1Þ

Differentiating both sides of this equation gives

l1
dR1ðtÞ

dt
¼ l2

dR2ðtÞ
dt

:

Substituting the expressions for dR1

dt
and dR2

dt
from model

(1) into the above equality gives:

l1R1ðtÞðr1 � l1u1CÞ ¼ l2R2ðtÞðr2 � l2ð1� u1ÞCÞ:

Because of equality (12) I get

l1R1ðtÞðr1 � l1u1CÞ ¼ l1R1ðtÞðr2 � l2ð1� u1ÞCÞ:

The solution of the last equation gives expressions (3).
Because

/n; f2S ¼ /n; f1Sþ ðl1 þ l2Þl1R1C

it follows that trajectories of system (1) with adaptive
consumers are uniquely defined (Colombo and Křivan,
1993).

Appendix B. The IFD when resources grow logistically

Here I compute the IFD given by u1 and u2 for model
(7) where resources grow logistically. Following Appen-
dix A, for l1R14l2R2 ðu1 ¼ 1; u2 ¼ 0Þ I denote the
vector of right-hand side of Eq. (7) by f1 and for
l1R1ol2R2 ðu1 ¼ 0; u2 ¼ 1Þ by f2; respectively. Along
the switching line I have

/n; f1S ¼ R1l1ðr1 � r2 � l1CÞ þ R2
1l1

r2l1
K2l2

� r1

K1

� �

and

/n; f2S ¼ R1l1ðr1 � r2 þ l2CÞ þ R2
1l1

r2l1
K2l2

� r1

K1

� �
:

Because

/n; f2S ¼ /n; f1Sþ R1l1Cðl1 þ l2Þ

it follows that trajectories of system (7) are uniquely
defined (Colombo and Křivan, 1993). For those points
of the IFD line where /n; f1So0 and /n; f2S40
trajectories are pushed from both sides to the IFD line
and, if they reach it, they cannot leave it. This allows us
to compute explicitly controls u1 and u2 exactly as in the
case of exponentially growing resources (Appendix A).
Substituting for derivatives expressions from (7) gives

u1 ¼
r1 � r2 þ Cl2

Cðl1 þ l2Þ
þ R1ðK1r2l1 � K2r1l2Þ

K1K2Cl2ðl1 þ l2Þ
and

u2 ¼
r2 � r1 þ Cl1

Cðl1 þ l2Þ
� R1ðK1r2l1 � K2r1l2Þ

K1K2Cl2ðl1 þ l2Þ
:
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These controls lead to population dynamics along the
IFD line which are described by

dR1

dt
¼ R1

r2l1 þ r1l2 � l1l2C
l1 þ l2

� R1
K1r2l

2
1 þ K2r1l

2
2

K1K2l2ðl1 þ l2Þ

� �
: ðB:1Þ

The corresponding equilibrium is

R%
1 ¼ K1K2l2ðr2l1 þ r1l2 � Cl1l2Þ

K1r2l
2
1 þ K2r1l

2
2

and

R%
2 ¼ K1K2l1ðr2l1 þ r1l2 � Cl1l2Þ

K1r2l
2
1 þ K2r1l

2
2

:

At this equilibrium

and

When

r1l2 þ r2l1
l1l2

4C4
r1ðl1K1 � l2K2Þ

l21K1

then at the equilibrium /n; f1So0 and /n; f2S40
because of the assumption K1l14K2l2: This means that
the equilibrium is located in the part of the IFD line
where trajectories are pushed from both sides to the line.
Consequently, this equilibrium is locally stable. It can
also be proved that it is globally stable.

Appendix C. Derivation of isolegs

Here I compute the consumer IFD for model (10). I
assume that inequality (11) holds. The corresponding
consumer preferences are shown in Fig. 4. There are
three ‘‘pure’’ consumer preferences and another two
which correspond to the points on the two IFD lines.
The dashed IFD line denotes those resource densities at
which both patches are equally profitable for species P

and the dotted line denotes those resource densities at
which both patches are equally profitable for species N:
Thus, there are the following five possible consumer
distributions over the two patches:

1. All individuals of both species are in patch 1
ðu1 ¼ v1 ¼ 1).

2. All individuals of species N are in patch 2 ðu1 ¼ 0Þ
while all individuals of species P are in patch 1
ðv1 ¼ 1Þ:

3. All individuals of both species are in patch 2 ðu1 ¼
v1 ¼ 0Þ:

4. Individuals of species N occupy both patches while
individuals of species P occupy patch 1 only ðv1 ¼ 1Þ:

5. Individuals of species P occupy both patches while
individuals of N species occupy patch 2 only ðu1 ¼ 0Þ:

The last two distributions under which one species
occupies both patches can be computed exactly in the
same way as for the case of a single consumer
population described in Appendices A and B and I

omit details of these calculations. Provided species N is
distributed across both patches then the corresponding
distribution is given by

u1 ¼
r1r2ðK1lN1

� K2lN2
Þ þ r1K2l

2
N2

N � r2K1lN1
lP1

P

ðr2K1l
2
N1

þ r1K2l
2
N2
ÞN

while all individuals of species P are in patch 1 ðv1 ¼ 1Þ:
Similarly, if species P is distributed over both patches
then its distribution is given by

v1 ¼
r1r2ðK1lP1

� K2lP2
Þ þ K2lP2

ðlN2
N þ lP2

PÞ
ðr2K1l

2
P1

þ r1K2l
2
P2
ÞP

while all individuals of species N are in patch 2 ðu1 ¼ 0Þ:
To derive isolegs I will assume that resources are at an

equilibrium. For each of the above strategies there is a
corresponding resource equilibrium of model (10):

E1 ¼
K1

r1
ðr1 � lN1

N � lP1
PÞ;K2

� �
;

E2 ¼
K1

r1
ðr1 � lP1

PÞ;K2

r2
ðr2 � lN2

NÞ
� �

;

E3 ¼ K1;
K2

r2
ðr2 � lN2

N � lP2
PÞ

� �
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/n; f1S

¼ K1K2r2l1l2ðl1 þ l2ÞðK1l
2
1C � K1l1r1 þ K2r1l2ÞðCl1l2 � r2l1 � r1l2Þ
ðK1r2l

2
1 þ K2r1l

2
2Þ

2

/n; f2S

¼ K1K2r1l1l2ðl1 þ l2ÞðK2l
2
2C � K2l2r2 þ K1r2l1Þðr2l1 þ r1l2 � Cl1l2Þ
ðK1r2l

2
1 þ K2r1l

2
2Þ

2
:
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E4 ¼
K1K2lN2

ðr2lN1
þ lN2

r1 � lN2
ðlN1

N þ lP1
PÞÞ

r2K1l
2
N1

þ r1K2l
2
N2

;

 

K1K2lN1
ðr2lN1

þ lN2
r1 � lN2

ðlN1
N þ lP1

PÞÞ
r2K1l

2
N1

þ r1K2l
2
N2

!

E5 ¼
K1K2lP2

ðr2lP1
þ r1lP2

� lP1
ðlN2

N þ lP2
PÞÞ

r2K1l
2
P1

þ r1K2l
2
P2

;

 

K1K2lP1
ðr2lP1

þ r1lP2
� lP1

ðlN2
N þ lP2

PÞÞ
r2K1l

2
P1

þ r1K2l
2
P2

!
:

Now I analyze (with respect to consumer population
densities) the position of these equilibria in the resource
ðR1;R2Þ density space. For example, consider equili-
brium E1: I want to know for which consumer densities
this equilibrium belongs to the part of the resource
density phase space where optimal consumer distribu-
tion is to stay in patch 1 for both consumer species. This
happens when fitness computed at the equilibrium is
higher for both species in patch 1 than in patch 2, i.e.,

lP1
R%
1 4lP2

R%
2 ;

and

lN1
R%
1 4lN2

R%
2 ;

where R%
1 and R%

2 are the corresponding resource
equilibrial ðE1Þ densities. However, inequality (11)
implies that the second of the two inequalities implies
the first inequality. From the second inequality I get that

PoI0%N ðNÞ;

where function I0%N is defined below. The position of the
other four equilibria is then analysed along the same
lines. From this analysis I obtain:

* E1 belongs to the right lower corner of the resource
density phase space where consumer distribution is
given by ðu1; v1Þ ¼ ð1; 1Þ provided PoI0%N ;

* E2 belongs to the middle part of the resource density
space where consumer distribution is given by
ðu1; v1Þ ¼ ð0; 1Þ provided I100%N oPoI0%P ;

* E3 belongs to the left upper corner of the resource
density space where consumer distribution is given by
ðu1; v1Þ ¼ ð0; 0Þ provided PoI100%N ;

* E4 belongs to the switching line ðlN1
R1 ¼ lN2

R2Þ
where consumer distribution is given by ðu1; v1Þ ¼
ðu%

1 ; 1Þ provided I0%N oPoI100%N ;
* E5 belongs to the switching line ðlP1

R1 ¼ lP2
R2Þ

where consumer distribution is given by ðu1; v1Þ ¼
ð0; v%1 Þ provided I0%P oP and I100%N oP;

where

I0%N ¼
r1ðlN1

K1 � lN2
K2Þ � K1l

2
N1

N

lP1
lN1

K1
;

I100%N ¼
r1r2ðlN1

K1 � lN2
K2Þ þ r1K2l

2
N2

N

r2lP1
lN1

K1
;

I0%P ¼ r1r2ðlP1
K1 � lP2

K2Þ þ r1K2lN2
lP2

N

r2l
2
P1

K1

;

I100%N ¼ r2ðlP2
K2 � lP1

K1Þ � K2lN2
lP2

N

l2P2
K2

:

In the quadrangle of consumer density space defined by
lN1

N þ lP1
Por1 and lN2

N þ lP2
Por2 where equilibrial

resource levels are positive the above four lines given
by P ¼ I0%N ðNÞ; P ¼ I100%N ðNÞ; P ¼ I0%P ðNÞ; and P ¼
I100%P ðNÞ do not intersect. These lines delimit the regions
of the consumer phase space with qualitatively different
distributions. The line defined by P ¼ I0%N ðNÞ is the 0%
isoleg for species N (solid line in Fig. 5), the line P ¼
I100%N ðNÞ is the 100% isoleg for species N (long-dashed
line in Fig. 5), the line P ¼ I0%P ðNÞ is the 0% isoleg for
species P (dashed line in Fig. 5), and the line P ¼
I100%P ðNÞ is the 100% isoleg for species P (dotted line in
Fig. 5). Note that the 0% isoleg for N species exists only
provided lN1

=lN2
4K2=K1 and the 100% isoleg for

species P exists only provided lP1
=lP2

oK2=K1:
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Křivan, V., 1998. Effects of optimal antipredator behavior of prey on

predator-prey dynamics: role of refuges. Theor. Popul. Biol. 53,

131–142.

ARTICLE IN PRESS
V. K$rivan / Theoretical Population Biology 64 (2003) 25–38 37
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