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INTRODUCTION

It has become clear that omnivory, defined as feeding
or parasitizing more than one trophic level (Pimm and
Lawton, 1977; Pimm and Lawton, 1978; Pimm 1991) is
common in food webs (Polis et al., 1989; Polis, 1991;
Diehl, 1993; Dawah et al., 1995; Sukhdeo and Bansemir,
1996; Winemiller, 1996; Fagan, 1997; Holt and Polis,
1997; Agrawal et al., 1999). Intraguild predation is a
special case of omnivory where predation occurs among
members of the same guild that exploit the same class of
resources (Polis, 1988; Polis et al., 1989; Polis and Holt,
1992; Holt and Polis, 1997). Theoretical studies show
that intraguild predation can destabilize population
dynamics because the intraguild prey have difficulty
persisting in a food web where they both compete for
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guild predation on species coexistence and
s. Two Lotka�Volterra models that assume a
ength are considered in detail. The first model
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edators choose their diet in order to maximize

second model includes resource population
on the community structure along a gradient

ompared with some experimental results of
guild predation is adaptive are discussed for
ators are perfect optimizers then intraguild
ironmental productivity and adaptive intra-
environmental productivity is high enough.

daptive dynamics; optimal foraging; popula-

food with and are eaten by the intraguild predators (Holt
and Polis, 1997; McCann and Hastings, 1997). Contrary
to these theoretical observations, intraguild predation in
some natural and laboratory food webs neither shortens
species coexistence nor increases population fluctuations
(Morin and Lawler, 1995; Morin and Lawler, 1996;
Fagan, 1997; Holyoak and Sachdev, 1998; Morin, 1999).
Lawler and Morin (1993) and Morin and Lawler (1996)
compared several protist microcosms with and without
intraguild predation and showed that omnivores reached
greater abundances than other nonomnivorous predators
and sometimes exhibited smaller fluctuations in popula-
tion densities.

To examine this contradiction, Polis et al. (1989),
Polis and Holt (1992), and Holt and Polis (1997)
searched for mechanisms which may explain coexistence
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in Lotka�Volterra type systems with intraguild preda-
tion. Polis et al. (1989) conducted an isocline analysis for
an intraguild predation model which did not consider
resource dynamics. They showed that if the two species
coexist without intraguild predation then adding intra-
guild predation can lead to exclusion of the intraguild
prey from their system. Holt and Polis (1997) considered
a tri-trophic mechanistic model which includes resource
dynamics. Using Tilman's R* rule (Tilman, 1990) they
showed that intraguild predators and intraguild prey can
coexist only if the intraguild predators are inferior to the
intraguild prey at exploiting a common resource. If the
intraguild predator is a superior competitor for the
shared resource then even without the intraguild preda-
tion, the intraguild prey will be outcompeted and
excluded. Holt and Polis (1997) argued that if intraguild
predators follow optimal foraging theory rules, coexistence
may be achieved by dropping the intraguild prey from
the predator's diet when the resource is abundant. This
would allow the intraguild prey population to recover,
which again could be included in the intraguild predator's
diet.

The aim of the present article is to further explore the
effects of intraguild predation on coexistence in tri-trophic
food webs, especially when intraguild predation is
adaptive. I will consider two basic population dynamical
models inspired by some recent studies of protist food
webs (Lawler and Morin, 1993; Morin and Lawler, 1995;
Morin and Lawler, 1996; Holyoak and Sachdev, 1998;
Morin, 1999). Some species of protists are cannibalistic
and, when feeding on their own guild, undergo a shift in
morphology where they typically rearrange their mouth-
parts so that they can ingest other protist cells (these are
called giants, cannibals, or macrostomes). The transformed
cannibal morphs cannot then consume bacteria (the
common resource) without dividing when they then
either transform back to bacteria eating cells or remain
as cannibals (Giese, 1973; M. Holyoak, personal com-
munication). Models in this article reflect, but are not
limited to, such a situation. The first model is based on a
competition Lotka�Volterra type model. Analysis of this
model reveals the effects of intraguild predation on
stability and species coexistence. I study separately two
cases: (i) intraguild predation is nonadaptive (extending
the analysis of Polis et al., 1989), and (ii) intraguild
predation is adaptive because predators choose their diet
in order to maximize their instantaneous per capita pop-
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ulation growth rate. I then analyze a more mechanistic
model for competition which includes explicit resource
population dynamics. This model was studied numeri-
cally by Holt and Polis (1997) but only for a fixed strength
of intraguild predation. I therefore conduct a more general
analysis that focuses on the effects of adaptive intraguild
predation on stability.

My main objectives are (1) to study the effects of adap-
tive intraguild predation on the community structure and
on population stability along a gradient in environment
productivity, (2) to study the strength of adaptive preda-
tion along a gradient in environmental productivity, and
(3) to compare my analysis with the experimental results
obtained by Lawler and Morin (1993) and Morin (1999).

THE LOTKA�VOLTERRA MODEL

Let x and y be two species competing for a common
resource R (Fig. 1). Besides competing with species x,
individuals of species y may also feed on them. In what
follows, u denotes the strength of predation relative to
the strength of competition. This parameter can be inter-
preted either on an individual level, as the proportion of
prey in the diet of an average predator, or on the popula-
tion level, as a proportion of predators that feed on prey.
Values of u greater than zero but smaller than one
produce an omnivorous link between species y and the
common resource. This sort of omnivory has been called
intraguild predation and individuals of species y are
called intraguild predators and individuals of species x
are intraguild prey (Polis, 1988; Polis et al., 1989; Polis
and Holt, 1992; Holt and Polis, 1997).

In this section I do not consider resource dynamics
explicitly; population dynamics of species x and y are
described by the Lotka�Volterra equations combining
competition for a common resource with predation

x$=r1x \1&
x

K1

&:
(1&u) y

K1 +&*uxy

(1)

y$=r2(1&u) y \1&
(1&u) y

K2

&;
x

K2++uy(e*x&m).

Model (1) assumes a trade-off between predation and
competition, which means that increased predation on
species x reduces competition for the common resource
and vice versa. Such a trade-off is motivated by some
species of protists which are cannibalistic and which,
when feeding on their own guild, undergo a shift in
morphology which allows them to ingest other protist
cells. Then u is the proportion of cannibals (also called
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giants or macrostomes) in species y. A similar system with
intraguild predation but without the trade-off between
predation and competition was analyzed by Polis et al.
(1989).



FIG. 1. A tri-trophic chain with intraguild predation. For zero
predation strength (u=0) the two populations x and y compete for the
common resource R only. When predation strength equals one, the
food web topology is described by a linear tri-trophic food chain with
top predators y feeding on intermediate prey species x.

Model (1) comprises three different food web topologies.
With a zero predation strength (1) describes a competitive
system, for predation strength equal to one it describes a
tri-trophic linear food chain, and for an intermediate
predation strength it describes an intraguild predation
system. As I assume that predation strength is adaptive I
have to analyse all three food web topologies.

When the predation strength is zero (u=0), system (1)
becomes a competitive Lotka�Volterra system

x$=r1x \1&
x

K1

&:
y

K1 +
(2)

y$=r2y \1&
y

K2

&;
x

K2 +
which for :<K1�K2 and ;<K2 �K1 , has one stable
interior equilibrium,

E (2)=\K1&:K2

1&:;
,

K2&;K1

1&:; + .

For u=1, system (1) becomes a predator�prey linear
food chain,

x$=r1x \1&
x

K1+&*xy
(3)

y$=(e*x&m) y,
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which has the following stable interior equilibrium:

E (3)=\m
e*

,
(eK1*&m) r1

eK1 *2 + .
I remark that in contrary to the strictly competitive
system (2) prey cannot be excluded from the equilibrium
E (3) for any parameter values (provided all parameters
are positive). Thus, while for the competitive system the
density of the potential prey species x at the interior equi-
librium is positive only for :<K1 �K2 , no such condition
is necessary to guarantee positivity of the equilibrial prey
density in the predator�prey system. This suggests that
for a low predation strength, model (1) is expected to
behave similarly to the competitive system (2), while for
high predation strengths its behavior is expected to be
more related to the predator�prey system (3).

Nonadaptive Intraguild Predation

For a fixed strength of intraguild predation (0<u<1)
model (1) has one interior equilibrium E (1); see Appendix
A. In what follows I will consider two cases with respect
to u.

If intraguild predation is weak, i.e.,

u<
r2

r2+m
,

then the interior equilibrium E (1) is positive and locally
stable if the following conditions are met (see Appendix A):

:<:~ (u)=
K1r2(1&u)

K2(r2(1&u)&mu)
&

K1*u
r1(1&u)

and

;<;� (u)=
K2

K1 \1+
u(eK1 *&m)

r2(1&u) + .

Condition :<:~ (u) implies positivity of the equilibrial
intraguild prey density and ;<;� (u) implies positivity of
the equilibrial intraguild predator density, respectively.
Thus, in the (:, ;) state space the region of parameters
that leads to stability is a rectangle (Fig. 2A) as in the
case of the strictly competitive model (2).

If intraguild predation is strong, by which I mean that
the per capita loss rate of the intraguild predators (mu)
exceeds that maximum gain in the competition part
(r2(1&u)), i. e.,

r2 <u<1,
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r2+m

then equilibrium E (1) is positive and stable if ;<;� (u) as
in the case of the strictly predator�prey system (see



FIG. 2. Values of competitive coefficients : and ; that lead to a
stable interior equilibrium of model (1) (shaded area). In (A) the
predation strength satisfies u<r2 �(r2+m), (u=0.2) while in (B)
u>r2 �(r2+m), (u=0.8). Parameters are: *=0.1, e=0.1, K1=40,
K2=15, r1=1, r2=1, m=0.3.

Fig. 2B and Appendix A). As predators cannot exclude
the prey population in the predator�prey model (3) it is
not surprising that intraguild predators cannot exclude
the intraguild prey when intraguild predation is strong.

I now consider how intraguild predation influences
coexistence of intraguild prey and intraguild predators.
For a low intraguild predator carrying capacity (i.e.,
K2<mr1 �(*r2)) function :~ (u) increases with u (Fig. 3A).
For intermediate predator carrying capacity (mr1 �(*r2)
<K2<4mr1 �(*r2)) function :~ (u) is positive and
decreases for low levels of intraguild predation, while for
u approaching r2 �(r2+m) it tends to infinity (Fig. 3B).
For high values of K2>4mr1 �(*r2), :~ is negative for some
values of intraguild parameter u (Fig. 3C). This can be
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interpreted as follows. When the intraguild predator
carrying capacity is high (K2>mr1�(*r2)) then as intra-
guild predation increases from zero it becomes more
difficult for the intraguild prey to survive in the system
because besides strong competition for resources there is
an additional mortality due to intraguild predation
which can drive intraguild prey to extinction. As the
strength of intraguild predation increases further, com-
petition decreases leading to intraguild prey coexistence
despite increased predation. I conclude that for K2>
mr1 �(*r2) low levels of intraguild predation make the
conditions for intraguild prey persistence (:<:~ (u))
either more stringent than the strictly competitive system
or impossible to satisfy. In contrast, higher values of
intraguild predation promote survival of the intraguild
prey at the interior equilibrium as the condition :<:~ (u)
becomes less stringent for u converging to r2 �(r2+m).
For a high strength of intraguild predation (u>r2�
(r2+m)) intraguild prey always survive in the system.

If the predator carrying capacity is low (K2<mr1 �
(*r2)) then a switch from exploiting a common resource
to devouring the intraguild prey itself facilitates survival
of the intraguild prey, and low levels of intraguild preda-
tion do not necessarily make the condition for prey
persistence more stringent.

Next I consider how intraguild predation influences
persistence of intraguild predators. If predators survive at
equilibrium E (3), i.e., when K1>m�(e*), then ;� (u) is an
increasing function of u (Fig. 3D) and ;� (u)�K2�K1 for
all values of u. In this case intraguild predation enhances
coexistence of intraguild predators in the system because
it reduces competition for the common resource and
intraguild predators get more food by feeding on the
intraguild prey. On the contrary, if the carrying capacity
K1 is low, so that predators do not survive indefinitely by
feeding on prey only (K1<m�(e*)), then intraguild
predation makes the condition for predator survival in
the system very stringent (Fig. 3E).

I want to relate these results to those observed by
Morin (1999) and Lawler and Morin (1993). Morin (1999)
experimented with two freshwater protists, Colpidium
striatum (intraguild prey) and Blepharisma americanum
(intraguild predator), at two different bacterial lever
(common resource). He showed that while Blepharisma
density increased with increased bacterial density,
Colpidium did not increase in density in response to
increased environmental productivity. Therefore,
increasing productivity in his experiments increased K2

but it had no effect on K1 . He showed that, at the lower
level of environmental productivity, Colpidium excluded
Blepharisma in three of four replicates. At higher levels of
productivity both species coexisted. Such a pattern is
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consistent with my model with a low strength of intra-
guild predation (u<r2 �(r2+m)). Under these conditions
:~ (u) is a decreasing function of K2 while ;� (u) is increas-
ing. For low K2 intraguild predators (Blepharisma) are
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FIG. 3. Values of competition coefficients : and ; that lead to species
predation strengths (shaded area). (A) assumes a low intraguild predato
intraguild predator carrying capacity mr1 �(*r2)<K2<4mr1 �(*r2), (K
K2>4mr1 �(*r2), (K2=4.5). If species y can survive by feeding on specie
intraguild predators in the system (Fig. 3D), (K1=14). Otherwise, intra
and 3 see the explanation given in the text. Other parameters are K1=4

outcompeted by their prey because ;� (u) is too small to
satisfy the inequality ;<;� (u). As K2 increases the two
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conditions for interior equilibrium stability (:<:~ (u),
;<;� (u)) are satisfied and both species coexist (for the
intraguild prey species this is graphically illustrated by
point 1 at Fig. 3B). For still higher values of K2 , the
xistence for model (1) with nonadaptive intraguild predation for various
rrying capacity K2<mr1 �(*r2), (K2=0.8), (B) assumes an intermediate
3.5), and (C) assumes a high intraguild predator carrying capacity
only, (i. e., eK1 *>m) then intraguild predation enhances coexistence of
d predators are prone to extinction (Fig. 3E), (K1=4). For points 1, 2,
=4.5, *=1, e=0.1, r1=1, r2=1, m=1.

intraguild prey species is outcompeted by predators (see
point 3 in Fig. 3C) because :~ (u) is too small. Contrary to
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Morin (1999), Lawler and Morin (1993) observed that
intraguild predators sometimes excluded its prey. In the
framework of my model this could be explained by a
higher strength of intraguild predation in their system



which may lead to exclusion of prey (see point 2 in
Fig. 3B) for the same nutrient level for which coexistence
is possible for a lower strength of intraguild predation
(see point 1 in Fig. 3B). Alternatively, differences
between Morin (1999) and Lawler and Morin (1993)
could also be caused by some other factors such as varia-
tion in composition and densities of the common resource
(bacteria) which cause changes in parameters of the
system without influencing the predation strength u
(Polis et al., 1989; Holt and Polis, 1997).

Adaptive Predation

Next I assume that the predation strength is adaptive
and that intraguild predation arises as competition for
resources becomes more severe. I measure animal fitness
by the per capita population growth rate and I compute
the evolutionary stable strategy (ESS) for optimal preda-
tion strength. I consider a mutant of species y that plays
a strategy u* in a residential population of individuals
playing a strategy u. Then fitness of the mutant will be

F(u*, u)=(1&u*) F1+u*F2 , (4)

where

F1=r2 \1&
(1&u) y

K2

&;
x

K2+
is the fitness of an individual which feeds on the common
resource only and

F2=e*x&m

is the fitness of an individual which feeds on species x
only. Maximization of F gives the ESS under which no
individual can unilaterally increase its fitness by chang-
ing its strategy. This gives

u(x, y)={
0 if y< y1(x)

(5)
1&

(r2+m) K2

r2 y
+

;r2+e*K2

r2y
x

if y1(x)< y and x<x1

1 if x>x1 ,
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where

y1(x)=
1
r2

((r2+m) K2&(;r2+e*K2) x)
and

x1=
(r2+m) K2

;r2+e*K2

;

see Fig. 4.
Lines y= y1(x) and x=x1 split the phase plane in

three regions (Fig. 5). In the left region ( y< y1(x) which
automatically implies that x<x1) population dynamics
are described by the competitive system, in the central
region they are described by the intraguild system, and
in the right region (x>x1) they are described by the
predator�prey system. In the central region the predation
strength u increases with increasing densities of species x
and y (Fig. 4). Therefore, if densities of both species are
low ( y< y1(x)) there will be no intraguild predation and
population dynamics are described by the competitive
Lotka�Volterra system (2). A straightforward calcula-
tion shows that the corresponding interior equilibrium
E (2) (:<K1 �K2 and ;<K2�K1) belongs to the left region
of the state space provided that

e*K1&m(1&:;)
e*:

<K2 .

For high prey densities (x>x1) competition is severe
and it pays predators to feed only on species x. Popula-
tion dynamics are then described by the predator�prey
system (3). A straightforward calculation shows that the
corresponding equilibrium E (3), if positive, belongs to the
right region of the state space when

K2<
m;
e*

.

This condition, together with positivity of E (3), implies
that ;>K2 �K1 , which excludes existence of a stable
interior equilibrium E (2) for the strictly competitive
system.

For intermediate population densities (satisfying x<x1

and y1(x)< y) intraguild predation is the evolutionarily
stable strategy. Population dynamics are given by

x$=x \K1 r1 r2+K2(m+r2)(K1*&:r1)
K1r2

Vlastimil Kr� ivan
&
(eK2*+r2;)(K1*&:r1)+r1r2

K1r2

x&*y+ (6)

y$=(e*x&m) u



stre
FIG. 4. Dependence of predation strength u(x, y) given by (5) on
population densities. Parameters are *=0.1, e=0.1, K1=40, K2=15,
r1=1, r2=1, :=0.3, ;=0.4, m=0.3.

FIG. 5. Population dynamics for model (1) with adaptive predation
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capacity of species y is high (K2=100) and both populations coexist at the c
the carrying capacity (K2=15) leads to a positive strength of intraguild
(K1=50, r1=40, r2=1, :=2) it is unstable and a limit cycle emerges. For y
equals one, which means that the food web structure is described by a tri-t
r1=1, r2=1, :=0.3, ;=0.4, m=0.3.
ngth and high prey carrying capacity (K1>m�(e*)). In (A) the carrying
(2)

with interior equilibrium

E (6)

=\m
e*

,
e*(K1(K2*+r1)&:K2r1)&m(;K1*+r1&:;r1)

eK1*2 + .

This equilibrium belongs to the central region of the state
space (which automatically implies positivity) if

m;
e*

<K2<
e*K1&m(1&:;)

e*:
, (7)

and the strength of intraguild predation at this equi-
librium is

u(6)=
r1(e(K1&:K2) *&(1&:;) m)

K1*(e*K2&m;)+e*r1(K1&:K2)&mr1(1&:;)
.

85
ompetitive equilibrium E without any intraguild predation. Lowering
predation at E (6). In (B) this equilibrium is locally stable and in (C)
et a lower carrying capacity (K2=10) the strength of predation at E (3)

rophic linear food chain. Other parameters are *=0.1, e=0.1, K1=40,



Equilibrium E (6) is locally stable provided the x-isocline
has a negative slope, i.e., when (eK2*+r2 ;)(K1*&:r1)
+r1r2>0 which holds for small values of the competi-
tion coefficient :.

Following Morin's experiment I study the dependence
of population dynamics on the carrying capacity of species
y, K2 . I will assume that the two populations coexist when
the strength of predation is zero, i.e., :<K1�K2 and
;<K2�K1 . There are two distinct cases which I consider
separately.

First, I assume that the carrying capacity of species x
is high, i.e.,

K1>
m
e*

,

which implies positivity of E (3) and the following inequality:

K1

:
>

K1e*&m(1&:;)
e:*

>K1;>
m
e*

;. (8)

From the above analysis it follows that model (1) with
adaptive predation strength has in principle three inte-
rior equilibria E (2), E (3), and E (6). I will show that for
each K2 value only one of these equilibria is feasible. The
following qualitative cases are possible:

(a) If K1 �:>K2>(K1e*&m(1&:;))�(e*:) then
the competitive equilibrium (E (2)) is positive and it
belongs to the left region of the phase space (Fig. 5A). At
this equilibrium the topology of our food web is
described by the strictly competitive system. Inequality
(7) implies that equilibrium E (6) of the intraguild system
does not belong to the central region of the phase space
and equilibrium E (3) of the strictly predator�prey system
does not belong to the right region of the phase space due
to (8), respectively.

(b) If (K1e*&m(1&:;))�(e*:)>K2>(m;)�(e*)
then equilibrium E (6) of the intraguild system belongs to
the central region of the phase space and the predation
strength at this equilibrium is positive (Fig. 5B). Equi-
librium E (2) of the competitive system does not belong to
the left region of the phase space and equilibrium E (3) of
the predator�prey system does not belong to the right
region of the phase space, respectively. If the equilibrium
E (6) is unstable then numerical simulations suggest that
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a limit cycle centered at this equilibrium appears
(Fig. 5C). Thus, for an intermediate carrying capacity K2

our food web topology at the equilibrium E (6) is
described by an intraguild predation system.
FIG. 6. Dependence of predation strength on (A) predator carry-
ing capacity (*=0.1, e=0.1, K1=40, r1=1, r2=1, :=0.3, ;=0.4,
m=0.3) for the Lotka�Volterra model (5) and (B) on the resource
carrying capacity *=*1=*2=0.1, e12=e23=e13=0.1, r=1, m2=0.02,
m3=0.06 for the model with resource dynamics (9).

(c) If (m;)�(e*)>K2 then equilibrium E (3) of the
predator�prey system belongs to the right region of the
phase space and individuals of species y feed exclusively
on individuals of species x at this equilibrium (Fig. 5C).
The other two equilibria do not belong to the appropriate
regions of the state space; see (8). At this equilibrium the
food web topology is a linear chain.

Figure 6A shows the equilibrial predation strength of
the adaptive model (1) as a function of the carrying
capacity K2 . As K2 increases, the strength of intraguild
predation decreases.

Second, I assume that the carrying capacity of species
x is low, i.e.,

Vlastimil Kr� ivan
K1<
m
e*

,



which implies that equilibrium E (3) is not positive and

m;
e*

>K1;>
K1 e*&m(1&:;)

e:*
.

It follows that E (6) cannot belong to the central region of
the state space. Thus, the only feasible interior equi-
librium is E (2) at which no intraguild predation occurs
and the two populations are competing for the common
resource.

THE MECHANISTIC MODEL

In the previous section competition between the two
species was modeled by a Lotka�Volterra system which
does not explicitly consider the common resource dynamics.
Here I consider resource dynamics and the model is
based on the mechanistic description of competition and
predation

R$=R \r \1&
R
K+&*x&(1&u) *1 y+

x$=x(e12*R&u*2y&m2) (9)

y$= y((1&u) *1e13R+u*2 e23 x&m3).

The parameter u has the same meaning as in the case of
the two-dimensional model. Parameter * is the search
rate of x individuals and *1 and *2 are the search rates of
y individuals for the common resource and for species x,
respectively, and eij is a factor which describes how the
i th (i=1, 2) food type is converted to new offspring of the
j th ( j=2, 3) consumer. For a fixed positive predation
strength u, system (9) was numerically studied by Holt
and Polis (1997). While the strictly competitive system
(u=0) does not have any interior equilibrium, intraguild
predation leads to the emergence of an interior equi-
librium which may be either stable or unstable (Holt and
Polis, 1997).

As in the previous section I study the effects of the
strength of adaptive predation on species stability and
coexistence. First I determine the evolutionarily optimal
predation strength. I consider a mutant individual of
species y that plays a strategy u* in a residential popula-
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tion of individuals playing a strategy u. Then the fitness
of this mutant is given by (4), where

F1=*1 e13R&m3
is the fitness of an individual which feeds on the common
resource only and

F2=*2e23x&m3

is the fitness of an individual which feeds only on species
x. Maximization of F gives:

(a) if the common resource is abundant compared
to abundance of species x (*1 e13R>*2e23x) then the
optimal strategy of y individuals is to feed on the com-
mon resource only (u=0),

(b) if the common resource is less abundant com-
pared to abundance of species x (*1e13R<*2e23x) then
the optimal strategy of y individuals is to feed exclusively
on species x (u=1),

(c) if *1 e13R=*2 e23x then the optimal strategy of
y individuals is not uniquely specified.

In species density space I denote the region where the
optimal strategy is to feed on the common resource only
as G0 (case (a)) and the region where predators feed on
species x exclusively as G1 (case (b)). The region in which
optimal strategy is not uniquely determined (case (c))
separates G0 from G1 and it is denoted as M (Fig. 7).
In G0 population dynamics are given by a strictly
competitive system:

R$=R \r \1&
R
K+&*x&*1 y+

x$=x(e12*R&m2) (10)

y$= y(*1e13 R&m3).

This system has no interior equilibrium and the weaker
competitor will always be excluded from the system
following Tilman's (1990) R* rule. First, I assume that
individuals of species y are weaker competitors, i.e.,
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m2

e12 *
<

m3

e13*1

. (11)



Then all trajectories (assuming K>m2 �(e12 *)) of (10)
converge to

E (10)
1 =\ m2

e12 *
,

r(e12K*&m2)
e12K*2 , 0+ .

The equilibrium E (10)
1 is in G0 if

e23K*2r
e13K**1+e23*2r

<
m2

e12*
. (12)

In the region G1 the food web topology is described by
a tri-trophic linear food chain:

R$=R \r \1&
R
K+&*x+

x$=x(e12 *R&*2 y&m2) (13)

y$= y(*2e23x&m3).

This system has one interior equilibrium,

E (13)=\K \1&
*m3

e23*2r+ ,
m3

e23 *2

,

e23 *2r(e12K*&m2)&m3*2e12K
e23 *2

2r + .

Equilibrium E (13) is positive if

0<m3<
e23*2r(e12 K*&m2)

*2e12 K
(14)

and it is globally asymptotically stable in G1 (which
means that all trajectories which stay in G1 converge to
this equilibrium; Hofbauer and Sigmund, 1984, p. 64).
Equilibrium E (13) belongs to G1 provided

e23K*2r
e13K**1+e23 *2r

<
m3

e13*1

.

The boundary equilibrium E (10)
1 of system (10) is also a

boundary equilibrium of system (13).
Next I analyze population dynamics in the plane

*1 e13 R=*2e23 x where both pure strategies give the
same fitness. There exists an equilibrium of system (9)
driven by the optimal intraguild predation strategy
which is in the plane M; see Appendix B. If

m2 <
m3 <

e23K*2 r
(15)
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e12 * e13*1 e13K**1+e23*2r

then, locally around this equilibrium, all trajectories of
system (9) are driven to the plane M and when they reach
this plane, population dynamics are described by the
following differential-algebraic system of equations:

R=
*2e23

*1e13

x

x$=x \(*2r&*1m2)
*1+*2

&
*2((e13&e12e23) K**1+e23 *2r)x

e13K*1(*1+*2)
&

*1*2 y
*1+*2+

y$= y(*1e13R&m3); (16)

see Appendix B. The interior equilibrium is

E (16)=\ m3

*1 e13

,
m3

e23 *2

,
m3*e12&e13 *1m2

e13*1 *2

+
r

*1

&
m3(K**1 e13+e23*2r)

e13e23K*2
1*2 +

Equilibrium E (16) is positive due to (15) and it is stable in
the switching plane M if the x-isocline has a negative
slope. This holds, e.g., when e12 e23<e13 which I will
assume. Under these conditions equilibrium E (16) is
locally stable (Fig. 7A) and the strength of intraguild
predation at E (16) is

u(16)=

e23K*1(e13*1m2&e12*m3)
e23m3(*2r&e12K**1)+e13K*1(e23*1m2+*m3&e23*2r)

.

Finally I study the topology of the food web which is
described by (9) and population stability as a function of
the common resource carrying capacity K. In principle
the adaptive system (9) has two interior equilibria E (16)

and E (13). As I assume that individuals of species x are
superior competitors (see (11)) and that E (10)

1 exists
(i.e., K>m2 �(e12 *)) there are the following possibilities
with respect to decreasing common resource carrying
capacity K:

(a) If m3 �(e13*1)<(e23K*2r)�(e13K**1+e23*2r)
then the only feasible, locally stable interior equilibrium
is E (16) (Fig. 7A). At this equilibrium the food web topol-
ogy is an intraguild predation system and the strength of
intraguild predation is u=u(16).
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(b) If m2 �(e12*)<(e23 K*2r)�(e13K**1+e23*2r)<
m3�(e13*1)<(e23*2r(e12K*&m2))�(*2e12Ke13*1) then E (13)

is feasible, locally stable and at this equilibrium individuals
of species y feed on species x only (u=1; Fig. 7B). At this
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FIG. 7. Population dynamics for system (9) with adaptive predation
of species y. The figures describe qualitative effects for decreasing values of th
and the strength of intraguild predation, is positive at this equilibrium. In (
web topology is a linear tri-trophic food chain. For yet lower values of the r
sufficient to support top predators at positive densities, and only prey su
(K=0.2) the strength of predation at equilibrium E (10)

1 is zero and the com
parameters are *1=1, *2=1, *=1, e12=0.1, e13=0.1, e23=0.1, r=1, m2=

equilibrium the food web topology is a tri-trophic linear
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food chain.

(c) If m2�(e12*)< (e23 K*2r) � (e13K**1+e23*2r)<
(e23 *2r(e12K*&m2))�(*2e12Ke13*1)<m3�(e13 *1) then
neither E (13) nor E (16) exist and the only feasible equi-
ngth when individuals of species x are superior competitors to individuals
source carrying capacity. In (A) (K=0.8) equilibrium E (16) is locally stable
K=0.5) equilibrium E (13) is locally stable and at this equilibrium the food
urce carrying capacity (C) (K=0.3) the environmental productivity is not
e at the equilibrium E (10)

1 . For very low environmental productivity (D)
tively weaker species y is outcompeted from the system by species x. Other
02, m3=0.04.

librium is E (10)
1 at which predators go extinct (Fig. 7C). The
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food web topology at this equilibrium is a tri-trophic linear
food chain as in case (b); because E (10)

1 belongs to G1.

(d) If (e23 K*2r) � (e13K**1 + e23*2r) < m2 �(e12*)
then the only feasible equilibrium is E (10)

1 (Fig. 7D).



The food web topology at this equilibrium is a strictly
competitive system because E (10)

1 belongs to G0.

In Fig. 6B I plot the equilibrial optimal predation
strength as a function of the environmental productivity
K. For low values of K (case (d)) species y does not
survive at the equilibrium E (10)

1 , which belongs to G0 and
the predation strength is therefore u=0. When K increases
(case (c)) the equilibrium E (10)

1 moves to G1 and the
strength of predation discontinuously switches to u=1.
Yet, the environmental productivity is too low to main-
tain population y at a positive density. For still larger
values of K (case (b)) the environmental productivity is
high enough to support top predators in the tri-trophic
linear food chain at a positive density. As the environ-
mental productivity increases further (case (a)) intra-
guild predation appears at the locally stable equilibrium
E (16) and the predation strength decreases with an
increasing environmental productivity K.

This pattern is consistent with Morin's (1999) observa-
tions. Assume that in his experiments species x individuals
are more efficient competitors. Then for a low environ-
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FIG. 8. The range of parameters in (K, m3) state space that leads
to local stability of equilibrium E (16) for nonadaptive intraguild preda-
tion (A) and for adaptive intraguild predation (B). Parameters are
*1=1, *2=1, *=1, e12=0.1, e13=0.1, e23=0.1, r=1, m2=0.02.
mental productivity K, only species x survives at the
equilibrium (cases (c) and (d)). As the environmental
productivity increases (cases (a) and (b)), both species
coexist. However, because Morin does not provide data
on the proportion of macrostomes in his system (which
reflects the predation strength u) I cannot verify that the
strength of intraguild predation follows my observations
along a gradient in environmental productivity. If u is
inflexible then Morin's data may better be explained by
models in Polis et al. (1989) and Holt and Polis (1997).

If predators are superior competitors, i.e.,

m2

e12 *
>

m3

e13*1

,

then interior equilibrium E (16) is never attractive and
there are two alternative equilibria

E (10)
2 =\ m3

e13 *1

, 0,
r(e13K*1&m3

e12K*2
1 +

and E (13) at which no intraguild predation occurs.

Comparison of Stability for Adaptive and
Nonadaptive Intraguild Predation

A direct calculation shows that for a fixed strength of
intraguild predation u=u(16) the interior equilibrium of
system (9) with nonadaptive intraguild predators coin-
cides with E (16). Thus the stability of E (16) as the equi-
librium of the nonadaptive system (9) can be compared
with its stability as an equilibrium of the adaptive system.
Condition (15) implies the local stability of E (16) as the
equilibrium of the adaptive system while conditions for
local stability of E (16) as the equilibrium of the nonadap-
tive system are given in Appendix C (see also Holt and
Polis, 1997). It is shown there that conditions ensuring
local stability of E (16) as the equilibrium of the nonadap-
tive system are more restrictive than are those for the
adaptive system. The set of parameters for which local
stability holds for the nonadaptive system is shown in
Fig. 8A while for the adaptive system it is shown in
Fig. 8B. We see that adaptive intraguild predation enlarges
the set of parameters for which the interior equilibrium is
locally stable.
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DISCUSSION

In this article I extended the isocline analysis of Polis
et al. (1989) to include a trade-off between predation and



competition. Such a trade-off is well documented for
some protist species which normally feed on bacteria but
the presence of a potential prey species induces develop-
ment of large-mouthed macrostomes (Giese, 1973). I
analyzed the effect of the strength of intraguild predation
on stability and I proved that, when environmental
productivity is not too low, a low strength of intraguild
predation is destabilizing because it makes it difficult or
impossible for intraguild prey to persist in the system.
Conversely, a high strength of intraguild predation
promotes intraguild prey persistence relative to the
competitive system in which predation strength is zero
(Figs. 3B and 3C). If the predator can survive by feeding
on its prey alone then intraguild predation increases
persistence of the intraguild predators relative to the
strictly competitive system (Fig. 3D). Otherwise, intra-
guild predation makes survival of intraguild predators
more difficult (Fig. 3E). Holt and Polis (1997) suggested
that species coexistence in systems with intraguild preda-
tion may be caused by an adaptive change in the strength
of intraguild predation. Computing the ESS I proved
that there is a threshold in the potential intraguild prey
density below which intraguild predation is not an ESS
when the intraguild predator density is low. Under these
conditions the resulting food web is of a strictly com-
petitive type. This means that when densities of the two
competing species are low then intraguild predation
is not selected. As the density of either the potential
intraguild predator or the potential intraguild prey
increases, intraguild predation occurs. For high intra-
guild prey densities the predation strength is 1 and the
food web is a linear food chain. I then studied the
dependence of population dynamics with adaptive
predation strength on the potential intraguild predator
carrying capacity. If the carrying capacity of the intra-
guild predator is high then the food web topology is
strictly a competitive system in which either both popula-
tions coexist at a competitive equilibrium (Fig. 5A) or
the potential intraguild predator competitively excludes
the other species. As the carrying capacity of the poten-
tial intraguild predator decreases the food web topology
changes from the competitive system to an intraguild
predation system. The corresponding equilibrium can be
either locally stable (Fig. 5B) or unstable (Fig. 5C). As
the carrying capacity of the intraguild predator decreases
further, predation strength increases to one and the food
web becomes a linear food chain. At the corresponding
equilibrium predators feed on their prey only (Fig. 5D).

Optimal Intraguild Foraging
My model predicts that as the carrying capacity (which
is proportional to the environmental productivity) for
the intraguild predator increases, the adaptive strength of
predation decreases (Fig. 6A).
Second, I considered a more mechanistic model in
which resource dynamics are influenced by consumption.
For nonadaptive intraguild predation this model was
studied by Holt and Polis (1997). They proved that a
necessary criterion for coexistence is that the intraguild
prey is a superior competitor to the intraguild predator.
I proved that under the same conditions adaptive intra-
guild predation can be a stabilizing factor which leads to
emergence of a locally stable population equilibrium
with a positive strength of intraguild predation if
environmental productivity is high enough. If intraguild
prey are inferior competitors relative to intraguild
predators then such an equilibrium cannot arise. Local
stability analysis of the system as a function of the
resource carrying capacity resembles the Lotka�Volterra
competition model. For low resource carrying capacities
the two species are competing for the common resource
and the better competitor displaces the other species
(Fig. 7D). As the resource carrying capacity increases,
topology of the food web changes from a strictly com-
petitive system to a strictly tri-trophic linear food chain.
At the corresponding equilibrium the predation strength
is one and either resource productivity is not high
enough to support a positive equilibrial density of
predators (Fig. 7C) or all species coexist at the corre-
sponding equilibrium. For still higher resource carrying
capacities a new equilibrium appears (Fig. 7A). At this
equilibrium, predation strength is between zero and one
and intraguild predation arises. Dependence of the
strength of predation at the corresponding equilibrium
on environmental productivity is similar to the case of
the Lotka�Volterra model discussed previously (Fig. 6B).
I conclude that in both models with adaptive intraguild
predators, intraguild predation should decrease with
increasing environmental productivity.

It was shown that optimal foraging enhanced species
coexistence through the emergence of a limit cycle for
systems where nonomnivorous predators feed optimally
on two prey types (Gleeson and Wilson, 1986; Kr� ivan,
1996; Kr� ivan and Sikder, 1999; Boukal and Kr� ivan,
1999; van Baalen et al., submitted). The mechanism that
leads to coexistence in the present article is different
because stability was achieved through the appearance of
a new equilibrium rather than a limit cycle (although
numerical simulations suggest that for the two dimen-
sional model a limit cycle can also exist). In the model
with resource dynamics, adaptive intraguild predation
leads to the emergence of a locally stable equilibrium
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point at which both pure strategies (i.e., feeding on
resource only or feeding on prey only) give the same
fitness. A similar mechanism was observed in Sirot and
Kr� ivan (1997). This new equilibrium for the adaptive



system is also an equilibrium for the nonadaptive system
when predation strength equals u(16).

These theoretical results can be related to the
experimental studies of Morin (1999). He found in
laboratory experiments with bacteria and two freshwater
protists, Colpidium striatum (the intraguild prey) and
Blepharisma americanum (the intraguild predator), that
the intraguild prey excluded the intraguild predator
when bacterial production was low, while both species
coexisted at higher levels of bacterial production. Assum-
ing that protists adaptively adjust their intraguild preda-
tion strength to other species' densities, this prediction is
consistent with models discussed in this article. It would
be interesting to compare the strength of intraguild
predation observed in experiments with those predicted
here. Experimental design with protists seems to be
particularly suitable for such experiments.

APPENDIX A

Positivity and Stability of E (1)

System (1) can be rewritten as a Lotka�Volterra
competitive system

x$=r1 x \1&
x

K1

&
r1:(1&u)+*uK1

r1K1

y+
y$=r2 y \1&u&

mu
r2

&
(1&u)2 y

K2

&
;r2(1&u)&K2 e*u

r2K2

x+ .

I define

A(u)=
r1:(1&u)+*uK1

r1K1

,

B(u)=1&u&
mu
r2

,

C(u)=
(1&u)2

,
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K2

D(u)=
;r2(1&u)&K2 e*u

r2K2

.

The interior equilibrium of (1) is given by

E (1)=(x(1), y(1))

=\K1(C(u)&A(u) B(u))
C(u)&K1A(u) D(u)

,
B(u)&K1 D(u)

C(u)&K1A(u) D(u)+ .

The trace of Jacobian of (1) evaluated at the interior
equilibrium E (1) is

r1

K1

x(1)+r2C(u) y(1)>0

and the determinant is

r1r2 x(1)y(1) \C(u)
K1

&A(u) D(u)+ .

Using the Routh�Hurwitz criterion I find that the real
parts of eigenvalues are negative if the determinant of
Jacobian is positive, which holds if

;<,(:)=
r1(1&u)

K1*u+:r1(1&u)
+

eK2*u
r2(1&u)

.

Now I consider the question of positivity of the
interior equilibrium. As I am interested only in the case
in which the interior equilibrium is stable, I will assume
that C(u)&K1A(u) D(u)>0. Under this condition
x(1)>0 if either u>r2�(r2+m) because in this case B(u)
is negative, or u<r2�(r2+m) and

:<:~ (u)=
K1r2(1&u)

K2(r2(1&u)&mu)
&

K1*u
r1(1&u)

. (17)

Similarly, y(1)>0 if

;<;� =
K2

K1 \1+
u(eK1 *&m)

r2(1&u) + . (18)

Because ,(:~ )=;� and ,(:) is a decreasing function it
follows that for u<r2 �(r2+m) and for : and ; which
satisfy (17) and (18) stability condition, ;<,(:) is met.

For a high strength of intraguild predation u>r2�
(r2+m), x(1) is always positive, equilibrial predator
density is positive if ;<;� (u), and the condition for equi-
librium stability ;<,(:) is automatically satisfied
because
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;� (u)� lim
: � �

,(:)<,(:)

for every u>0.



APPENDIX B

Population Dynamics of (9) in M

Let f 0 denote the right hand side of the strictly com-
petitive system (10) and f 1 of the strictly predatory
system (13). Let n=(*1e13 , &*2 e23 , 0) be a perpendi-
cular vector to the switching plane M. Then in M I obtain
(( } , } ) denotes the scalar product)

(n, f 0)<0

if y> y0(x) and

(n, f 1)>0

if y> y1(x) where

y0(x)=
e13K*1(m2+r)&x((e12K*+r) e23*2+*e13K*1)

e13 K*2
1

and

y1(x)

=
&e13K*1(m2+r)+x((e12K*+r) e23*2+*e13K*1)

e13K*1 *2

.

The region of M defined by y0(x)< y, y1(x)< y is called
the sliding domain because trajectories of (9) which enter
it move in M unless they cross either y0(x) or y1(x) and
leave M. Moreover, nearby trajectories are driven both
from G0 and G1 to the sliding domain. This implies that
for every trajectory in the sliding domain

*1 e13 R$(t)=*2 e23 x$(t),

which allows us to compute explicitly the strength of
intraguild predation u,

u(x, y)=&
m2+r

(*1+*2) y

+
e13K**1+e23*2(e12 K*+r)

e13 K*1(*1+*2) y
x+

*1

*1+*2

.

Existence and uniqueness of solutions of (9) driven by
the optimal predation strength follow from Filippov
(1988) (see also Colombo and Kr� ivan, 1993). Population
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dynamics in the sliding domain are given by system (16)
which has one interior equilibrium E (16). I remark that
condition (15) implies that E (16) belongs to the sliding
domain.
APPENDIX C

Local Stability of the Interior Equilibrium of (9)

Conditions for local stability of E (16) for the nonadap-
tive system with u=u(16) can be derived by using the
Routh�Hurwitz criterion (Holt and Polis, 1997). These
conditions are

a0>0, a1>0, a2>0, a1 a2>a0 ,

where

a0=*2u(16)R (16)x(16)y(16)

_\(1&u(16)) **1(e12 e23&e13)+
u(16)*2e23

K + ,

a1=(1&u (16))2 *2
1 e13R(16)y(16)

+(u(16))2 *2
2e23 x(16)y(16)+*e12*R(16)x (16),

and

a2=
R(16)r

K
.

Therefore conditions a0>0, a1>0, and a2>0 are
satisfied. Consider the case in which condition (15),
which ensures local stability of E (16) as the equilibrium of
the adaptive system, holds. Then a0 is positive (I assume
that e13&e12 e23>0) if

e23 *1*2r(K*(e13&e12e23)+m2e23))
e13 *1 *(K**1(e13&e12e23)+e23 *2r)

<
m3

e13*1

<
e23K*2r

e13 K**1+e23*2r
.

Thus we see that the condition for positivity of a0 is more
restrictive than is condition (16). The conditions under
which a1a2>a0 are more complicated and I do not list
them here.

I conclude that conditions ensuring local stability of
E (16) as the equilibrium of the nonadaptive system are
more restrictive than are those for the adaptive system.
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