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The influence of optimal antipredator behavior of prey on predator-prey dynamics in a two-

patch environment is studied. One patch represents an open habitat while the other is a refuge
for prey. It is assumed that prey maximize their fitness measured by the instantaneous per
capita growth rate. In each patch population dynamics is described by the Lotka-Volterra time
continuous model. The refuge is characterized by its protectiveness which is inversely related
to the predation risk for prey, and the dependence of population dynamics on protectiveness
is studied. It is shown that adaptive behavior of prey changes qualitative properties of the
underlying Lotka-Volterra model due to the appearance of a bounded attractor. Adaptive prey
behavior does not lead to a stable equilibrium but to the reduction of population fluctuations.
Dynamic consequences of a limited carrying capacity of the refuge are also considered. Low
refuge carrying capacity leads to stability of predator-prey dynamics while stability is lost
when the carrying capacity of the refuge is high. Lastly, it is shown that optimal antipredator
behavior of prey leads to persistence and reduction of oscillations in population densities.
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INTRODUCTION

Most of the theoretical work on population dynamics
of refugia lead to the conclusion that refugia have a
stabilizing effect on predator—prey interactions (Rosen-
zweig and MacArthur, 1963; Hassel and May, 1973;
Maynard Smith, 1974; Murdoch and Stewart-Oaten,
1975; Hassell, 1978; Sih, 1987b; Ives and Dobson, 1987;
Ruxton, 1995; Hochberg and Holt, 1995). Two types of
refugia have been considered in the literature: those that
protect a constant fraction and those that protect a con-
stant number of prey. The consequences of refuge type
for stability of predator—prey interactions then depends
on the underlying model, but the general conclusion from
these studies is that refugia which protect a constant
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number of prey lead to a stable equilibrium and have a
stronger stabilizing effect on population dynamics than
refugia which protect a constant proportion of prey.
However, McNair (1986) and Collings (1995) showed
that such a simplistic interpretation of the stabilizing role
of refugia may not be correct, since for more complex
models refugia may exert a locally destabilizing effect due
to the emergence of a stable limit cycle. Applicability of
these models seems to be reduced by the fact that “neither
a constant number nor a constant proportion of prey
refuges has been reported” (Sih, 1987b). However, in
Hochberg and Holt (1995) it was suggested, based on
empirical evidence, that for most host-parasitoid systems
part of the host population is in a constant proportion
refuge. In experimental tests with red scale no stabilizing
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effect of a refuge on population dynamics was observed
(Murdoch, Luck, Swarbrick, Walde, Yu, and Reeve,
1995; Murdoch, Swarbrick, Luck, Walde, and Yu, 1996).

Since refugia are safe but rarely offer feeding or mating
opportunities, prey must balance energy gain against the
risk of predation in deciding where to feed. One of the
major components of risk is the time spent in the open
habitat where the probability of an encounter with a
predator is high. When prey are mobile and a spatial
refuge exists, prey may avoid predators via a habitat shift
by moving to the refuge (Diehl and Eklov, 1995; Fraser
and Gilliam, 1987; Fraser and Gilliam, 1992; Fraser,
Gilliam and Yip-Hoi, 1995; Gilliam and Fraser, 1987;
Gilliam and Fraser, 1988; Lima and Dill, 1990;
Mittelbach and Chesson, 1987; Sih, 1980; Sih, 1986;
Sih, 1987a; Sih, 1987b; Werner, Gilliam, Hall, and
Mittelbach, 1983; Werner and Gilliam, 1984).

In Ives and Dobson (1987) effects of optimal anti-
predator behavior of prey on a continuous-time popula-
tion model were studied. Prey investment in antipredator
behavior was modeled by a parameter. They showed that
adaptive change of the parameter speeds the convergence
of trajectories to an equilibrium. Sih (1987b) showed that
if the proportion of prey in refugia is decreasing with
increasing prey abundance, or increasing with both
increasing predator density and increasing predation
pressure than the corresponding ecological equilibrium is
locally stable. Ruxton (1995) derived a continuous-time
predator—prey model under the assumption that the rate
prey move to a refuge is proportional to predator density.
It was shown that antipredator behavior has a stabilizing
effect.

Colombo and Kiivan (1993) developed a mathematical
framework for modelling effects of optimal behavioral
decisions of animals on predator—prey population dyna-
mics. This general framework was then used in Kfivan
(1997) to study population dynamic consequences of
optimal patch choice assuming that only predators move
between patches and they maximize per capita instan-
taneous growth rate, or both predators and prey are free
to move between patches and both maximize their
instantaneous growth rates. In this paper I will study
effects of optimal antipredator behavior of prey on
population dynamics described by Lotka—Volterra
differential equations assuming optimal choice of the
patch by prey only. I consider two types of patches where
one is a refuge for prey and the other not. A patch may
be a refuge for two reasons: either there are fewer (or no)
predators in this patch, or the predators are less effective.
I characterize a refuge by its “protectiveness” which is
inversely related to the product of the attack rate of
predators in the refuge and the probability that a
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predator will stay in the refuge. Thus, higher protective-
ness means lower predation. If protectiveness is infinity
then the refuge is complete. This happens if either the
attack rate is zero in the refuge or the refuge is predator
free. I begin with a model that does not include other
stabilizing mechanisms such as prey density dependence
or passive diffusion of prey between patches that alone
could lead to a stable equilibrium (Comins and Blatt,
1974; Holt, 1983; Holt, 1985; Holt, 1987). I analyze the
effects of protectiveness of the refuge on stability of the
Lotka—Volterra model. I next extend this basic model by
including the effect of limited carrying capacity of the
refuge. The main question of this paper is: Do refuges
promote persistence or stability of predator—prey dyna-
mics provided prey behave optimally? I show that even
for the simplest Lotka—Volterra type of dynamics the
answer is not straightforward, since the amplitude of
maximal possible fluctuations in population densities is
not a monotone function of protectiveness of the refuge.

POPULATION DYNAMICS

I will consider a system consisting of two habitats: an
open habitat (patch 1) and a spatial refuge (patch 2).
First, I derive a general model for a refuge that is not
complete, and I consider the associated dynamics. In my
model, antipredator behavior of prey consists of moving
to the refuge. If the per capita intrinsic growth rate in the
refuge is lower than in the open habitat then this leads to
a classic trade-off dilemma for prey: stay in a safer but
less profitable refuge, or move to more profitable but
riskier open habitat? If, on average, a prey stays in patch
i for T, time units within its lifetime 7', then the probabil-
ity it will be in this patch is

The residence time 7 is a major determinant of the risk
of being preyed upon, and, consequently, it will depend
on the predator abundance in patch i. I assume that prey
are omniscient and they move between patches infinitely
fast and I note that

vy +uv,=1.

The assumption on the infinitely fast movement is
realistic if the two patches have a common boundary, for
example in aquatic environments where the open habitat
is clear water while the refuge is the vegetated bottom
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(Diehl and Eklov, 1995). T assume that population
dynamics is described by the following system of the
Lotka—Volterra equations

X'=(a;—A1p1y) 01X+ (ay — A2p2y) U5 X, (1)

V' =(edivix —my) p1y+(edrv,X —my) pry.

Here x and y are total prey and predator abundances,
respectively, and «; and m; are instantaneous per capita
growth and mortality rates of prey population in patch i,
respectively. I assume that the intrinsic growth rate in the
refuge (patch 2) is smaller than in the open habitat
(patch 1) and I have a, > a,. While I assume that ¢, >0,
a, may also be negative. This occurs if the background
mortality rate in the refuge is higher then the natality rate
due to the lack of resources, mating opportunities, etc.
Parameter e is the efficiency with which predators
convert consumed prey into new predators, and 4, is
the attack rate of predators in patch i I assume that
predators move between patches at random, and p; is a
fixed number that models preferences of predators for
patch i. Because in the refuge either the attack rate 4, or
predator preference p, to remain in the refuge are small
relative to the open habitat, I assume that

A P1> AP

A complete refuge is characterized either by p,=0 or
A, =0. In both cases prey in a complete refuge are not
being preyed upon. I assume that prey fitness is measured
by the instantaneous per capita growth rate x'/x. If prey
behave to maximize their fitness this assumption leads to

max ((a;—4;p1y) vy +(ay—4,p>y) v2). (2)

(vy, vp)

The optimal antipredator strategy of pray is the set of
controls (v, v,) that maximize criterion (2) for given
predator abundance y. Because the optimal strategy
depends on predator density y, it is not constant over
time, and I split the x>0, y>0 space into two parts
according to the values of the optimal strategy. Since
expression (2) is a linear function of v, and v,, it follows
that

(a) Prey aggregate in patch 1 (v, =1,v,=0) if a; —
A1 p1 Yy >a,— A, p, y which occurs if predator abundance
is below

ay—d;

Y=,
AiP1— 22D
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because the risk of predation in the open patch is low
(predator density is low), while the prey growth rate is
high there.

(b) Prey aggregate in the refuge (v, =0,v,=1) if
a;— 2 p1y<a,—2,p,y. This occurs if predator abun-
dance is greater than y*, since in this case the risk of
predation in open habitat is high.

(c) Prey fitness is the same in both patches if
a,— A pry=a,— 2, p,y, ie., (v, v,) are not uniquely
determined, which happens when y = y*.

The above defined strategy leads to the classical ideal
free distribution of prey between patches, in which no
prey can increase its fitness by moving to the other patch.
In cases (a) and (b) prey play pure strategy (i.e., the
probability of being in a patch is either zero or one) while
in case (c¢) prey play mixed strategies (i.e., the probability
of being in a patch is between zero and one). This later
case leads to the emergence of partial preferences of prey
for habitats. The line y = y* is the switching line since the
behavior of prey switches when predator density crosses
this line.

I study the qualitative behavior of (1) with controls
(v;, v,) given by the optimal strategy. When predator
density is below y*, the corresponding dynamics is
obtained from (1) by substituting the optimal strategy
v, =1, v,=0. This gives

X'=(a,—A, py)x, ()
V' =(edp1x—myp—myp,) y.

If predator density is above y*, the corresponding
dynamics driven by the optimal strategy v, =0, v,=11is

X'=(ay—2,p,y) X, (5)
V' =(ehypyXx —myp;—m,p,) y.

Note that since optimal prey strategy is not uniquely
defined if predator density equals y*, the right handside
of (1) is set-valued. Despite this non-uniqueness the
model has uniquely defined solution for every initial den-
sity of predators and prey, see Appendix A. Both (4) and
(5) are the classical Lotka—Volterra equations with a
neutrally stable equilibrium surrounded by cycles. The
equilibria of (4) and (5) are

E4:<m1P1 +myp, a; >

el Py ’/llpl
E5:<m1P1+m2P2 a; >
elr P> ey 2
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respectively. If the solution of (1) falls on the line y = y*,
there are two possibilities. The solution may either move
along this line for some positive time or it may cross the
line transversally. The part of the switching line where
trajectories of (1) cannot leave the line is called the
partial preference domain. Movement in this part of the
line leads to partial preferences for habitats, i.e., the prob-
ability that a prey will stay in patch i is strictly between
zero and one. On the population level this means that
prey will spread between the two patches in the ratio
v, /v,. The partial preference domain is the part of the line
y= y* between x' and x> where

X! _myp, +m;, ps
€Ay Py

>

, Mypi+myp,
X = p s
€A P

see Appendix A. If a solution of (1) driven by the optimal
strategy reaches the partial preference domain, the
proportion of prey in each patch can be explicitly com-
puted (see Appendix A):

_mp +mypy—eiyparX

a ex(Zy py— 42 ps)

=ellp1x—m1p1 —my Py
ex(Ay pr— 22 p>)

Inserting (6) into (1) gives the following system of dif-
ferential equations that govern the dynamics in the par-
tial preference domain:

,_azllpl — a2 P,
xX'=— )
A1 P1— 2 D2 (7)

y'=0.

I consider the behavior of trajectories of (1) driven by the
optimal strategy. First I assume that

a, a;
21 D1 izpz.

(8)

The inequality (8) can only hold if the intrinsic prey
growth rate in the refuge is positive. If the predator initial
density is below y*, all prey are in the open habitat,
and the corresponding population dynamics follows a
Lotka—Volterra cycle of (4). After some time predator
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density reaches the critical threshold y*, because E* is
above the switching line y = y* due to the assumption
(8). If at this moment the prey density is between x' and
x? (ie., in the partial preference domain such as in
Fig. 1A) then prey start to move to the refuge. Predator
density is constant and equal to y* until prey density
reaches x? due to (7). At this moment all prey are in the
refuge and the trajectories follow the Lotka—Volterra
cycle of (5), which passes through the point (x2, y*), see
Fig. 1A. Using a Lyapunov function (see Appendix B) it
can be proved that the set bounded by this cycle is the

FIG. 1. Solutions of (1) driven by the optimal antipredator
strategy. All trajectories converge to a global attractor (the shaded
area). On the attractor, trajectories follow the Lotka—Volterra cycles.
The amplitude of these cycles is constrained by the switching line y = y*
(dashed line) along which switching in the behavior of prey occurs. In
Fig. 1A condition a, 4, p, >a, A, p, holds and both equilibria are above
the line y = y*. In the long term run all prey will aggregate in the refuge.
Parameters: a;=2.5, a,=1, my=m,=1, e=1, 1,,=1, 1,=0.35,
p1=p>,=05. In Fig. 1B, a,4, p,<a,%,p, and both equilibria are
below the line y = y*. All prey will aggregate in the open habitat.
Parameters: a;,=2.5, a,=1, m=m,=1, e=1, 4;,=1, 1,=0.6,
P1=p,=05.
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global attractor of (1) (shown as the shaded region in
Fig. 1) driven by the optimal strategy. Thus, all trajec-
tories that start outside the attractor are converging to
the attractor. The dynamics inside the attractor is
described by the Lotka—Volterra system (5) and trajec-
tories in the attractor follow the Lotka—Volterra cycles.
Thus, if (8) holds, all prey will aggregate in the refuge and
predator—prey dynamics will follow a Lotka—Volterra
cycle constrained from below by the line y= y*. The
reason why all prey will be in the refuge is due to the fact
that predator densities will never decrease below the
critical value y* at which switching behavior of prey
occurs.
If

a; ay
T P )
‘P1 AP

)

then the equilibria E4, E° are below the line y = y*, see
Fig. 1B. Inequality (9) holds, for example, when per
capita prey growth rate in the refuge is negative (e.g., due
to the lack of feeding or mating opportunities). In the
long term run (Fig. 1B) all prey will aggregate in open
habitat and predator—prey population dynamics will be
described by the Lotka—Volterra cycles of (4) which are
constrained from above by the line y = y*. Thus, in the
long term run there are only two possibilities for prey:
Either all prey will be in the open habitat (if (9) holds) or
they will be in the refuge (if (8) holds) and no partial
preferences for habitats appear.

Next I explore the effect of protectiveness P of the
refuge defined by

on population dynamics. I measure this effect by the
distance of the equilibrium E® from the line y = y* if (8)
holds and by the distance of E* from this line if (9) holds.
Since these distances are proportional to the amplitude
of the largest fluctuations in predator—prey dynamics, my
measure gives an estimate of the largest possible
amplitude of fluctuations in population densities. The
distance is for a, >0 given by

a,/P—ayi, p, if 1 <P< a; ’
d(P) = Z1p1(41 py —1/P) 21 P ax Ay Py
ayiyp1P—a if P> a;
Jypy—1/P arly py’ (10)
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(Fig. 2) and for @, <0 by

d(P) = a/P—ay,p,

S apap ey or PeUp) (1D

First 1 consider the case a,>0. For 1/(A,p,)<P<
a,/(a,, p,) the distance d is a decreasing function of P
since for increasing protectiveness equilibrium E* moves
toward the line y=yp* (Fig. 2). For P=a,/(a,2, p,)
both equilibria E*, and E° are on the line y = y* and
d(P)=0. In this singular case all points in the partial
preference domain (on the line y = y* between the points
x' and x?) are equilibria, i.e., when a solution of (1)
driven by the optimal strategy reaches any point in the
partial preference domain it will stay there forever and
partial preferences for habitats appear. For P>a,/
(a, 2, p,) the attractor is above the line y = y* and the
distance d(P) increases to infinity for increasing protec-
tiveness since the distance of E° from this line tends to
infinity. For a, <0 equilibrium E* will always be below
the line y= y* and all prey will aggregate in the open
habitat. As protectiveness of the refuge increases, E*
moves toward this line and the limit cycle will shrink.
Thus, a refuge with higher protectiveness leads to smaller
oscillations in predator—prey fluctuations for a, <O.
Note that protectiveness of the refuge influences
dynamics in the open habitat even in the case there are no
prey in the refuge.

I may compare the case of optimal patch use with the
case where prey migrate between patches at random
which corresponds to fixed values of v;. In this case (1),
it is the classical Lotka—Volterra system that has a
neutrally stable equilibrium surrounded by cycles. Thus,

amplitude
[\

3 4 5 6 7 8
protectivness

FIG. 2. The dependence of the amplitude of the largest Lotka—
Volterra cycle on protectiveness of the refuge when no carrying
capacity is assumed. Parameters a,, a,, m,, m,, e, 4;, p, are the same
as in Fig. 1A.
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the global attractor is the whole positive quadrant and
fluctuations of any amplitude may appear in population
dynamics. Therefore, optimal prey behavior leads to par-
tial stabilization of predator—prey population dynamics
in the sense that fluctuations in population densities are
bounded.

COMPLETE REFUGE

Now I will consider the case where the second patch is
a complete refuge for prey. A complete refuge is either
predator free or the attack rate of predators is zero. This
amounts to P = oo or, equivalently, 4, p, =0. System (1)
becomes

X'=(ay =21 p1y)v1X+a,0,X, (12)

Y =(edio;x—my) pyy—m;,p,y.

Optimal antipredator strategy of prey is in the case of
complete refuge as follows. If predator density is below
y*=(a,—a,)/(A,p,) (see (3)) then prey will stay in the
open habitat where they achieve a higher growth rate. If
the predator population is above y* then it pays off for
prey to move to the refuge to avoid high predation in the
open habitat. The dynamics in the open habitat is given
by (4) while the dynamics in the refuge is described by:

X' =a,x,

V' =—y(mp,+m,p,).

Partial preferences do arise along the line y = y* for
x>x' since x>=o0. Let us consider the case where
predator density is below y*. All prey are in the open
habitat and predator—prey dynamics follows a Lotka—
Volterra cycle of (4). When predator density reaches a
critical level y* then prey start to move to the refuge. If
a, > 0 then the population of prey in the refuge will grow
exponentially since they are not being preyed upon.
Predator abundance will be constant and equal to y*.
Thus, trajectories are unbounded for a, >0 and the prey
population will split between both patches. The ratio of
prey in the open habitat and the refuge will be (see (6)):

Ui _ m; py+m,p,
Uy exXAypy—Mypy—My Py

As prey abundance increases this ratio will decrease, i.e.,
prey will aggregate in the refuge.

Vlastimil Krivan

If a, <0, then trajectories when reaching the partial
preference domain move to the left and after reaching
the point (x', y*) they move along the corresponding
Lotka—Volterra cycle of (4) as in Fig. 1B. I note that for
P = oo the distance E* from the line y = y* is given by

a

——>0
21 D1

that determines the amplitude of the largest possible fluc-
tuations in the predator—prey dynamics. Thus, for a, <0
no partial preferences for a habitat arise since after some
time all prey will stay in the open habitat. If a, =0 then
each trajectory when reaching the partial preference
domain stays at that point forever. This means that the
entire partial preference domain consists of equilibria.
The assumption of unlimited growth of prey in the
refuge is not realistic. As predation risk increases more
prey will move to the refuge which results in increasing
competition for resources, leading to density dependence
in the refuge. In the next section I consider the effect of
limited carrying capacity of the refuge on dynamics (1).

REFUGES WITH LIMITED CARRYING
CAPACITY

Model (1) shows that for refuges of high protectiveness
with a positive intrinsic growth rate a,, prey abundance
in the refuge may be very high and as protectiveness
tends to infinity it may also tend to infinity. It would
mean that the refuge itself is unlimited, which is not a
reasonable assumption. In general, due to the size of the
refuge (as in the case of the vegetated part of a lake) or
due to the limited resources in the refuge there will be a
maximum prey abundance that the refuge can support.
This abundance is described by the carrying capacity of
the refuge denoted by K. Predation risk can create signifi-
cant competition between prey in the refuge (Mittelbach
and Chesson, 1987). I will assume that if prey abundance
in the refuge is K, no other prey are allowed to move into
the refuge even if this would be the optimal antipredator
strategy. In this section I analyze the effect of limited
carrying capacity of the refuge on predator—prey dyna-
mics described by (1), provided prey behave optimally. I
do not impose any constraint on the prey growth rate in
the open habitat. To model the limited carrying capacity
of the refuge I add a constraint to system (1), namely

172< 5 (13)

==
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which constrains prey abundance in the refuge. This con-
straint together with the optimality principle (2) leads to
the following optimal strategy of prey:

(1) If x<K, constraint (13) is not active and the
optimal strategy for prey is the same as in the uncon-
strained case.

(i1) If x > K then there are the following possibilities:

(o) If y> y* the optimal strategy is v, =1 — K/x,
v, = K/x. Note that partial preferences for habitats do
appear in this case since v, is between zero and one.

(p) If y< y* the optimal strategy is the same as in
the unconstrained case.

(y) Ify=yp*then0<v,<1—K/x,v,=1—0,and
the optimal strategy is not uniquely determined.

Population dynamics for predator density below y* is
described by (4) while population dynamics for predator
density above y* is described by (5) only if x < K. If x > K
substituting the optimal strategy («) into (1) gives the
following dynamics:

X'=(ay,—4 p1 y)(x—K)+K(a,— A, p> ),

V' =(ed(x—=K)—my) p,y+ (et K—m;) p, y.

(14)

System (14) has one ecological equilibrium:

El4_ <6K(}“1P1 —Aapy)+mypi+myp,
el Py '

eK(a, Ay py—a,Ar py) +a(my p; +m2P2)>
Ay pi(my py+my ps)

Note that E'* belongs to the part of the space where
x>Kand y> y*ifa,4, p, >a, 1, p, and

myp+myp,

K<
elr P>

(15)

Under the above conditions E'* is positive and locally
asymptotically stable for dynamics described by (14) (see
Appendix C).

Now I consider the behavior of trajectories of (1)
which are governed by the optimal strategy given by (i)
and (ii). First, I determine the partial preference domain
(see Appendix A). To this end I define

3 :eK()vlpl — o py)+mpy+m,p,
el py
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Note that if (15) holds then x*> x?>> K. The partial
preference domain consists of two parts now: a part of
the line y = y* between the points x' and x? and the part
of the space where x> K and y > y*. Any trajectory of
(1) driven by the optimal antipredator strategy that
reaches at a certain time the line y = y* between the
points x' and x* will move along this line until it reaches
the point (x°, y*) where it enters the region x> K,
y> y*. In this way trajectories converge to equilibrium
E'" (Fig. 3A). Note that at equilibrium E'* prey popula-
tion will split between both patches in the ratio

U _ i Py +m, py—eKi; py

16
U,y eKi, p, (16)
A
|
| |
N |
5 |
y*___7 | -
s ‘ l
1 2 3 kx5 6
X
6
>
5
y*———/—
4
1 2 3 4 5 2 x 7
X

FIG. 3. Solutions of (1) driven by optimal antipredator strategy
when the refuge is limited. If carrying capacity of the refuge is low
(K=4 in Fig. 3A) trajectories converge to E'%. If carrying capacity is
high (K =6.1 in Fig. 3B) then trajectories converge to a Lotka—Volterra
cycle which is above the line y = y* and to the left of the line x = K.
Other parameters are the same as in Fig. 1A.
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If (15) does not hold, the carrying capacity K is higher
than x? and trajectories leave the line y = y* before prey
abundance reaches the carrying capacity of the refuge.
They enter the part of the space where y > y* where they
start to follow the corresponding Lotka—Volterra cycle.
In this case, there are two possibilities. If this cycle does
not intersect with the line x = K then trajectories behave
qualitatively in the same way as in the unconstrained
case (Fig. 1A) and no partial preferences appear. This
happens if K is large enough. For smaller K the Lotka—
Volterra cycle will intersect the line x = K that decreases
fluctuations in predator—prey dynamics (Fig. 3B). Thus,
a small carrying capacity of the refuge leads to a stable
equilibrium in predator prey dynamics and partial
preferences for habitats. When K is large enough, i.e.,

myp,+m,p,

K>
ely Pa

then a limit cycle appears and all prey will be in the
refuge. However, the amplitude of this limit cycle is
smaller than in the case of unlimited refuges since it is
constrained not only by the distance of E° from the line
y = y* but also from the line x = K. As K increases, this
distance will also increase and at a certain moment the
distance of E° from the line x = K will be the same as the
distance of E® from the line y = y*. For higher values of
K the amplitude of the limit cycle measured by the dis-
tance of E° from the line y = y* is an increasing function
of K. The dependence of the amplitude of the largest
possible fluctuations in predator—prey dynamics on the

carrying capacity K is plotted in Fig. 4.
We may also study the dependence of the amplitude of
largest fluctuations on protectiveness of the refuge

10

amplitude

0 10 20 30 40 50
carrying capacity K

FIG. 4. The dependence of the amplitude of largest fluctuations in
population abundances on the carrying capacity of the refuge.
Parameters a,, a,, m,, m,, e, 4;, p, are the same as in Fig. 1A.
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amplitude
(3%

3 4 5 6 7 8
protectiveness

FIG. 5. The dependence of the amplitude of the largest Lotka—
Volterra cycle on protectiveness of the refuge when the refuge has a
fixed carrying capacity. Parameters a,, a,, m,, m,, e, 4;, p,, K are the
same as in Fig. 1A.

(Fig. 5). To study this dependence I assume that m, =m,
= m because this assumption allows us to express the dis-
tance of E'* from the lines y = y* and x = K as a function
of protectiveness P as in the case of unconstrained
refugia. When protectiveness is small, the shape of the
curve is the same as in the unconstrained case. As protec-
tiveness increases the effect of limited carrying capacity
will strongly influence the shape of the curve. For high
values of protectiveness the system will converge to E'¢,
since (15) will be satisfied and the amplitude of fluctua-
tions is zero.

When the refuge is complete (P = o0) then E'* always
belongs to the part of the (x, y)-space where x > K and
y>y* and every trajectory governed by the optimal
antipredator strategy tends to E'%.

DISCUSSION

In this paper a system consisting of two patches—open
habitat and refuge—occupied by predators and prey was
studied. I assumed that prey use the refuge in order to
maximize their fitness measured by instantaneous per
capita growth rate. I showed that the optimal anti-
predator behavior of prey has a strong influence on the
Lotka—Volterra population dynamics. First, without
considering prey density dependence, I proved that in the
long term run prey will aggregate either in the open
habitat or in the refuge depending on the model
parameters. If prey instantaneous growth rate in the
refuge is positive and the protectiveness of the refuge is
high (ie., a,/A, py <a, /A, p,) then all prey will aggregate
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in the refuge. If prey intrinsic growth rate in the refuge is
low (or negative), or if protectiveness of the refuge is low
(ie., a; /A, py > a,/4, p,) then prey will aggregate in the
open habitat. This result qualitatively agrees with the
“minimize death per unit energy” rule (Gilliam and
Fraser, 1987; Gilliam and Fraser, 1988; Werner and
Gilliam, 1984). This rule suggests that prey should move
to the patch where the mortality rate to energy intake
rate ratio is minimized. In my model prey are in the patch
in which the instantaneous mortality rate to instan-
taneous per capita growth rate is minimized. We also
mention that present model does not support the idea
of constant number or constant proportion refugia,
provided prey develop an antipredator strategy.

It is well known that for prey moving between patches
at random the Lotka—Volterra model (1) has a neutrally
stable equilibrium surrounded by cycles. The amplitude
of population fluctuations then depends on initial
predator and prey abundances only. Optimal antipre-
dator behavior of prey leads to a qualitatively different
picture. All trajectories are converging to a bounded set,
called attractor (shaded area in Fig. 1). Inside the attrac-
tor, trajectories follow Lotka—Volterra cycles. Thus,
optimal antipredator behavior of prey may decrease fluc-
tuations in population densities compared with the
model where prey choose habitat at random. In Fig. 2 the
dependence of the amplitude of the largest possible cycle
is plotted versus protectiveness of the refuge (a,>0).
This relationship is not monotone; for both low and high
protectiveness of the refuge fluctuations in population
densities may be high. There is an optimal protectiveness
that leads to stabilization of population dynamics. It is
interesting to stress that the population dynamics in the
open habitat is influenced by the protectiveness of the
refuge, even in the case there are no prey in the refuge. If
intrinsic mortality rate is higher than intrinsic natality
rate in the refuge (i.e., growth rate parameter a, is
negative), then population oscillations are decreasing for
increasing protectiveness of the refuge. In this case exist-
ence of a refuge has a stabilizing effect on population
dynamics. When the refuge protects its habitants com-
pletely, the population of prey will spread (for a,>0)
between both habitats due to the emergence of partial
preferences of prey for habitats. Because prey population
in the refuge grows exponentially overall prey abundance
will also grow exponentially while predator abundance
will be fixed. Due to the fact that no population can grow
indefinitely, I also analyzed the case where the refuge has
a limited carrying capacity. This assumption greatly
affects population dynamics, since a stable equilibrium
and partial preferences of prey for habitats appear for
small carrying capacities (Fig. 3A). As refuge carrying
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capacity increases, oscillations in population densities do
appear (Figs. 3B, 4). This possible phenomenon should
be taken into account when experimentally testing effects
of refugia on population dynamics. Refuge hypothesis
(Murdoch et al., 1996) states that stability of predator—
prey interactions results from the existence of a refuge.
Thus, when decreasing the refuge size one might expect
that fluctuations in population densities should increase.
Refuge hypothesis was tested by Murdoch et al. (1995)
and Murdoch et al. (1996), but removal of the refuge in
these experiments did not provide supporting evidence
for this hypothesis. The results of this paper suggest that
the relationship between the refuge size and population
dynamics may be quite complex when prey behavior is
adaptive and dynamics is described by the Lotka-
Volterra system. Reducing (but not removing) the refuge
size even promotes the stability in the predator—prey
dynamics. A similar behavior was also observed by
McNair (1986). McNair (1986) assumes that both open
habitat and refuge are limited and he shows that for low
density dependence in the refuge a limit cycle appears.
Murdoch et al. (1996) suggested that in their experimen-
tal system McNair’s mechanism is probably not operat-
ing because the observed prey density dependence in the
refuge was high. The difference between my model and
McNair’'s model is that I do not consider density
dependence in the open habitat and the system becomes
stable due to strong density dependence in the refuge.
The presence of a limited refuge may also lead to the
emergence of partial preferences of prey for habitats for
low refuge carrying capacities.

The results of this paper may be compared with those
obtained by Kfivan (1997), where both predators and
prey were assumed to move between patches in order to
maximize their per capita growth rates. It was assumed
there that the optimal decisions of both predators and
prey lead to the Nash equilibrium at which no individual
can unilaterally increase its fitness by changing its
strategy. Predator—prey dynamics was described by the
Lotka—Volterra model (1) with both p’s and v’s taken as
control parameters. The results there are qualitatively
similar to the case considered in this paper where only
prey behave optimally. However, when only prey behave
optimally, in a long term run no partial preferences for
habitats occur for the unlimited refuge, while if both
predators and prey behave optimally partial preferences
appear (Kfivan, 1997).

The effect of refuges on continuous-time dynamics was
studied in Sih (1987b). The analysis given there assumes
that the prey mortality rate is a continuous (and differ-
entiable) function. I showed that the assumption on
the optimal antipredator behavior leads naturally to
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discontinuous prey mortality rates for the Lotka-—
Volterra dynamics, i.e.,

APy it y<y*

17
lopry i y>y*E {17)

prey mortality rate = {

Discontinuous prey mortality rates were suggested in
Gilliam and Fraser (1988). Note that in my model the
proportion of prey in the refuge is zero when predators
are rare (y< y*) while it is positive if predators are
abundant (y > y*). Thus the use of the refuge is increas-
ing with increasing predator density which seems to be
the pattern observed in nature (Sih, 1987b). When prey
density dependence is included into my model, prey mor-
tality rate will become a continuous function.

In Ives and Dobson (1987) it was argued that “as the
efficiency of antipredator behavior increases, the density
of the prey population always increases and the ratio of
predator to prey densities always decreases.” In the case
of no limitation of prey in the refuge it is true that
abundance of prey at equilibrium is increasing for
increasing protectiveness of the refuge. However, this
equilibrium is not asymptotically stable (Fig. 1) and the
ratio of predator to prey abundance is constant. For a
limited carrying capacity of the refuge prey abundance at
equilibrium also increases as the efficiency of antipre-
dator behavior increases (i.e., when attack rate of
predators decreases) but the ratio of predator to prey
abundance is increasing.

Since the Lotka—Volterra model is known to be struc-
turally unstable one may ask what happens if I substitute
the Holling type I functional response in (1) by the more
realistic Holling type II functional response which leads
to non-persistence for prey moving between patches at
random. System (1) becomes

x'=<a— D1y >vx+<a— Aapay >vx
R EY VR 2 14 hydyvax) 2
eA vy x
e 18
y <1+h1/1101x m1>p1y (18)
€l Uy X
+<1+h212172x mz)””‘

It can be seen in Fig. 6 that the optimal antipredator
behavior of prey (i.e., switching) may lead to persistence
of (18). In this case a limit cycle appears. Since this limit
cycle is partly formed by the switching curve, partial
preferences for habitats arise as a consequence of positive
handling times. Detailed analysis of the predator—prey
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FIG. 6. Solutions of (18) driven by the optimal antipredator
strategy. This figure shows that optimal antipredator behavior of prey
may lead to persistence of the predator—prey system even if non-zero
handling times are considered. Trajectories converge to a limit cycle
which is partly formed by the switching curve. The handling times
h,; =0.02, h, =0.06, and other parameters are the same as in Fig. 1A.

dynamics with the Holling second type functional
response will be given elsewhere.

APPENDIX A: BEHAVIOR OF THE
MODEL ALONG THE LINE y=y*

By n=(0, 1) I denote the normal vector to the line
y = y*. Denoting the right hand-side of (4) by f* and
similarly for (5) and (14) we get ({-,-)> stands for the
scalar product)

{fHny>0 if x>xz=7m]pl—i_mzp2
el py
Cf5n> <0 if NSV Y
el P>
Sy <0 it x<x=EADI=Ap)
’ el py

mypy+m;p,
+—
el Py

Note that x'<x?<x® The above inequalities imply
existence and uniqueness of trajectories of (1) driven by
the optimal strategy (Colombo and Kfivan, 1993) both
for limited and unlimited refuge. For unlimited refuge it
follows that trajectories of (1) driven by the optimal
strategy cross the line y = y* upward if x>x? and
downward if x < x!. In the segment of the line y = y*
with end points x' and x? trajectories cannot leave the
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line, i.e., ' =0 and, consequently, it is possible to com-
pute the optimal strategy of prey

:mlpl + My Py — ey PrX
ex(Ay pr— A2 p>)

If the refuge is limited and (15) holds than the trajectories
of (1) move along the switching line between points x'
and x°.

APPENDIX B: QUALITATIVE ANALYSIS
OF (1)

I construct the Lyapunov function for (1) driven by the
optimal antipredator strategy assuming that a,4, p, <
a,2q p,. Let

x, y)=
(1.1, <x_mlpl+mzpzln(x)>
el ps
a,
+22p> (y—ﬂ ln(y)> for y>y*
A2 P>
ely P2 X — (my py +m, p,) In(x)
+Ap1y—a;In(y)
+(a,—a )<ln<>—1> for y<y*
\ ' 2 Aip1—AaD>
(19)

The above function is continuous along the line y = y*.
Denoting f* and f° the right handside of (4) and (5),
respectively we get

V', f* =ex(Aypy— 2y pi)ay—2,p, y) <0
for y<y*

V', f°>=0 for y>y*

Due to the LaSalle theorem, trajectories of (1) driven by
the optimal antipredator strategy converge to a global
attractor which is bounded by the largest Lotka-
Volterra cycle which is above the line y = y*. If a, 1, p, >
a,/, p, existence of a global attractor can be proved
analogously.
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APPENDIX C: STABILITY OF E™*

The characteristic polynomial corresponding to E'* is:

P eK(ayypy—a; > p») o

myp+myp,
+eK(ar Ay py—ay iy py) +a(my py+ms ps).

Under the assumption a, 4, p, > a, 4, p, all coefficients of
the characteristic polynomial are positive and the
Routh-Hurwitz criterion implies local stability of E'*.

ACKNOWLEDGMENTS

The author thanks J. F. Gilliam for sending some papers, and to
J. Titus, O. J. Schmitz, and six unknown reviewers for helpful sugges-
tions on the previous version of the manuscript. This work was partially
supported by MSMT CR (Grant No. VS 96086) and GA CR (Grant
No. 201/98/0227).

REFERENCES

Collings, J. B. 1995. Bifurcation and stability analysis of a temperature-
dependent mite predator-prey interaction model incorporating a
prey refuge, Bull. Math. Biology 57, 63-76.

Colombo, R., and Kfivan, V. 1993. Selective strategies in food webs,
IMA J. Math. Appl. Med. Biol. 10, 281-291.

Comins, H. N., and Blatt, D. W. E. 1974. Prey—predator models in
spatially heterogeneous environments, J. Theor. Biol. 48, 75-83.
Diehl, S., and Eklov, P. 1995. Effects of piscivore-mediated habitat use
on resources, diet, and growth of perch, Ecology 76, 1712-1726.
Fraser, D. F., and Gilliam, J. F. 1987. Feeding under predation hazard:
response of the guppy and hart’s rivulus from sites with contrasting

predation hazard, Behav. Ecol. Sociobiol. 21, 203-2009.

Fraser, D. F., and Gilliam, J. F. 1992. Nonlethal impacts of predator
invasion: Facultative suppression of growth and reproduction,
Ecology 73, 959-970.

Fraser, D. F., Gilliam, J. F., and Yip-Hoi, T. 1995. Predation as an
agent of population fragmentation in a tropical watershed, Ecology
76, 1461-1472.

Gilliam, J. F., and Fraser, D. F. 1987. Habitat selection under predation
hazard: Test of a model with foraging minnows, Ecology 68,
1856-1862.

Gilliam, J. F., and Fraser, D. F. 1988. Resource Depletion and Habitat
Segregation by Competitors under Predation Hazard, in “Size-
Structured Populations” (B. Ebenman and L. Perrson, Eds.),
Springer-Verlag, Berlin/New York.

Hassel, M. P., and May, R. M. 1973. Stability in insect host-parasite
models, J. An. Ecol. 42, 693-725.

Hassell, M. P. 1978. “The Dynamics of Arthropod Predator-Prey
Systems,” Princeton Univ. Press, Princeton, NJ.

Hochberg, M. E., and Holt, R. D. 1995. Refuge evolution and the
population dynamics of coupled host-parasitoid associations, Evol.
Ecol. 9, 633-661.



142

Holt, R. D. 1983. Optimal foraging and the form of the predator
isocline, Am. Naturalist 122, 521-541.

Holt, R. D. 1985. Population dynamics in two-patch environments:
Some anomalous consequences of an optimal habitat distribution,
Theor. Popul. Biol. 28, 181-208.

Holt, R. D. 1987. Prey communities in patchy environments, Oikos 50,
276-290.

Ives, A. R., and Dobson, A. P. 1987. Antipredator behavior and the
population dynamics of simple predator-prey systems, Am.
Naturalist 130, 431-447.

Kiivan, V. 1997. Dynamic ideal free distribution: Effects of optimal
patch choice on predator—prey dynamics, Am. Naturalist 149,
164-178.

Lima, S. L., and Dill, L. M. 1990. Behavioral decisions made under the
risk of predation: A review and prospectus, Can. J. Zool. 68,
619-640.

Maynard Smith, J. 1974. “Models in Ecology,” Cambridge Univ. Press,
Cambridge, UK.

McNair, J. N. 1986. The effects of refuges on predator—prey interac-
tions: A reconsideration, Theor. Popul. Biol. 29, 38-63.

Mittelbach, G. G., and Chesson, P. L. 1987. Predation risk: Indirect
effects on fish populations, in “Predation” (W. C. Kerfoot and A. Sih,
Eds.), Univ. press of New England, Hanover.

Murdoch, W. W., and Stewart-Oaten, A. 1975. Predation and popula-
tion stability, Adv. Ecol. Res. 9, 1-131.

Vlastimil Krivan

Murdoch, W. W., Luck, R. F., Swarbrick, S. L., Walde, S., Yu, D. S,,
and Reeve, J. D. 1995. Regulation of an insect population under
biological control, Ecology 76, 206-217.

Murdoch, W. W., Swarbrick, S. L., Luck, R., Walde, S., and Yu, D. S.
1996. Refuge dynamics and metapopulation dynamics: An
experimental test, Am. Naturalist 147, 424-444.

Rosenzweig, M. L., and MacArthur, R. H. 1963. Graphical representa-
tion and stability conditions of predator-prey interactions, Am.
Naturalist 97, 209-223.

Ruxton, G. D. 1995. Short term refuge use and stability of predator—
prey models, Theor. Popul. Biol. 47, 1-17.

Sih, A. 1980. Optimal behavior: Can foragers balance two conflicting
demands?, Science 210, 1041-1043.

Sih, A. 1986. Antipredator responses and the preception of danger by
mosquito larvae, Ecology 67, 434-441.

Sih, A. 1987a. Predators and prey lifestyles: An evolutionary overview,
in “Predation” (W. C. Kerfoot and A. Sih, Eds.), Univ. Press of New
England, Hanover.

Sih, A. 1987b. Prey refuges and predator—prey stability, Theor. Popul.
Biol. 31, 1-12.

Werner, E. E., and Gilliam, J. F. 1984. The ontogenetic niche and species
interactions in size-structured populations, Ann. Rev. Ecol. Syst..

Werner, E. E., Gilliam, J. F., Hall, D. J., and Mittelbach, G. G. 1983.
An experimental test of the effects of predation risk on habitat use in
fish, Ecology 64, 1540-1548.



