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A system consisting of a population of predators and two types of prey is con-
sidered. The dynamics of the system is described by differential equations with con-
trols. The controls model how predators forage on each of the two types of prey.
The choice of these controls is based on the standard assumption in the theory of
optimal foraging which requires that each predator maximizes the net rate of energy
intake during foraging. Since this choice depends on the densities of populations
involved, this allows us to link the optimal behavior of an individual with the
dynamics of the whole system. Simple qualitative analysis and some simulations
show the qualitative behavior of such a system. The effect of the optimal diet choice
on the stability of the system is discussed. � 1996 Academic Press, Inc.

Introduction

Since there is convincing experimental evidence that some animals can
make decisions with respect to their foraging activities, many papers have
been devoted to modeling optimal foraging behavior, for a review see
Stephens and Krebs (1986), Mangel and Clark (1988). It is assumed that
when foraging, these decisions lead to optimal foraging which maximizes
some optimality criterion. Standard foraging models are based on the
assumption of maximization of the net rate of energy intake during forag-
ing which leads to maximization of

E
Ts+Th

,

see Stephens and Krebs (1986). Here Ts stands for the total time spent by
searching, Th denotes the total time spent by handling, and E is the net
amount of energy gained in the total time Ts+Th . Assuming that encoun-
ters are linearly related to Ts , the above expression leads to maximization
of

*e
1+*h

, (1)
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where * denotes the encounter rate of a predator with a prey when search-
ing, e is the average energy gained per encounter, and h is the average time
spent by handling. Expression (1) was also generalized to the situation
where many types of prey are present (Stephens and Krebs, 1986). In the
case of two types of prey this leads to maximization of

R( p1 , p2)=
p1*1e1+ p2*2 e2

1+ p1*1h1+ p2 *2h2

. (2)

Here p1 and p2 denote the probability that a predator will attack prey type
1 or prey type 2, *i stands for the encounter rate of a predator with the i th
type of prey when searching, ei is the expected net energy gained from the
ith type of prey, and hi is the expected handling time spent with the i th
type of prey.

Based on maximization of (2) one obtains a composition of the diet of
a predator which depends on the ranking of different types of prey accord-
ing to the ratios ei �hi . The main result of the optimal foraging theory which
may be easily derived from (2) states that predators will always forage on
the most profitable type of prey, i.e., the prey type with the highest ratio
ei �hi . The other type of prey will be included into the diet only if the value
of R will not decrease by doing so. Thus assuming that the first type of
prey is more profitable than the second one, p1=1 and p2 is either zero or
one depending on the parameters involved. This is the well-known result
from the theory of optimal foraging which holds also for more types of
prey, see Stephens and Krebs (1986). This basic model goes back to
Charnov (1976) and many others who elaborated on it, including some
other phenomena that may influence the decision of the predator. We refer
to Stephens and Krebs (1986) and Mangel and Clarke (1988) for more
detailed information and an extensive reference list. However, the above
model is set into a static environment, where the densities of populations
involved are fixed. Thus, for example, the encounter rate *i is taken as con-
stant. Since these encounter rates must necessarily depend on the densities
of populations of prey, this assumption holds as long as the densities of
prey are fixed. Obviously, this is not so, since each population has its own
dynamics which, in turn, will be influenced by the foraging behavior of
predators. Thus, assuming that the dependence of the encounter rate on the
density of prey is known allows us to link the behavior of an individual
predator with the dynamics of populations of predator and prey. The con-
trol p2 may be expressed as a function of the density of prey type 1. There
is a critical density x1* of the first prey type such that if the density of the
first prey type is below this threshold, then prey type 2 will be included into
the optimal diet, i.e., p2=1. If the density of the first prey type is larger
than the threshold, the optimal diet will consist only of prey type 1. If the
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density of prey type 1 will equal x1*, then p2 cannot be determined directly
and it may be anywhere between 0 and 1. Thus p2 as a function of the den-
sity of the more profitable prey type is a step function.

In order to construct a model of population dynamics we have to choose
the functional response function. Since this function depends on the
predator diet choice given by a step function we cannot uniquely define the
value of the functional response at those points where switching occurs, i.e.,
where the diet of predators changes. One possible way to overcome this
problem is to approximate the step function by a continuous function. This
approach was used in Tansky (1978), Teramoto et al. (1979), Vance
(1978), Murdoch and Stewart-Oaten (1975), Holt (1983), and Fryxell and
Lundberg (1994). The main aim of these papers was to study the effect of
switching on the stability of predator�prey systems. However, the resulting
dynamics may depend crucially on the approximation of the step function
describing the diet of the predator, since this approximation is strongly
nonlinear. Thus the stability analysis will depend on the particular choice
of the approximation. Another approach based on balancing costs and
benefits related to the amount of time spent by foraging which alters the
shape of Holling type II functional response was discussed in Abrams
(1982, 1984, 1990). In the framework of optimal patch selection the effect
of individual behavior on the stability of predator�prey (or host�parasite)
systems was studied for example in Hassell and May (1973), van Baalen
and Sabelis (1993), Colombo and Kr� ivan (1993), and Kr� ivan (1995).

The aim of this paper is to deal directly with the step function describing
the diet choice. We will assume that the densities of populations involved
may be described by a system of differential equations with controls that
allow us to model selective foraging by predators. Together with this
system we consider the optimality criterion (2) which allows us to specify
optimal foraging strategies among all plausible controls. The optimal forag-
ing strategy is not defined uniquely, and, in the last analysis, we get a dif-
ferential inclusion instead of a differential equation. We show that, despite
this ambiguity, solutions are uniquely defined. Then we consider a par-
ticular example where both populations of prey grow logistically with the
same growth parameter. Under this assumption we study the qualitative
behavior of the model. Mainly, we are interested in the effect of optimal
diet choice on the stability of the system.

In this paper we follow Colombo and Kr� ivan (1993), where a general
dynamical framework for description of optimal foraging strategies was
given in terms of control systems. For the sake of simplicity we consider
only one type of predators foraging on two types of prey, although the pre-
sent approach applies to more complex systems as well.
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The Dynamics

Let us consider a population of a predator foraging on two different pop-
ulations of prey. The density of the population of the predator is described
by x3 , while the densities of populations of prey are x1 , x2 . Following
Holling (1959), see Appendix A, the dynamics of the system which
corresponds to the optimality criterion (2) is described by

x$1=x1 g1(x1 , x2)&
p1*1 x3

1+ p1 h1 *1+ p2h2*2

x$2=x2 g2(x1 , x2)&
p2*2 x3

1+ p1 h1 *1+ p2h2*2

(3)

x$3=
p1 e1*1x3+ p2 e2 *2x3

1+ p1h1 *1+ p2h2*2

&mx3 .

Let us stress that p1 , p2 are taken as controls which change in time. In this
equation functions gi , i=1, 2, are the growth rate functions for populations
of prey. One possible form of these functions is

gi (x1 , x2)=ai \1&
xi

Ki+ , i=1, 2. (4)

To simplify subsequent analysis we will always assume that

e1�h1>e2�h2 , (5)

and thus e1h2&e2h1>0, i.e., the first prey is more convenient for the
predator than the second one. Since *i denotes the encounter rate of a
searching predator with a prey of the i th type, it depends on the density
of the i th type of prey, i.e., *i (xi). Assuming this dependence is linear

*i (xi)=lixi , i=1, 2, (6)

where li is a positive parameter, gives the following dynamics with Holling
type II trophic function:

x$1=x1 g1(x1 , x2)&
p1 l1x1 x3

1+ p1 h1 l1 x1+ p2h2 l2 x2

x$2=x2 g2(x1 , x2)&
p2 l2x2 x3

1+ p1 h1 l1 x1+ p2h2 l2 x2

(7)

x$3=
p1e1 l1 x1x3+ p2 e2 l2x2 x3

1+ p1 h1 l1 x1+ p2h2 l2x2

&mx3 .
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All parameters in (7) are assumed to be nonnegative. Controls p1 , p2 are
interpreted as probabilities that a prey of the i th type will be attacked upon
encounter with a predator, thus ( p1 , p2) # U, where

U=[( p1 , p2) | 0� p1�1, 0� p2�1].

Solution of (7) is a couple (x(t), p(t)), where x(t)=(x1(t), x2(t), x3(t)) is
an absolutely continuous function (i.e., its derivative exists almost
everywhere in the sense of Lebesgue measure) and p(t)=( p1(t), p2(t)) is a
measurable function, such that (7) is satisfied for almost all t. Those
readers who are not familiar with these concepts may think that ``almost
everwhere'' means with an exception of ``some'' points. Due to (6) the
optimality criterion (2) becomes

R( p1 , p2)=
p1e1 l1x1+ p2e2 l2 x2

1+ p1 l1 x1 h1+ p2 l2x2h2

. (8)

Following standard theories of optimal foraging we consider (8) as a
fitness function which is maximized. We see that this amounts to saying
that the the growth rate of an average predator which is given by x$3�x3 is
maximized. The optimal strategy thus depends on the densities of prey. For
each pair of (x1 , x2) we get a set of optimal controls S(x1 , x2) which we
call strategy map

S(x1 , x2)=[( p1 , p2) # U | R( p1 , p2)= max
(u1 , u2) # U

R(u1 , u2)].

Let us note that the above-defined strategy is myopic, i.e., the choice of
( p1 , p2) is based only upon the knowledge of the present situation by
predators, and no insight into the future is assumed.

Thus our general model for one population of predators feeding on two
different types of prey assuming optimal behavior of predators has the form

x$1=x1 g1(x1 , x2)&
p1 l1x1 x3

1+ p1 h1 l1 x1+ p2h2 l2 x2

x$2=x2 g2(x1 , x2)&
p2 l2x2 x3

1+ p1 h1 l1 x1+ p2h2 l2 x2
(9)

x$3=
p1e1 l1 x1x3+ p2 e2 l2x2 x3

1+ p1 h1 l1 x1+ p2h2 l2x2

&mx3

( p1 , p2) # S(x1 , x2).

This is a control system in which the actual value of control ( p1 , p2)
depends on the state of the system. We see that dynamics of (9) is not
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uniquely determined at those points where the strategy map S(x1 , x2) is
multivalued. Therefore (9) is not a differential equation, but it is equivalent
to a differential inclusion, see Aubin and Cellina (1984), or to Filippov
regularization of a dynamics with discontinuous right-hand side, Filippov
(1988), and Colombo and Kr� ivan (1993).

Optimal Strategy

Now we look for those controls which belong to the set S(x1 , x2).
Computing derivatives of the map R( p1 , p2) allows us to deduce the
maximizing controls p1 , p2 . This is a standard way of deriving the optimal
behavior of a predator in the foraging theory. Due to (5) it turns out, see
Appendix B, that

�R
�p1

>0.

Thus p1=1. Since the sign of �R��p2 does not depend on p2 it follows
that if

�R
�p2

{0,

then the maximum is achieved for either p2=0 or p2=1, depending on the
sign of the derivative, see Appendix B. This is a well-known result from
the optimal foraging theory which says that the optimal control is of the
bang-bang (or zero�one) type, i.e., the more profitable prey is always
included in the diet and the less profitable prey is either included or
excluded depending on the sign of �R��p2 . Thus partial preferences (i.e.,
0<p2<1) do not arise in the classical model of optimal foraging. How-
ever, standard theory of optimal foraging which considers all parameters
involved as constants does not take into account the case when

�R
�p2

=0. (10)

This is a legitimate simplification, since such a case may be excluded by a
negligible change in parameters. Thus from a practical point of view this
cannot happen. However, in the present dynamic setting the encounter
rates *1(x1), *2(x2) depend on the densities of prey populations, see (6),
and we cannot exclude from our considerations the case when (10) holds.
This is due to the fact that it may well happen that *1(x1), *2(x2), will
change in such a way that (10) will be reached after some time and conse-
quently, optimal decision will lead to partial preferences. After some
algebra, see Appendix B, we get that the strategy map S has the values
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(1, 1) if x1<
e2

l1(e1 h2&e2h1)

S(x1 , x2)={(1, 0) if x1>
e2

l1(e1h2&e2h1)
(11)

(1, p2), 0� p2�1 if x1=
e2

l1(e1 h2&e2 h1)
.

We see that the strategy map S is not singlevalued but multivalued for

x1*=
e2

l1(e1 h2&e2 h1)
. (12)

Consequently, the strategy of a predator when it encounters a prey is:

(a) If it encounters a prey of the most profitable type, i.e., prey 1,
it will always attack it.

(b) If it encounters a prey of the less profitable type, then there are
three possibilities:

(i) it should attack it provided that the gain from eating is larger
than the gain from rejection and searching for a more profitable prey, i.e.,
if

x1<x1*;

(ii) it should reject it if

x1>x1*;

(iii) the strategy is not fully determined (i.e., p2 # [0, 1]) if

x1=x1*.

We want to stress here that in case (iii) it may still be possible to determine
uniquely values of p2 if we take into account the dynamics of the system,
see below. Rewriting (7) together with the above strategy map we get

x$1=x1 g1(x1 , x2)&
l1x1x3

1+h1 l1x1+ p2 h2 l2 x2

x$2=x2 g2(x1 , x2)&
p2 l2x2 x3

1+h1 l1x1+ p2h2 l2x2
(13)

x$3=
e1 l1x1 x3+ p2e2 l2 x2x3

1+h1 l1x1+ p2 h2 l2x2

&mx3

(1, p2) # S(x1 , x2).
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The dynamics of (13) is not uniquely determined at those points where
x1=x1*. Despite this nonuniqueness in the dynamics, the existence and
uniqueness of solutions of (13) for every initial condition follows from
Appendix C. Let us denote

G1={x # R3
+ | x1<

e2

l1(e1h2&e2h1)= ,

G2={x # R3
+ | x1>

e2

l1(e1h2&e2h1)= ,

G0={x # R3
+ | x1=

e2

l1(e1h2&e2h1)= ,

see Fig. 1. For a better understanding we rewrite (13) on each of the above
defined sets. In the region G1 the dynamics of (13) is given by

x$1=x1 g1(x1 , x2)&
l1 x1x3

1+h1 l1 x1+h2 l2x2

x$2=x2 g2(x1 , x2)&
l2 x2x3

1+h1 l1 x1+h2 l2x2

(14)

x$3=
e1 l1x1x3+e2 l2x2 x3

1+h1 l1x1+h2 l2 x2

&mx3 ,

in G2 by

x$1=x1 g1(x1 , x2)&
l1 x1x3

1+h1 l1 x1

x$2=x2 g2(x1 , x2) (15)

x$3=
e1 l1x1 x3

1+h1 l1x1

&mx3 ,

and in G0 by

x$1=x1 g1(x1 , x2)&
l1x1x3

1+h1 l1x1+ p2 h2 l2 x2

x$2=x2 g2(x1 , x2)&
p2 l2x2 x3

1+h1 l1x1+ p2h2 l2x2
(16)

x$3=
e1 l1x1 x3+ p2e2 l2 x2x3

1+h1 l1x1+ p2 h2 l2x2

&mx3

p2 # [0, 1].
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Fig. 1. Four possible types of behavior of the right-hand side of (13) in G0.

In other words, the dynamics of (13) is uniquely determined in G1 and in
G2, where it is described by a differential equation, while in G0 it is not,
since p2 may take any value in [0, 1].

Analysis of Switching

Now we focus on the qualitative analysis of (13) in G0. Let n=(1, 0, 0)
denote the normal vector to G0, oriented from G1 toward G2. We denote
by f1(x1 , x2 , x3) the right-hand side of (14) and by f2(x1 , x2 , x3) the right-
hand side of (15). Since in G1 and in G2 the dynamics is described by a
system of differential equations, we have to study the behavior of a solution
when it falls on G0 where switching occurs. This behavior is given by
projections of vector fields f1 and f2 on the normal vector n. We have to
distinguish four possible cases (( } , } ) stands for the scalar product):

(i) (n, f1)>0, (n, f2) <0, which means that trajectories of (13)
will stay in G0

(ii) (n, f1)>0, (n, f2) >0, which means that trajectories of (13)
will pass through G0 in direction from G1 to G2

(iii) (n, f1)<0, (n, f2) <0, which means that trajectories of (13)
will pass through G0 in direction from G2 to G1

(iv) (n, f1)<0, (n, f2) >0, which means that trajectories of (13)
which start on G0 will move either to G1 or to G2,

see Fig. 1. From Appendix C it follows that the case (iv) cannot happen.
Under condition (i), a trajectory which hits G0 stays there as long as (i)
holds. Such behavior is called sliding regime in the theory of discontinuous
differential equations. This means that partial preferences arise, i.e., the
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probability of attacking the second type of prey is strictly between zero and
one. This has one important consequence; namely, it allows us to derive
uniquely value of p2 along G0. Let us assume that a solution of (13) is in
the part of G0 where the sliding regime occurs. Since in this case it cannot
leave G0 it must hold

x$1(t)=0.

This allows us to compute explicitly p2 at those points where g1(x1*, x2){0.
Namely, we get

p2(x1*, x2 , x3)=
l1 x3&(1+h1 l1 x1*) g1(x1*, x2)

h2 l2x2 g1(x1*, x2)
. (17)

From (i) it follows that partial preferences arise at those points of G0 where

g1(x1*, x2)(1+h1 l1x1*)
l1

<x3<
g1(x1*, x2)(1+h1 l1x1*+h2 l2x2)

l1

. (18)

Thus we see that partial preferences do not arise if g1(x1*, x2)<0. In this
case (n, f1(x1*, x2 , x3))<0, (n, f2(x1*, x2 , x3)) <0 for all positive x2 , x3,
and trajectories of (13) cross G0 transversally in direction from G2 to G1.

An Example

We consider (13) with the growth rate functions given by (4), i.e.,

x$1=a1x1 \1&
x1

K1+&
l1x1x3

1+h1 l1 x1+ p2h2 l2x2

x$2=a2x2 \1&
x2

K2+&
p2 l2x2 x3

1+h1 l1x1+ p2h2 l2x2
(19)

x$3=
e1 l1x1 x3+ p2e2 l2 x2x3

1+h1 l1x1+ p2h2 l2 x2

&mx3

(1, p2) # S(x1 , x2).

First we will study qualitative behavior of (19) in G1 and in G2

separately. In order to make the analysis possible we will assume a1=a2

and l1=l2 . For p2=1 there exists one equilibrium E 1=(x1
1, x1

2, x1
3) of (19)

with all nonzero components
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x1
1=

mK1

l2(e1 K1+e2K2&m(h1 K1+h2 K2))

x1
2=

mK2

l2(e1 K1+e2K2&m(h1 K1+h2 K2))

x1
3=

a2(e1K1+e2K2)(e1K1 l2+e2K2 l2&m(1+h1K1 l2+h2 K2 l2))
l 2

2(m(h1K1+h2 K2)&e1 K1&e2K2)2 .

This equilibrium is strictly positive (i.e., x1
1>0, x1

2>0, x1
3>0) if

m<
e1K1 l2+e2K2 l2

1+h1K1 l2+h2 K2 l2

. (20)

Since we are able to compute eigenvalues for E 1, see Appendix D, we can
study local stability of E 1. From Appendix D it follows that E 1 is locally
stable if

(e1K1+e2K2)(h1K1 l2+h2K2 l2&1)
(h1K1+h2K2)(h1K1 l2+h2 K2 l2+1)

<m<
e1K1 l2+e2 K2 l2

1+h1K1 l2+h2 K2 l2

. (21)

If

m�
(e1K1+e2K2)(h1K1 l2+h2 K2 l2&1)
(h1 K1+h2K2)(h1K1 l2+h2K2 l2+1)

,

then a stable limit cycle around E 1 may appear via Hopf bifurcation. If

m>
e1K1 l2+e2K2 l2

1+h1K1 l2+h2 K2 l2

, (22)

then equilibrium (K1 , K2 , 0) is locally stable, see Appendix D.
For p2=0 the nontrivial equilibrium E 2=(x2

1 , x2
2 , x2

3) of (19) is

x2
1=

m
l1(e1&h1m)

x2
2=K2

x2
3=

a1e1(e1 K1 l1&m&h1K1 l1 m)
K1 l 2

1(h1 m&e1)2 .

This equilibrium is strictly positive provided

m<
e1K1 l1

1+h1 K1 l1

.
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The equilibrium E2 is globally stable if

e1(K1 l1h1&1)
h1(K1 l1 h1+1)

<m<
e1K1 l1

1+h1 K1 l1

.

If

m�
e1(K1 l1h1&1)
h1(K1 l1h1+1)

, (23)

then there exists a stable limit cycle around the fixed point E 2, see
Hofbauer and Sigmund (1988). If either

m>
e1K1 l1

1+h1K1 l1

(24)

or

m>
e1

h1

, (25)

then the equilibrium (K1 , K2 , 0) of (19) is globally stable, see Hofbauer
and Sigmund (1988).

Equilibrium E2 belongs to G2 if it is strictly positive and

x1*<x2
1 ,

which gives

e2

h2

<m<
e1K1 l1

1+h1 K1 l1

. (26)

Similarly, E 1 # G1 if (20) holds and

m<
e2

h2

. (27)

Thus we see that the situation where E1 # G1, E 2 # G2 cannot occur, i.e.,
either E 1, E2 # G1 or E 1, E 2 # G2. We do not consider the case when
E1, E 2 # G0 since by a negligible change in parameters this situation may be
excluded.

Now we study the behavior of a trajectory of (19) when it falls on G0.
On G0

(n, f1)>0 if x3<
a1

l1

(1+h1 l1 x1*+h2 l2x2) \1&
x1*
K1+
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Fig. 2. A solution of (19) plotted in time domain (a) and in the (x1 , x3) plane (b).
Predators follow the optimal diet choice and partial preferences do appear when the solution
moves in G0 (denoted by the dashed line). The large cycle in (b) is the limit cycle for system
described by (31). Thus optimal diet choice may reduce fluctuations in population densities.
Parameters: a1=1, a2=1, e1=2.6, e2=1, h1=0.4, h2=0.3, l1=2, l2=2, K1=8, K2=10,
m=4.
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and

(n, f2)>0 if x3<
a1

l1

(1+h1 l1 x1*) \1&
x1*
K1+ .

Thus we see that if K1<x1*, then (n, f1) <0 and (n, f2)<0. Under this
assumption trajectories cross G0 only in direction from G2 to G1. Once a
trajectory enters G1, it will stay there forever. The diet of a predator will
consists of both prey types, and the probability of attacking the second
prey upon encounter will be 1.

Fig. 3. In this figure the optimal diet choice destabilizes population dynamics. If
predators feed only on the more profitable prey type (b), system (31) has a stable equilibrium.
However, if predators follow the optimal diet choice described by (19) (a) (c), a limit cycle
appears. Partial preferences do appear when the solution moves along G0 (denoted by the
dashed line). Parameters: a1=1, a2=1, e1=2.6, e2=3, h1=0.2, h2=0.35, l1=2, l2=2,
K1=8, K2=10, m=8.
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Fig. 3��Continued
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In what follows we assume x1*<K1 . Then following (18) we get that if

a1

l1

(1+h1 l1x1*) \1&
x1*
K1+<x3<

a1

l1

(1+h1 l1 x1*+h2 l2x2) \1&
x1*
K1+ , (28)

then the trajectory will move along G0 and partial preferences do arise. If

x3>
a1

l1

(1+h1 l1 x1*+h2 l2x2) \1&
x1*
K1+ , (29)

then the trajectory will cross G0 in direction from G2 to G1, and if

x3<
a1

l1

(1+h1 l1 x1*) \1&
x1*
K1+ , (30)

then it will cross G0 in direction from G1 to G2.
In order to study the qualitative behavior of (19) let us consider the case

when E 2 # G2. Let us consider a system in which predators specialize on the
more profitable prey type only, i.e.,

x$1=a1x1 \1&
x1

K1+&
l1x1x3

1+h1 l1x1

x$2=a2x2 \1&
x2

K2+ (31)

x$3=
e1 l1x1 x3

1+h1 l1x1

&mx3 .

If E 2 is stable for differential equation (31), then also every solution of (19)
which starts in G 2 close to E 2 will converge to E 2 since (19) coincides with
(31) in G 2. If E 2 is unstable for (31) and a stable limit cycle exists for (31),
then the behavior of (19) depends on the position of this limit cycle with
respect to G0. If the limit cycle intersects G0, then partial preferences may
appear, see Fig. 2. In Fig. 2b the large cycle is the limit cycle of (31), while
the smaller cycle corresponds to (19). In fact, the amplitude of the limit
cycle of (19) decreases as the distance of E 2 from G0 decreases. In Fig. 2b
we see the qualitative behavior of solutions of (19) on G0. At the first
moment when the solution of (19) falls on G0 the density of the population
of predators is high, i.e., (29) holds and the system moves from G2 to G1,
i.e., predators include the less convenient prey into their diet. When the
solution falls on G0 for the second time, the density of predators is low,
(30) holds, and the predators will switch to feed only on the more con-
venient prey type. However, when the trajectory falls the next time on G0,
(28) is satisfied and for a predator the optimal strategy is to include the

280 VLASTIMIL KR8 IVAN



File: 653J 126217 . By:MC . Date:28:05:96 . Time:13:08 LOP8M. V8.0. Page 01:01
Codes: 2666 Signs: 2198 . Length: 45 pic 0 pts, 190 mm

second prey into its diet only with a certain probability which is strictly
between zero and one. This corresponds to the movement of the system
along G0 where partial preferences arise. However, after some time, condi-
tion (30) will be satisfied and the system will leave G0 to G2. A new limit
cycle appears. Since this limit cycles is smaller than the limit cycle for
predators feeding only on the more convenient prey, we may say that the
optimal diet choice may lead to partial stabilization of the system.

Now we consider the case when E 2 # G1. Although E 2 still may be the
stable equilibrium for (31), see Fig. 3b, it may not be stable for (19), see
Figs. 3a and 3c. In this case optimal foraging destabilizes the system, which
would be stable for specialized predators feeding only on the more
profitable prey. In Fig. 3c we see that the limit cycle belongs partly to G0

and partial preferences do appear. It may also happen that for some other
parameters the limit cycle belongs to G1 only, i.e., there may be no partial
preferences or E 1 may be a stable equilibrium.

We may also be interested if the optimal diet choice may stabilize an
unstable system. Namely, assuming that E2 is un unstable equilibrium for
(31) we may be interested if, when foraging optimally, this equilibrium will
belong to G1 and E 1 will be stable. In Appendix E we prove that this
cannot happen.

Another question we may address is that of whether optimal foraging
may lead to the coexistence of both prey and predator populations, and
thus to permanence, see Hofbauer and Sigmund (1988). We show that this
is indeed so. Let us consider predators which specialize on the most
profitable prey type. The dynamics of such a system is described by (31).
Let us assume that (24) holds, which means that (31) has a stable

Fig. 4. Solutions of (19) (thick line) and of (31) (dashed line) plotted in the (x1 , x3)
plane. In this figure, (19) has a stable equilibrium with all components positive, whereas (31)
has the stable equilibrium (K1 , K2 , 0). Thus optimal foraging may lead to permanence of
predator�prey systems. Parameters: a1=1, a2=1, e1=2.6, e2=3, h1=0.2, h2=0.3, l1=2,
l2=2, K1=3, K2=10, m=8.
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Fig. 5. A solution of (19) plotted in time domain (a) and in (x1 , x3) space (b). Following
the optimal diet choice, predators switch periodically between being specialists or generalists.
Moreover, partial preferences do appear. Parameters: a1=0.7, a2=2.2, e1=2.6, e2=1.25,
h1=0.4, h2=0.3, l1=1, l2=2, K1=20, K2=10, m=4.
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equilibrium (K1 , K2 , 0). Moreover, let K1<x1*. We showed that under this
condition every solution of (19) will reach G1 and it will stay there. If
E1 # G1 is a stable equilibrium for (19) in G1 or, more generally, if
dynamics (19) in G1 is permanent we get permanence of the whole system,
see Fig. 4.

In general (i.e., a1{a2 , l1{l2), the dynamics of (19) may be quite com-
plex; one simulation is given in Fig. 5, where we see that the limit cycle
belongs both to G1 and G2, and partial preferences do arise. Let us note
that if partial preferences do appear we may compute p2 using (17):

p2(x1*, x2 , x3)=
e1

l2x2(e2 h1&e1h2)
+

K1 l 2
1x3(e2h1&e1h2)

a1 l2h2x2(e2+l1K1(e2h1&e1h2))
.

(32)

Discussion

In this paper we linked the theory of optimal foraging for a single
individual with the population dynamics. The densities of populations are
described by a control system where the meaning of controls is to model
preferences of predators to feed on various types of prey. The controls were
chosen in order to maximize energy gain of a single average predator. We
saw that, in addition to the strategies which are given by zero�one rule
(i.e., either to include second prey in diet or not), partial preferences may
arise. This means that the more profitable prey is always included in a diet
but the probability of feeding on the less profitable prey may be strictly
between zero and one.

It is easy to see that in the present dynamic setting, simplistic statements
concerning generalist or specialist behavior of foragers may be misleading.
We saw that depending on the parameters of the model and on the initial
condition predators may behave either as generalists or as specialists, or
they may periodically switch between being generalists or specialists.

The effect of optimal foraging on stability of predator�prey system (19)
is quite complex. We saw that a system consisting of predators which
specialize on the more profitable prey only may be stable, while the same
system with predators following the rule of the optimal diet choice may not
have a stable equilibrium, see Fig. 3. Moreover, we proved that if the
growth rate of prey populations is same and l1=l2 , then an unstable
system consisting of predators which specialize on the more profitable prey
only cannot be stabilized by including the second prey into the diet.
However, we saw that the optimal diet choice may have a partially stabiliz-
ing effect, in the sense that the large fluctuations in the system where
predators specialize only on the more profitable prey are reduced in the
system where predators follow the optimal diet rule, see Fig. 2. If the
distance of E2 from G0 is small, then the resulting fluctuations will also be
small; thus from the practical point of view the system may be considered
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to be stabilized. We also showed that optimal foraging may lead to per-
manence of the predator�prey system, i.e., to coexistence of both prey and
predator populations, see Fig. 4.

The formula for partial preferences (32) also gives some clue as to how
any reasonable approximation of the step function p2 should be con-
structed. Namely, any approximation should agree with (32) on the part of
the set G0 where partial preferences do occur. However, this is often not so,
since typically the approximations chosen depend only on x1 , x2 (Murdoch
and Stewart-Oaten, 1975; Holt, 1983; Fryxell and Lundberg, 1994) and not
on x3 as formula (32) suggests. In general, we may study the effect of
optimal foraging on the response function to prey 1 and prey 2. In classical
models of predator�prey interactions where predators are assumed to
attack both types of prey at random, the response to prey i is

ci xi

1+c1h1x1+c2 h2x2

, (33)

see Abrams (1990). The constants ci are called attack rates. The above
functional response is obtained from (7) if the probability that a predator
will attack prey type i upon an encouter is constant and ci= pi li . When
predators forage optimally, it turns out that the attack rate c1=l1 is con-
stant, since probability of attacking the more profitable prey type is one,
but c2 becomes a function of densities of both prey types and predators. If
the density of the first prey type x1 is below the threshold x1* given by (12),
then c2=l2 , and if x1>x1*, then c2=0. Thus in G1 and G2 the attack rate
c2 depends only on the density of the more profitable prey and the general
shape of the Holling second type functional response is kept. However, if
partial preferences appear, then due to (32) the attack rate c2 depends not
only on the densities of prey types but also on the density of the population
of predators. This leads to higher order interactions, see Werner (1992),
which alter the shape of the response function. Thus along G0 where partial
preferences do appear the response function (33) to prey 1 becomes

a1 e2(&e2+K1 l1(e1h2&e2h1))
K1*2

1x3(e1h2&e2h1)2 ,

and the response function to prey 2 is

a1e1 h2(e2+(e2 h1&e1h2) K1 l1)+x3K1 l 2
1(e2 h1&e1 h2)2

h2K1 l 2
1x3(e1h2&e2h1)2

The above response functions are not of Holling second type. The effect of
various aspects of the optimal foraging on the shape of the response func-
tion was studied in Abrams (1982, 1984, 1990), where it was argued that
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optimal foraging changes the shape of the Holling second type response
function. The results contained in the present paper support this idea. The
approach used by Abrams is based on maximization of a fitness function
with respect to attack rates. However, we saw that in the case when fitness
function is given by the instantaneous growth rate, the point at which fit-
ness function is maximized may not be uniquely determined. This nonuni-
queness occurs when x1=x1*. Nevertheless, the present approach still
allows to derive the shape of the response function.

The above-presented model is, of course, an idealization of real systems.
First, working with average predators we neglect variance between
individuals. Second, we assumed that the system is at each instant in an
optimal state, i.e., there was no delay in decision of predators which would
appear necessarily in real systems.

APPENDIX A: Derivation of Dynamics (3)

Let us consider a predator during a given time T units of time. We
denote by Ts the searching time and by Th the handling time. We have T=
Ts+Th . Since

Th=h1*1 p1Ts+h2*2 p2Ts

it follows that

Ts=
T

1+h1*1 p1+h2*2 p2

. (34)

Thus

x1(t+T)&x1(t)=x1(t) g1(x1(t), x2(t))T&*1 p1(t) x3(t)Ts

x2(t+T)&x2(t)=x2(t) g2(x1(t), x2(t))T&*2 p2(t) x3(t)Ts

x3(t+T)&x3(t)=e1*1 p1(t) x3(t)Ts+e2 *2 p2(t) x3(t)Ts&mx3(t)T.

Using (34), dividing by T, and taking the limit for T � 0 gives system (3).

APPENDIX B: Derivation of Optimal Strategy

Deriving function R we get

�R
�p1

=
l1 x1(e1+p2 l2x2(e1h2&e2h1))

(1+p1 l1x1 h1+p2 l2x2h2)2 ,
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and

�R
�p2

=
l2 x2(e2&p1 l1x1(e1h2&e2h1))

(1+p1 l1x1 h1+p2 l2x2h2)2 .

Thus we see that the sign of �R��p1 does not depend on p2 and similarly
for �R��p2. We assume that e1 �h1>e2 �h2 , and thus e1 h2&e2 h1>0. Since
p2 is always nonnegative, we see that for all p1 , p2

�R
�p1

>0.

Thus R is maximized for p1=1 and, consequently, the predator will always
forage on the first prey. Similarly, �R��p2>0 if

p1<
e2

l1 x1(e1h2&e2 h1)
.

Since p1=1, this means that p2=1 if

x1<
e2

l1(e1 h2&e2 h1)

and p2=0 if

x1>
e2

l1(e1 h2&e2 h1)
.

If

x1=
e2

l1(e1 h2&e2 h1)
,

then �R��p2=0 and p2 cannot be determined. Thus p2 as a function of x1

is a step function.

APPENDIX C: Existence and Uniqueness of Solutions of (13)

Let n=(1, 0, 0) denote the normal vector to G0, oriented from G1

toward G2. Denoting by f1(x1 , x2 , x3) the right-hand side of (14) and by
f2(x1 , x2 , x3) the right-hand side of (15) we get

(n, f1(x1*, x2 , x3)) =(n, f2(x1*, x2 , x3))

+
l1 l2h2x1*x2x3

(1+l1h1x1*+l2h2x2)(1+l1 h1x1*)
.
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Since e1h2>e2h1 it follows x1*>0 and either

(n, f2)�0

and consequently (n, f1) >0 or

(n, f2)<0.

We see that either (n, f1) >0 or (n, f2)<0. Let f denote the right-hand
side of (13). Then for every p2 # S(x1 , x2),

d
dp2

(n, f (x)) =
l1 l2h2 x1x2 x3

(1+h1 l1x1+h2 l2 p2x2)2{0.

These are the conditions that ensure existence and uniqueness of trajec-
tories of (13), see Theorem 3, p. 113 in Filippov (1988).

APPENDIX D: Stability Analysis of E1

The eigenvalues for E1 are

*1=
a2 m

l2(m(h1 K1+h2 K2)&e1 K1&e2 K2)

*2=
a2 B&- (a2B)2+4a2 AC

2A

*3=
a2 B+- (a2B)2+4a2 AC

2A
,

where

A=l2(e1 K1+e2 K2)(e1K1+e2K2&mh1 K1&mh2 K2)

B=&m((e1K1+e2K2)(1&h1K1 l2&h2K2 l2)

+m(h1K1+h2K2)(1+h1K1 l2+h2 K2 l2))

C=m(&e1K1 l2&e2 K2 l2+m+h1 K1 l2m+h2 K2 l2m)

_(e1K1+e2K2&mh1 K1&mh2K2).

Equilibrium E 1 is locally asymptotically stable if all real parts of its eigen-
values are negative. Thus *1<0 if

m<
e1K1+e2K2

h1K1+h2K2

. (35)
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Let us assume that (a2B)2+4a2AC<0, i.e., *2 , *3 are complex conjugates.
This happens if

a2<&
4AC
B2 . (36)

Since we assume a2>0 the above condition can be satisfied only if AC<0,
i.e.,

m<
e1K1 l2+e2K2 l2

1+h1K1 l2+h2 K2 l2

.

Due to (35), A>0, and thus B�(2A)<0 if B<0, i.e.,

m>
(e1K1+e2K2)(h1K1 l2+h2 K2 l2&1)
(h1 K1+h2K2)(h1K1 l2+h2K2 l2+1)

.

Since

e1K1+e2K2

h1 K1+h2K2

>
e1K1 l2+e2 K2 l2

1+h1K1 l2+h2K2 l2

and

e1K1 l2+e2 K2 l2

1+h1K1 l2+h2K2 l2

>
(e1K1+e2K2)(h1K1 l2+h2 K2 l2&1)
(h1 K1+h2K2)(h1K1 l2+h2K2 l2+1)

,

we get that if

(h1K1 l2+h2 K2 l2&1)(e1K1+e2K2)
(h1K1 l2+h2 K2 l2+1)(h1K1+h2K2)

<m<
e1K1 l2+e2 K2 l2

1+h1K1 l2+h2K2 l2

(37)

and (36) holds then the real parts of eigenvalues are negative.
Now let us consider the case when (a2B)2+4a2 AC�0. This happens if

a2�&
4AC
B2 . (38)

Under the condition (35), *3�*2 . Then *3<0 if

a2 B+- (a2B)2+4a2 AC<0.

This may happen if B<0 and AC<0. It follows that all eigenvalues are
negative if (38) together with (37) is satisfied. Thus for all a2>0 we get
that E 1 is locally stable if (37) holds.
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The eigenvalues corresponding to equilibrium (K1 , K2 , 0) of (19) are

{&a1 , &a2 ,
e1 K1 l2+e2 K2 l2&m(1+h1 K1 l2+h2K2 l2)

1+h1 K1 l2+h2 K2 l2 = .

This equilibrium is locally stable if

m>
e1K1 l2+e2K2 l2

1+h1K1 l2+h2 K2 l2

.

APPENDIX E: Stability of E1
When E 2

Is Unstable

We prove that if E 2 is unstable for (31) and there exists a limit cycle
around E 2, then E 1 cannot be stable for (19) if it belongs to G1. The
existence of a limit cycle for (31) is equivalent to (23) and the local stability
of E 1 # G1 is equivalent to (21). Since E 1 # G1, it follows from (21) and (27)

(e1K1+e2K2)(h1K1 l2+h2K2 l2&1)
(h1K1+h2K2)(h1K1 l2+h2 K2 l2+1)

<
e2

h2

,

which is equivalent to

l2<
e2 h1K1+e1h2 K1+2e2 h2 K2

K1(e1h2&e2 h1)(h1 K1+h2 K2)
. (39)

From (23) and (21) we get

(e1K1+e2K2)(h1K1 l2+h2K2 l2&1)
(h1K1+h2K2)(h1K1 l2+h2 K2 l2+1)

<
e1(K1 h1 l2&1)
h1(K1 l2h1+1)

.

Since we assume l2>0 this gives

l2>
D+- 4h1 K1(e1 h2&e2 h1)2 (h1K1+h2K2)+D2

2h1K1(e1 h2&e2 h1)(h1 K1+h2K2)
, (40)

where

D=2e1h1 h2K1+e1 h2
2K2+e2 h1h2K2 .

After some algebra we get that (39), (40) cannot hold simultaneously and
E1 cannot be stable.
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