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Abstract

Differential equations have been used in population biology to
describe dynamics of interacting populations since the pioneering
work.of Lotka and Volterra. However, most of the work on popula-
tion dynamics does not take into consideration individual decisions
of animals. In behavioral ecology it was shown that animals often
behave in such a way which maximizes certain criterion like energy
or nutrient intake. Typically, this criterion is related to reproduction
of animals, thus to fitness. We show how the theory of optimal forag-
ing may be included into models of population dynamics. Typically,
this leads to discontinuous differential equations, or more generally,
to differential inclusions. We will discuss a few biologically relevant
examples together with the underlying mathematics.

1This work was supported by the Academy of Sciences of the Czech Republic (Grant
No. 107101).
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1 Introduction

Since the times of Lotka and Volterra, interactions among populations and
evolution of ecological systems have been modelled by differential or differ-
ence equations. Typically, these models do not consider the individual de-
cisions of animals which influence the population dynamics. Several exper-
imental studies in behavioral ecology show that animals can make decisions
with respect to their activities. For predators typical activity is foraging
while for parasitoids it is laying eggs. Let us consider a predator which
meets various types of prey. Upon an encounter with a prey, the predator
has to decide whether to attack the prey or not. If the predator decides to
attack then this increases the energy reserves of the predator proWided the
attack is successful, but the predator by attacking and handling the prey
loses some time which could be used for searching for another, possibly
more profitable type of prey. Thus for a predator there is a trade-off: to
attack the prey upon an encounter or io:search for possibly more profitable
prey? This sort of reasoning leads to the optimal foraging theory, which is
concerned with the composition of the diet of a predator, for a review see
[24]. Optimal foraging theory is based on the assumption that the preda-
tors are maximizing the net rate of energy intake which leads in the case
of two types of prey to maximization of

E

R= mim )

where T stands for the total time spent by searching, T denotes the total
time spent by handling and E is the net amount of energy gained in the
total time T' = T, +T)}, by a single predator. By u; we denote the probability
that a predator will attack prey type ¢ upon an encounter, z; is the density
of prey type i, A;z; is the encounter rate of a predator with the i—th type
of prey when searching, e; is the expected net energy gained from the i—th
type of prey and h; is the expected handling time spent with the i—th type
of prey. Then

Ty = bz Ts + hodozous Ty . (2)

and e , : .
E = (u1d1z161 + u2haz2e2)T.

The optimality criterion (1) becomes

uyAie1z) + ugAze2x2 3)
1 + U1A1h12:1 + u2/\2h222 ’

R(U1 , ‘UQ) =
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The derivation of (3) is based on Holling disc equation, see [13,24]. Based on
maximization ‘of (3) composition of the diet of a predator which depends
on the ranking of different types of prey according to the ratios e;/h; is
obtained. The main result of the optimal foraging theory which considers
the densities of populations of prey to be fixed states that predators will
always forage on the most profitable type of prey, i. e. the prey type with
the highest ratio e;/h;. The other type of prey will be included into the
diet of a predator only if the value of R will not decrease by doing so. Thus
assuming that the first type of prey is more profitable than the second one,
u1 = 1 and u; is either zero or one depending on the parameters involved.
This basic model goes back to Charnov and many others who elaborated
it including some other phenomena that may influence the decision of the
predator. We refer to [22,24] for more detailed information and extensive
reference list.

A similar problem is the choice of the food patch by a predator. As-
sume that food is distributed in patches and predators are moving freely
between these patches. Then the predator has to choose how long to stay
in a particular patch. Assuming that predators are free to settle in any
patch, travel time between patches is negligible, predators are omniscien-
t and resource densities in patches remain constant in time lead to ideal
free distribution [9,14] which describes the equilibrium distribution of the
population of predators between the habitat patches. Assuming that each
consumer tries to settle in the patch where its rate of food intake is maxi-
mized, this model predicts that at equilibrium, predators in all patches will
experience the same rate of the food intake.

There is experimental evidence that in some cases animals behave ap-
proximately according to optimality criteria mentioned above. However,
what optimality exactly means may depend on the currency through which
optimality is expressed. In the theory of optimal foraging the word opti-
mal may mean maximum nutrient, energy, food etc. acquisition per unit
of time, for host-parasite systems it may mean the number of eggs laid
per unit time. Quite often a simple currency like energy or nutrient is not
enough to describe optimality, since it may happen that the optimal choice
may be also the most dangerous for the animal. For example, the patch
where energy acquisition is high may also be more dangerous to the preda-
tors than other patches. Thus there may be a trade-off between energy or
nutrient intake and mortality rate, i. e: survival. This leads to a necessity
for a more general notion of optimality which is achieved through fitness
defined as the instantaneous rate of increase of the number of genotype
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copies of the individual [23]. The evolutionary biology treats fitness as the
most general criterion which evolution maximizes. Having defined the op-
timality criterion we may compute the optimal straiegy of an individual by
maximizing this criterion over the set of all possible strategies. We note
that often the strategies are defined via probabilities, like in the above ex-
amples (probability of attacking a prey, probability of staying in a patch),
thus 0 < u; < 1. ,

Up to now we were considering the behavior of a single average indi-
vidual. In order to describe the population dynamics we have to define
the dynamics of the densities of populations. We will consider a system
consisting of two populations of prey and one population of predators. The
densities of these populations are denoted by z1, 2, z3. Then we have

1t +T) = z1(2) z1(8)g1(z1(t), z2(t))T — Ayzy (t)uy(t)za(t)Ts

zo(t + T') — za(t) z(t)g2(z1(2), 22(1))T — Agza(t)ua(t)zs(t)T,

z3(t+T)—z3(t) = erhizt)uy(t)zs(t)T, + eadoza(t)us(t)za(t)T, —
mz3(t)T.

From (2) we get

T 1+ kA zus + Aazauz

and by taking T' — 0 we get the following system of differential equations
which describe the population dynamics:

S

u1A1z1 z3

31.‘11(931,1‘2) -

T =
! 14+ uihidizy + ughadazs
; UgdoZaZ3
Ty = Tagy(zy, To) — v 4
2 292(21, 2) T+ urhidizy +ughadoz, @
e1A T A
i U1€1A1 T1T3 + UgeaA2ZaT3 Vg

L4+ urhid1z1 + ushodoz,

The functions g; are growth rate functions for populations of prey. Accord-
ing to the definition, the fitness function is given by the per capita growth
rate of a predator, i. e.’

u1e1A1T1 + Ugea A2 o
14+ urhi Mz 4+ ughadszy

— m — max, (5)

see [18]. Following the optimal foraging theory we have to maximize (5)
over all possible strategies, i. e. over all u;,us. We note that due to the
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fact that the mortality rate m is independent from the foraging behavior
of predators, maximization of (5) is equivalent to maximization of energy
intake.

Similarly, we may derive a system of equations describing the dynamics
of the patch model which gives

2 = ry(e)— T8
14+ hiAzy
/\21.‘2112
, g — ———————
Ty = ryz) 1+h2,\2221‘3 (6)
Ty = soahE —my | uizz + L L —mga | usz
3 T 14+ bz, ' 13 14+ hodoz, 2 273

see [6,17,19]. Here we assume that the mortalities of predators in patches
may be different. The optimality criterion to maximize is

e1 12y ZUVED
(1 R ml) uy + (1 e mg) u2 — max. )
Now we want to define the set of all possible strategies of a predator. In

the case when predators decide whether to feed on a prey upon an encounter
or not the set of possible strategies is given by

U1={(u1,u2)]05u151, 05"231} . (8)

Here u; = 1 means that upon an encounter with prey type ¢ the predator
will always attack this prey type while u; = 0 means that predator will not
attack the prey upon an encounter. In the case of patch selection the set
of all possible controls is smaller

Ur={(u1,u2) |0 Suy <1, 0<us <1, ug +up =1}, (9)

since now u;, ¢ = 1,2 is the probability that a predator will stay in patch
i and these two events are mutually exclusive. In order to get optimal
strategy we have to maximize (5) or (7) either over U; or Us. The set of
all controls which maximize the optimality criterion is called the optimal
strategy map, since it depend on the state of the system z = (21,29, 23).
Namely, if we denote by S;(z) the set of those controls which maximize (5)
over U; and S3() the set of those controls which maximize (7) over U; we
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get that

( : oo SRS
(1,1) if ;< M(erhs — ezhy)
. . 82 ‘
Sl(x) = ﬁ (110) if 212 A1(61h2 - 62’11) (10)
. €2
< =TTy
| (bwa), 0wz <1 if o= ey

Thus there is a critical density of z; given by
. e
s — 11

1= Nilerhs — eahy) (3
such that if z; > z] then each predator will forage exclusively on prey
type 1, while if z; < z}] then prey type 2 will be included into the diet of
predators. If z; = z} then the optimal control is not uniquely given, 1. e
ug € [0,1]. We set

M; = {z € R®| z; = z}}.

In the case of the patch selection the strategy map is

ezd2z

( .
1,0 f >
( ) it e1d; + /\1/\21‘2(61’12 — ezhy)

- i ezAaT2
Sa(z) = ¢ (0,1) if 1< ey + A haza(esh — eah) (12)
€2A2Z

(u,1—w) if 2= e1d + A1A2:'72(‘311h.2 —ezh1)’

We set

e2X2Z2

My={zeR3|z; = .
2={ =1 61/\1+31/\2$2(61h2—62h1)}

We see that for both optimal foraging and patch selection the strategy
map S; is set-valued along a manifold M; of a lower dimension. According
to the assumption on optimal behavior of animals only those controls which
satisfy SHIL AT

u € Si(z), 1=1,2 (13)
are employed by predators. Thus it is not immediately clear whether solu-

tions of (4) and (6) which obey (13) do exists and whether they are unique,
since the control depends on the state of the system.
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One of the reasons why it is important to include individual behavior
in models of population dynamics is to study the effect of the individual
behavior on the dynamical properties of the system. Namely, we may be
interested in questions like: Does optimal behavior stabilize predalor-prey
dynamics or Does optimal behavior promote the permanence of predator-
prey systems, (for permanence see [12]). In population biology mechanisms
based on the density dependence have been thoroughly studied with re-
spect to stability of systems. However, we may ask if individual behavior
of animals itself may lead to stabilization (or permanence) of otherwise un-
stable systems. In [11] it was shown that strong aggregation of predators
in more profitable patches may have stabilizing effect on Nicholson-Bailey
model, which is otherwise unstable.

The influence of individual behavior on population dynamics was not
studied systematically until recently. This is mainly due to the fact that
straightforward extension of standard models of static optimal foraging the-
ory like above examples show lead on population level to models which are
not described by a differential equations with continuous right hand-side.
Typically, the optimality criterion leads to controls which are not uniquely
defined, thus on population level to differential inclusions. Some attempts
have been made to approximate the step function which appears in the re-
sulting differential inclusion by a continuous approximation, see [10] but the
resulting systems are often so complex that non-trivial analysis is impossi-
ble. On the other hand the theory of differential inclusions and set-valued
maps [1,2,7,8] allows to treat effectively models based on differential inclu-
sions. In this review we want to show how these techniques may be applied
in theoretical population biology to models which include individual de-
cisions. We will be mainly concerned with the two previously mentioned
examples, which are probably the most typical ones. However, several oth-
er examples in the context of host-parasitoid systems may be given, see
[20]. This review is based on the work given in [4,6,15,16,17,18,19).

We want to mention that there exists another approach to model op-
timal decisions of animals which is based on the dynamic programming
approach, for a review see [22]. This approach is more complex than the
original Charnov model, since it allows to describe short term (daily) be-
havior of animals, which is based on the animal’s bodily energy reserves.
This model does not work with average animals like the above mentioned
model of Charnov, but the behavior of animals within a population may
differ in dependence on the current state of the animal.
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2 Existence and Uniqueness of Solutions

In this part we want to review some basic mathematical results concerning
the existence and uniqueness of solutions of differential equations which are
applied in the models of population biology already mentioned. In gener-
al, the dynamics of interacting populations is described by a differential

equation
'(t) = f(=(t), u(t)) (14)

where u is the control from a given set U of admissible controls. Together
with (14) there is a set-valued map S which associates to any z a subset
S(z) of U. We will assume that the map S is set-valued only along a
manifold M of a lower dimension, since this is always so in the above
mentioned applications. Thus we have together with (14)

u(t) € S(z(t)). (15)

Solutions of (14), (15) are couples (z(t), u(t)) where z is an absolutely con- -
tinuous function which satisfies (14) almost everywhere and u is a measur-
able function which satisfies (15) everywhere, see [2,7,8]. The above system
may be seen either as a differential inclusion or, equivalently, as a Filip-
pov solution of a differential equation with discontinuous right-hand side,
see [8]. Indeed, the above system is equivalent to the following differential
inclusion

z' € F(z):= f(z,S(z)), (16)

see [2]. Since S is single-valued with the exception of points belonging to
the set M which has lower dimension, (14) is a single-valued differential
equation at points which do not belong to the set M. The right-hand side of
(14) cannot be continuously defined at points of M, thus we may consider
(14) as a differential equation with a discontimuous right-hand side. The
Filippov solution of such an equation is then defined as a solution of (16),
see [8]. Since we are dealing with differential inclusion (16) we have to
ask under which conditions solutions exist. We give here two results which
apply in several cases of practical interest.

Proposition 1 ([6]) Let f : R® x U — R" be a continuous map which is
linear in u. If the strategy map S has closed graph and non empty convez
values, then for any initial condition (t,,z,) there ezist a (strictly) positive
T, an absolutely continuous z : [t,,t,+7T] — R" and a bounded measurable
u: [ty to +T) — U that satisfy (14),(15). '
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This result may be applied to get existence of solutions of (6), but it
does not apply to (4), since controls do not enter the dynamics described
by (4) linearly. Below we give another result which may be applied also to
(4).

In several cases solutions of (16) will be uniquely given despite the non-
uniqueness in the right handside. In general, right uniqueness follows from
one-sided Lipschitz condition, namely

(i = fas21 —22) S oy — 2], forevery fi € F(z;), i=1,2,

where L is a Lipschitz constant and (-,-) stands for the scalar product in
R", see [8]. This condition may not be easy to verify, but if we assume
that M splits R"™ into two parts that we denote by G; and Gy, like in the
above examples then right uniqueness follows from Proposition 2 below.
We denote by u; the unique value of the control u in G;. Let fi(z) denote
the unique value of (14) for z € G, and similarly for f2(z). For z such that
z € M, fi(x) denotes the limit of f; at the point z from the region G; and
similarly for f,. By n(z) we denote the normal to M at z oriented from
G, towards G;.

Proposition 2 ([6]) Let M be a C? manifold, and the vector filt,z) —
Jo(t,z) be in C'. If for each point z € M at least one of the inequalities
(n(z), f2(z)) > 0 or (n(z), fi(z)) < 0 is fulfilled, then right unigueness for
(14) holds.

If £ is not linear in u the existence and uniqueness of solutions of (14)
may still be proved. For z € M we assume that S(z) is an interval with
the endpoints u;.

Proposition 3 ([6],[8]) Let M be a C? manifold, and moreover

= w 1
f? au;ulec

and

Q(ﬁi%i))_ # 0 for all u € S(z).

If for each t € Ry at each point z € M at least one of the inequalities

(n(z), f2(t,2)) > 0 or (n(z), fi(t,z)) < 0 is fulfilled, then for each wnitial
condition there exists a unique solution of (16).
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Since Proposition 3 does not require the map f(x,u) to be linear in u it
may be applied to (4). Thus using the above Propositions we get that for
any initial condition there exists an unique solution of (4) and (6) which
satisfy u; € S;(z), see [6,18].

Qualitative analysis of differential equations with discontinuous right
handside or differential inclusions is more difficult than the analysis of
continuous differential equations. However, methods based on Lyapunov
functions are still applicable to detect w—limit sets, see [2,8]. This method
proved to be useful in the case when the handling times equal zero, since
this lead to discontinuous differential equations of Lotka-Volterra type for
which Lyapunov function may be constructed, see [3,4].

For differential inclusions or differential equations with discontinuous
right handside numerical approaches which are based on classical Euler
or Runge-Kutta methods may not give satisfactory results since they lead
typically to rapid oscillations. Thus, it is necessary to take very small step
size in order to get a reasonable approximation of the exact solution. For
systems like (4), (6) methods for numerical solutions of differential-algebraic
equations may be used, see [15,21].

3 Qualitative Analysis along the Disconti-
nuity Manifold

In this part we will assume that M splits R" into two parts which are
denoted by G1 and Gs. This is the case of both examples'given in the In-
troduction. In G; the dynamics is described by a differential equation with
a smooth right handside. Thus methods of local analysis for differential
equations with smooth right handsides do apply in G;. We have to study
the behavior of trajectories when they fall on the discontinuity manifold
M. This behavior is given by projections of vector fields f1 and f, on the
normal vector n to M. We have to distinguish four possible cases :

(i) (n, fi) <0, (n,f2) > 0 which means that trajectories of (16) will stay
in M

(ii) (n, f1) >0, (n, f2) > 0 which means that trajectories of (16) will pass
through M in direction from G2 to G!

(iii) (n, 1) < 0, {(n, fo) < 0 which means that trajectories of (16) will
pass through M in direction from G! to G2
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(iv) (n,f1i) >0, (n,f2) < 0 which means that trajectories of (16) which
start on M will move either to G! or to G2.

If the assumptions of Proposition 2 or 3 are fulfilled it follows that the
case (iv) cannot happen. Under the conditions (ii) and (iii) the control will
discontinuously change as the corresponding trajectory passes through M.
This corresponds to sudden change in the behavior of animals, which is
often called switching. Under the condition (i) a trajectory which hits M
stays there as long as (i) holds. Such behavior is called sliding regime in
the theory of discontinuous differential equations. If the system is in the
part of M where sliding regime holds we may derive uniquely values of the
control. For this let us assume that

M = {z € R" | h(z) = 0}.

Then the control which governs the dynamics in sliding regime can be
computed from the equation

(W (z), f(=z, u)) = 0. (17)

We will illustrate the above concepts on the model for patch selection
[6]. In order to simplify the analysis we will assume that the mortality
for predators in both patches are same (m; = my = m) and handling
times are zero (h; = hy = 0). Thus the dynamics of (6) is described by a
discontinuous differential equation of Lotka-Volterra type:

Ty = a1z1 — AzT1uiz3

ThH = asxy — AaZouss (18)
' .

T3 = €1 M\Z 1 U1Z3 + €3 AoToUsT3 — MITy

where the discontinuity plane M, is given by
Mz = {(z1, 22, 23) | esh1Z1 = e2)a22).

We assume a; > a3. Then the subset of M where sliding regime appears

is the set
— a

Al b
In M,, using (17) we may compute umquely the control which governs the
dynamics to be

M, = {(21,.1:2,::3) | z3 >

ay — ay + AaZ3

b (M + A2)zs
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x3

Figure 1: Solution of (18) with a; = 3.5, as=m=A=A=e =e =1

Thus in M, the dynamics is given by a Lotka-Volterra differential equation

zy = Az - Kzjz3
B :L'l2 = A.’L‘2 - 1{1‘21}3 (19)
i = (e1Aizy — m)zs
where
A= aidz + ax); _ Ao
oM+ )\2 ’ AL+ A

Moreover, using Lyapunov function [34] it can be proved that for any
initial condition the w—limit set is the largest Lotka-Volterra cycle of (19)
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which is in M, see Fig. 1. We note that the model described by (18) for
fixed u;,u3 (i. e. when predators move between patches randomly) is not
permanent since the weaker prey is eliminated from the system. However,
we see that the optimal behaviour of predators leads in this example to
permanence of the system, i. e. both prey types will survive indefinitely.

The dynamics of the model of optimal foraging (4) with the growth rate
functions given by

gi(z) = ai(1 — ,—)

was discussed in [18]. We note that this model cannot be simplified by
setting handling times to be zero, since by doing so we get that the optimal
strategy of a predator is to attack a prey upon each encounter which leads
to u; = uz = 1. In general, the behavior of (4) is quite complex. A partial
analysis for a; = ay, ), = Az shows that the effect of optimal foraging
on population dynamics is quite complex and may be either stabilizing or
destabilizing depending on values of parameters involved, see [18].

4 Discussion

In this review paper we wanted to show how powerful methods of the
theory of differential inclusions may be used to model the population dy-
namics which include the individual behavior of individuals. The described
approach may be used in a variety of examples that arise in theoretical pop-
ulation biology. The results based on the investigation of the appropriate
models may shed some light on the effect of individual behavior on the
dynamics of populations.
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