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H I G H L I G H T S

� Competition in many species in di- and tri-trophic food webs is studied.
� The top species have either fixed or adaptive preferences for their prey.
� It is shown that prey switching strongly promotes species coexistence.
� In food-web modules studied, prey switching leads to food-web dynamics that are similar to linear-food chains.
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a b s t r a c t

Competition in di- and tri-trophic food web modules with many competing species is studied. The food
web modules considered are apparent competition between n species sharing a single predator and a
diamond-like food web with a single resource, a single top predator and many competing middle species.
The predators have either fixed preferences for their prey, or they switch between available prey in a way
that maximizes their fitness. Dependence of these food web dynamics on environmental carrying
capacity and food web connectance is studied. The results predict that optimal flexible foraging strongly
weakens apparent competition and promotes species coexistence. Food web robustness (defined here as
the proportion of surviving species) does not decrease with increased connectance in these food-webs.
Moreover, it is shown that flexible prey switching leads to the same population equilibria as in
corresponding food webs with highly specialized predators. The results show that flexible foraging
behavior by predators can have very strong impact on species richness, as well as the response of
communities to changes in resource enrichment and food-web connectance when compared to the same
food-web topology with inflexible top predators. Several results on global stability using Lyapunov
functions are provided.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding coexistence of competing species on a limited
number of resources has been one of the most challenging tasks
for ecologists. The “competitive exclusion principle” states that
two complete competitors cannot coexist at an equilibrium when
feeding on a single resource (e.g., Gause, 1934; Hardin, 1960). More
generally, n competing species cannot coexist at a population
equilibrium if they are limited by less than n limiting factors
(Levin, 1970). How is it then possible that many species do survive
in nature? One such example is the large number of phyto-
plankton species surviving on just a few common resources.
This puzzling discrepancy between empirical observations and

theoretical predictions has been termed “the paradox of phyto-
plankton” (Hutchinson, 1961). Since that time, several possible
mechanisms explaining competing species coexistence were pro-
posed. Hutchinson (1961) proposed that species coexistence can
be achieved due to fluctuating environment that prevents popula-
tion densities to settle at an equilibrium and favors different
species at different times. Similarly, intrinsic oscillations in species
abundances can promote species coexistence (e.g., Armstrong and
McGehee, 1980; Huisman and Weissing, 1999). Predation is
another mechanism that can relax competition among competi-
tors. This was experimentally verified by Slobodkin (1964) with his
hydra experiments and on a larger spatial scale by Paine (1969)
who showed that removal of starfish Pisaster ochraceus resulted in
the competitive exclusion of most barnacle species on which the
starfish normally feeds. Thus, barnacle co-existence was facilitated
by the common predator.

As specialized predators act as limiting factors, it is not
surprising that in food-webs where each competitor is limited
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by its own predator, coexistence is possible. The question is when
a single predator species can enhance survival of several compet-
ing species. Leibold (1996) and Holt et al. (1994) showed that two
competing species can coexist in a diamond-like food web where
they both compete for a common resource and are consumed by a
common generalist predator. These predictions do not violate the
competitive exclusion principle because in the diamond-like food
web with two competing middle species there are exactly two
limiting factors: the common resource and the predator. However,
Křivan (2003) showed that even with two competitors coexistence
is limited to a narrow range of demographic parameters. The
situation dramatically changed when top predators were flexible
foragers with foraging preferences that maximized their fitness. In
this case, the set of parameters for which the two species
coexisted was much larger when compared to the same system
with fixed predator preferences. Similar results were obtained by
several authors who studied two-consumer–one-predator food
webs with optimally foraging predators (e.g., Abrams, 1982; Holt,
1983; Fryxell and Lundberg, 1993, 1994; Holt et al., 1994; Křivan,
1996, 1997; Fryxell and Lundberg, 1997; Abrams, 2010). These
works focused mostly on simple food-web modules (sensu Holt,
1997) such as exploitative or apparent competition (Holt, 1977,
1984) between consumers. While analyses of these modules are
instrumental in our understanding of basic mechanisms of species
coexistence, it is much more difficult to extrapolate these results
to complex food-webs.

One of the fundamental questions of ecology asks how diver-
sity relates to species coexistence. A general early belief was that
higher diversity creates greater opportunities for negative regula-
tory feedbacks in food webs which, in turn, enhance species
coexistence and stability (Odum, 1971). The assumption that
complexity begets stability was challenged by May (1972) (see
also Gardner and Ashby, 1970) who showed that for randomly
assembled food webs with fixed interaction strength between
species, there is a sharp transition from stability to instability
when complexity measured as the food-web connectance (i.e., the

number of realized links in the food web divided by the number of
all possible links) exceeds a critical threshold. It was also shown
that robustness (defined as the proportion of surviving species)
decreases with increasing connectance (e.g., Brose et al., 2003;
Berec et al., 2010). May's work was challenged by Kondoh (2003)
who showed that when predators are flexible foragers (i.e., when
interaction strength adaptively changes with changes in popula-
tion densities), complexity can enhance community persistence.
However, some subsequent works revealed that this prediction
depends on other factors such as population dynamics (Brose
et al., 2003), food web topology (Brose et al., 2003; Kondoh, 2006;
Garcia-Domingo and Saldaña, 2007; Uchida and Drossel, 2007),
and details of foraging behavior (Berec et al., 2010).

In this article I will focus on four food web modules (Fig. 1)
with a fixed topology and many species. The deterministic food
webs considered in this article are more complex when compared
with simple food-web modules consisting of a few (usually 2–4)
species, but they are simpler when compared with stochastic food
webs generated e.g. by the cascade or niche model (Williams and
Martinez, 2000). Such an intermediate level of complexity can
allow one to discern ties to preexisting ecological theory more
cleanly than is often the case with models dealing with stochastic
complex food webs. In particular, I will study apparent competi-
tion (Fig. 1A) and combined apparent and exploitative competition
(Fig. 1C) among many species when top predators are generalists. I
will also compare these food webs with similar food-web modules
with highly specialized top predators (Fig. 1B and D). For generalist
predators I consider two possibilities: either predators have fixed
foraging preferences for their prey (called non-flexible predators),
or they switch between available prey in a way that maximizes
their fitness (called flexible predators). Dependence of the number
of surviving species and the mean population abundances on the
mean environmental carrying capacity and food web connectance
is studied. I will show that population dynamics in the two food
webs with a single flexible top predator (Fig. 1, panels A and C) are
very similar to population dynamics with specialized predators

Fig. 1. Top panels show di-trophic food webs where predators are either generalists (A) or specialists (B). Bottom panels (C and D) show the corresponding tri-trophic
food webs.
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(Fig. 1, panels B and D). The situation is strikingly different for
inflexible generalist predators.

2. Di-trophic food webs

In this section I will study a di-trophic food web consisting of
several resources (x1;…; xn) and their common generalist consu-
mer (y, Fig. 1A). Such a food web can model mobile consumers
feeding on patchily distributed immobile resources. Corresponding
population dynamics can be conceptualized by the Lotka–Volterra
model of apparent competition (Holt, 1977, 1984):

dxi
dt

¼ rixi 1� xi
Ki

� �
�λiuixiy; i¼ 1;…;n

dy
dt

¼ y ∑
n

i ¼ 1
uiðeiλixi�miÞ; ð1Þ

where 0ruir1 describes consumer preference for the i-th
resource. In particular, ui can be interpreted as a fraction of time
an average consumer spends by foraging on the i-th resource type.
Resources grow logistically with the per capita population growth
rate ri and environmental carrying capacity Ki. Parameter λi stands
for the consumer specific search rate for resource i, ei is the
efficiency rate with which resources are converted to new con-
sumers, and mi is the consumer mortality rate.

2.1. Non-flexible consumers

I start with an assumption that consumer preferences for
resources (ui) are fixed and independent of prey population
densities. In other words this means that the interaction strength
is fixed, which is the usual assumption in predator–prey models.
Under these assumptions model (1) was analyzed in detail by Holt
(1984). The interior equilibrium of model (1) is

xni ¼
Ki

ri
ðri�λiuiynÞ; i¼ 1;…;n

yn ¼∑n
i ¼ 1uiðeiλiKi�miÞ

∑n
i ¼ 1

eiKiλ
2
i u

2
i

ri

: ð2Þ

Appendix A shows that interior equilibrium (2) is globally asymp-
totically stable, whenever it exists (i.e., whenever all population
densities are positive). However, the equilibrium can exists only
for intermediate environmental carrying capacities. When K's are
too small (i.e., for each i¼ 1;…;n, Kiomi=ðeiλiÞ) consumers will
not survive in the system because of scarcity of resources. When
K's are too large, consumers will be too abundant and due to
strong apparent competition (Holt, 1977, 1984; Bonsall and
Hassell, 1997; Abrams et al., 1998; Abrams, 1998) some resources
will be outcompeted. This is documented in Fig. 2, left panels. As
the mean environmental productivity K increases, both the
resource (Fig. 2B) and consumer (Fig. 2C) abundance increase,
causing the number of coexisting resources (i.e., robustness) to
decrease (Fig. 2A). As the mean environmental capacity increases
to infinity (i.e., when resource growth rate is density independent
and resources grow exponentially), at most one resource can
survive due to the principle of competitive exclusion (Gause,
1934; Levin, 1970). Dependence of robustness on food web
connectance (calculated as n=ðnþ1Þ2 for the food web topology
shown in Fig. 1A) is shown in Figure 2D. Here robustness increases
with increasing connectance. Because connectance is inversely
proportional to the initial number of species in the food web, this
also shows that robustness decreases with increasing number of
resources in the food web. Details of simulations are given in
Appendix B.

Model (1), in common with most of the traditional population
models, assumes fixed predators' foraging preferences (ui), i.e.,
fixed interaction strength. However, many foragers adjust their
feeding preferences according to the frequency of prey types in the
environment (e.g., Murdoch, 1969; Oaten and Murdoch, 1975;
Stephens and Krebs, 1986). In the next section I will consider
model (1) with resource switching.

2.2. Flexible consumers

Predator foraging behavior under which an increase in the
proportion of a particular prey in predator's diet increases with
increased prey proportion in the environment faster than linearly
is called switching (Oaten and Murdoch, 1975). Resource switching
leads to flexible foraging where generalist consumers allocate
more effort to those prey that provide them with a higher fitness
(measured here as the per capita predator population growth rate
eiλixi�mi). I start analysis of model (1) with prey switching by
assuming that consumers adjust their feeding preferences instan-
taneously to current population densities. In other words, switch-
ing is very fast when compared to population dynamics, and
consumers feed on the most profitable resource(s) at the current
population densities. In particular, at each population densities,
feeding on any resource included in consumers diet must provide
the consumer with the same fitness. Such distribution of foraging
activities corresponds to the Ideal Free Distribution (Fretwell and
Lucas, 1969). Under the IFD, for every resource i currently in
consumers diet

eiλixiðtÞ�mi ¼ cðtÞZejλjxjðtÞ�mj

for any other resource j not included in the diet. Thus, at the
population equilibrium, feeding on any resource included in
predator's diet provides zero fitness (i.e., eiλixi�mi ¼ 0) while
feeding on resources not included in the diet provides a non-
positive fitness (i.e., the resources not included in consumers' diet
are at their environmental carrying capacities and ejλjKj�mjr0).
In other words, all resources that can maintain a positive con-
sumer population density (i.e., those which satisfy Ki4mi=ðeiλiÞ)
will be included in consumers' diet at the population equilibrium
(Holt, 1984). Appendix C shows that the interior equilibrium of
model (1) with resource switching

xni ¼
mi

eiλi
; i¼ 1;…;n;

yn ¼ ∑
n

i ¼ 1

ri
λi

1� mi

eiλiKi

� �
;

un

i ¼
ri
λiyn

1�xni
Ki

� �
; i¼ 1;…;n ð3Þ

is globally asymptotically stable.
Resource switching, as modeled above, assumes omniscient

consumers that track resource densities and instantaneously
switch to the resource that provides maximum fitness. This leads
to a step-like switching when the i-th resource is included in
consumer diet (ui¼1) if eiλixi�miZejλjxj�mj for all other
resources j and is instantaneously excluded from the diet (ui¼0)
if eiλixi�mioejλjxj�mj for some consumer j. Such instantaneous
switching, while instrumental for mathematical analysis of the
model, is unrealistic for non-omniscient consumers. For numerical
simulations I use a more realistic, sigmoidal approximation of the
switching function:

ui ¼
eμðeiλixi �miÞ

eμðe1λ1x1 �m1Þ þ⋯þeμðenλnxn �mnÞ ð4Þ

where parameter μZ0 models the accuracy of switching (Fryxell
and Lundberg, 1993). When μ¼ 0 predators do not switch and
they equally prefer all competitors (ui ¼ 1=n). When μ40
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consumers feed on resources disproportionally to their relative
profitability. At large values of μ, consumers become very selective
and they feed on the most profitable resource only (i.e., on the
resource that provides them with the highest fitness eiλixi�mi).
Thus, as μ increases, (4) converges to the instantaneous step-like
resource switching.

Fig. 2 (middle column) shows results of numerical simulations
of model (1) with switching function (4) and switching precision
μ¼ 10. Fig. 2E shows that robustness is independent of the mean
environmental carrying capacity and maximal. This is in agree-
ment with the fact that habitat partitioning relaxes apparent

competition as predicted by Holt (1984). The mean resource and
consumer abundance as functions of the mean environmental
carrying capacity are shown in panels F and G, respectively. Fig. 2H
just documents that because robustness is maximal, it is indepen-
dent of food web connectance.

Fig. 3A shows that robustness increases with precision of
switching (μ). Thus, all initially present species (50 resources
and 1 consumer) survive in the food web when switching preci-
sion is high enough. Panels B and C also show that switching
slightly reduces mean resource and consumer densities when
compared with non-selective consumers (i.e., when μ¼ 0).

Fig. 2. Simulations of di-trophic food-webs. The left panels show results for the food web with non-flexible generalist predators (model 1, Fig. 1A) and uniform predator
preferences for resources (ui ¼ 1=n), the middle panels show results for flexible generalist predators (μ¼ 10 in (4)), and the right panels for the food web shown in Fig. 1B for
specialized predators modeled by (5). Panels show mean values over 10 simulations. The whiskers denote7standard errors. Panels in the first three rows show in sequel
robustness, mean resource density, and mean consumer density as a function of the mean environmental carrying capacity. Panels in the bottom row show dependence of
food-web robustness on food web connectance at the mean environmental carrying capacity K ¼ 50. Parameters were generated at random from the normal distribution
Nðν; sÞ with mean ν and standard deviation s: r ¼Nð2;0:4Þ, λ¼Nð0:1;0:02Þ, e¼Nð0:5;0:1Þ, m¼Nð0:2;0:04Þ, and K ¼NðK ;0:2K Þ.
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It is interesting to note that the food-web with flexible general-
ist consumers has the same population equilibrium as a food web
with specialized consumers (Fig. 1, panel B). Indeed such a system
can be conceptualized by n-pairs of independent Lotka–Volterra
resource-consumer models , i.e.,

dxi
dt

¼ rixi 1� xi
Ki

� �
�λixiyi; i¼ 1;…;n

dyi
dt

¼ ðeiλixi�miÞyi; i¼ 1;…;n: ð5Þ

Provided the resource environmental carrying capacity is high
enough (Ki4mi=ðeiλiÞ), the i-th resource–consumer pair coexists
at the stable equilibrium:

ðxni ; yn

i Þ ¼
mi

eiλi
;
riðeiλiKi�miÞ

eiKiλ
2
i

 !
:

This is exactly the same equilibrium as in the case of flexible
generalist consumers (provided we set yn

i ¼ un

i y
n in (3)).

Robustness of model (5) as a function of the mean environ-
mental carrying capacity (K ) is shown in Fig. 2I. At low environ-
mental carrying capacities (satisfying Kiomi=ðeiλiÞ) only resources
will survive and the food web robustness equals to 0.5. As the
mean carrying capacity increases, more and more thresholds for
the resource–consumer coexistence will be met and the number of
surviving resource–consumer pairs will increase. The total mean
abundance of resources (Fig. 2J) and consumers (Fig. 2K) increases
too, similarly to the case of flexible generalists (Fig. 2, middle
column). Fig. 2L shows that robustness of the food web as a
function of the food web connectance (calculated as
n=ð2nÞ2 ¼ 1=ð4nÞ) is maximal provided the environmental carrying
capacity is high enough.

3. Tri-trophic food webs

In this section I consider tri-trophic food-webs consisting of a
common resource (x), n consumer species (y1;…; yn) competing
for the common resource, and a top predators (z). The correspond-
ing food web topology is shown in Fig. 1C. Similarly to the di-
trophic case I consider two situations. Either the top predators are
generalists with fixed preferences for their prey, or they are
flexible foragers with density dependent preferences that max-
imize their fitness. The diamond-like food-web topology consid-
ered in this section combines two types of competition among
the consumer species: exploitative competition for the common
resource (Tilman, 1982) and apparent competition (Holt, 1977, 1984)
by the shared generalist predator. When compared with the food
web topology in Fig. 1A, conditions for species coexistence are much
more stringent now, because in addition to the apparent competi-
tion between consumer species there is also competition for the
shared resource (x). The Lotka–Volterra population dynamics are
described by

dx
dt

¼ rx 1� x
K

� �
� ∑

n

i ¼ 1
λiyix;

dyi
dt

¼ yiðeiλix�mi�ΛiuizÞ; i¼ 1;…;n;

dz
dt

¼ z ∑
n

i ¼ 1
uiðEiΛiyi�MiÞ; ð6Þ

where ui (u1þ…þun ¼ 1) is the predator foraging preference for the
i-th consumer species, Λi stands for the predator specific search rate
for consumer i, Ei is the efficiency rate with which consumers are
converted to new predators, and Mi is the predator mortality rate.
Other parameters have the same meaning as those in model (1).

3.1. Non-flexible predators

Here I assume that predators are generalists with fixed pre-
ferences for consumers. For each consumer species i coexisting in
the system at a positive population equilibrium, the following
equation must hold

eiλix�mi�Λiuiz¼ 0: ð7Þ
Provided predator foraging preferences are fixed (i.e., predators
behave as non-flexible foragers with fixed ui's), there are only
two free variables (x; z) and, in general, it is impossible to find a
positive solution of Eq. (7) for more than two coexisting
competitors. Thus, not more than two competing species can
survive at the population equilibrium. This is numerically
documented in Fig. 4A where top predators have equal foraging
preferences for consumers (ui ¼ 1=n) and most species are out-
competed from the system. Even if species coexistence is

Fig. 3. Dependence of di-trophic food-webs with flexible predators on precision of
switching (μ). Panels show mean values7standard errors of 10 simulations of
model (1) with switching function (4). Parameters: r¼Nð2;0:4Þ, λ¼Nð0:1;0:02Þ,
e¼Nð0:5;0:1Þ, m¼Nð0:2;0:04Þ, and K ¼Nð50;10Þ.
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Fig. 4. Simulations of tri-trophic food-webs. The left panels show results for model (6) with non-flexible predators (with fixed preferences ui ¼ 1=n). The middle panels show
results for flexible predators with foraging preferences given by (10) (with μ¼ 10). The right panels show results for model (6) with specialized predators. Means7standard
errors over 10 simulations are shown. The first four rows show in sequel dependence of robustness, mean resource density, mean consumer density, and mean predator
density on the mean environmental carrying capacity. Panels in the bottom row show dependence of food-web robustness on food web connectance. Parameters were
generated at random from the normal distribution Nðν;sÞ with mean ν and standard deviation s: r¼Nð2;0:4Þ, λ¼Nð0:1;0:02Þ, e¼Nð0:5;0:1Þ, m¼Nð0:2;0:04Þ,
M ¼Nð0:1;0:02Þ, E¼Nð0:5;0:1Þ, Λ¼Nð1;0:2Þ, and K ¼NðK ;0:2K Þ.
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considered (not necessarily at an equilibrium), permanence for
the Lotka–Volterra type models requires existence of an interior
equilibrium (Hofbauer and Sigmund, 1998). It follows that model (6)
cannot be permanent for more then two competing species. Condi-
tions for permanence for two competing species were given else-
where (Leibold, 1996; Holt et al., 1994; Křivan, 2003). Fig. 4E shows
that robustness of the food web increases with increasing connec-
tance (calculated for the food-web topology in Fig. 1C as 2n=ðnþ2Þ2).
As connectance is inversely proportional to the initial number of
species in the food web, we observe that robustness decreases with
the initial number of competitors.

3.2. Flexible predators

Now I consider the situation where predators are omniscient
optimal foragers that instantaneously switch to feed on the most
profitable consumer(s). It follows that at the population equili-
brium feeding on all consumers included in the predator's diet
must be equally profitable (and more or equally profitable than
would be feeding on consumers not included in predators diet).
Appendix D shows that at the population equilibrium where top
predators exist, at most one consumer species is excluded from
predators' diet. When all competitors do survive, the correspond-
ing interior population equilibrium is (Appendix D)

xn ¼ K
r

r� ∑
n

i ¼ 1

λiMi

EiΛi

 !
;

yn

i ¼
Mi

EiΛi
; i¼ 1;…;n

zn ¼ ∑
n

i ¼ 1

eiλixn�mi

Λi
;

un

i ¼
eiλixn�mi

Λizn
; i¼ 1;…;n: ð8Þ

Appendix D shows that this equilibrium is globally asymptotically
stable. Moreover, population dynamics (6) simplify to

dx
dt

¼ rx 1� x
K

� �
�x ∑

n

j ¼ 1

λj
ΛjEj

ðE1Λ1y1�M1þMjÞ

dy1
dt

¼ y1ðe1λ1x�m1�Λ1u1zÞ
dz
dt

¼ zðE1Λ1y1�M1Þ; ð9Þ

where the densities of other competitors (i¼ 2;…;n) are
yi ¼ ðE1Λ1y1�M1þMiÞ=ðEiΛiÞ. Population dynamics (9) are the
same as those for a tri-trophic food-chain.

For numerical simulations I consider gradual switching
described by a sigmoidal function

ui ¼
eμðEiΛiyi �MiÞ

eμðE1Λ1y1 �M1Þ þ…þeμðEnΛnyn �MnÞ: ð10Þ

Numerical simulations of model (6) with predator preferences (10)
as those given in Fig. 5A show that precision of consumer switch-
ing (μ) increases food web robustness when compared to the case
of no switching (i.e., when μ¼ 0 in Fig. 5A). For high switching
precisions (i.e., large values of μ), all initially present competitors
survive in the system. Fig. 5B and D also shows that switching
increases the mean resource and top predator densities when
compared with the case of no switching (i.e., when μ¼ 0), while
the mean consumer density (Fig. 5C) decreases.

Fig. 4 (middle column) shows dependence of food web
dynamics on the mean environmental carrying capacity (panels
F–I), and the food web connectance (calculated here as 2n=ðnþ2Þ2,
panel J). Food web robustness increases with the mean

environmental carrying capacity (panel F). When compared to
the food web with inflexible predators (panel A), we observe that
robustness is much higher here.

Fig. 5. Dependence of robustness (A), mean resource density (B), mean consumer
density (C) and mean predator density (D) in tri-trophic food webs with flexible
predators on precision of switching (μ). Panels show mean values of 10 simulations
of model (6). The whiskers denote7standard errors. Parameters were generated at
random from the normal distribution Nðν;sÞwith mean ν and standard deviation s:
r¼Nð2;0:4Þ, λ¼Nð0:1;0:02Þ, e¼Nð0:5;0:1Þ, m¼Nð0:2;0:04Þ, M ¼Nð0:1;0:02Þ,
E¼Nð0:5;0:1Þ, Λ¼Nð1;0:2Þ, and K ¼Nð50;10Þ.
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We have seen that at the population equilibrium, optimally
switching predators have preferences for consumers described by
un

i ¼ ðeiλixn�miÞ=ðΛiznÞ. There are two possible interpretation of
this result. Either the predator population is monomorphic and un

i
shows preferences of each predator, or the predator population
becomes polymorphic and un

i is the proportion of predators that
feed on the i-th consumer. With this second interpretation in
mind, the corresponding food web topology would be as shown in
Fig. 1D. Therefore, it is interesting to compare population
dynamics of the diamond-like food web with top flexible general-
ist predators with population dynamics with n specialized pre-
dators. The corresponding food web dynamics are described by the
Lotka–Volterra model

dx
dt

¼ rx 1� x
K

� �
� ∑

n

i ¼ 1
λiyix

dyi
dt

¼ yiðeiλix�mi�ΛiziÞ; i¼ 1;…;n;

dzi
dt

¼ ziðEiΛiyi�MiÞ; i¼ 1;…;n; ð11Þ

where zi denotes the predator that specializes on the i-th con-
sumer. The interior equilibrium of (11) is

xn ¼ K 1�1
r
∑
n

i ¼ 1

λiMi

EiΛi

 !

yn

i ¼
Mi

EiΛi
; i¼ 1;…;n;

zni ¼
eiλixn�mi

Λi
; i¼ 1;…;n: ð12Þ

This is the same equilibrium as in the case of flexible generalist
predators (provided we set zni ¼ un

i z
n). For this interior equilibrium

to exist, the resource intrinsic population growth rate (r) must be
large enough to support consumers and their predators at positive
densities. Otherwise some consumers will die out. The competi-
tion exclusion principle does not apply here, because although
consumers (yi) directly compete for the shared resource, they are
regulated by n top predators. Appendix E shows that when interior
equilibrium (12) exists then it is stable. The resource density
converges to xn and numerical simulations suggest that population
dynamics of model (11) converge to equilibrium (12), although the
speed of convergence can be very slow. The right panels in Fig. 4
show dependence of the food web dynamics (11) on the mean
carrying capacity (panels K–N) and food web connectance (O).
These results show that robustness increases with increasing
mean environmental carrying capacity. Indeed, for predators to
survive, environmental carrying capacity must be high enough.
When predators do survive in the food web they act as limiting
factors that allow survival of several competing species. It is
interesting to note that flexible generalist predators increase
abundance of resources and top predators, while the abundance
of consumers is slightly decreased (cf. Fig. 4 panels G–I vs. panels
L–N). Such pattern seems to be a consequence of exploitative
competition, as it does not appear in di-trophic food-web modules
(cf. Fig. 2 panels F and G vs. panels J–K). Fig. 4O shows that
robustness of the food web increases with increasing connectance
(calculated as 2n=ð2nþ1Þ2).

4. Discussion

In this article, two food web modules with many competing
species are studied. The first module considers apparent competi-
tion between several resources sharing a common consumer. The
second module considers a tri-trophic diamond-like food web
with a single resource and several consumers that share a
common predator. The top predators are assumed to be either

non-flexible generalists, or flexible generalists that maximize their
fitness through diet choice. Two types of dependencies are studied
in detail: effects of the environmental carrying capacity on food
web robustness (measured as the proportion of surviving species)
and food web dynamics, and effects of food web connectance
(measured as the number of realized links over all possible links in
the food web) on food web robustness. The article confirms that
flexible foraging of top species strongly weakens apparent com-
petition and promotes species coexistence when compared with
non-flexible predators (Holt, 1984, cf. Fig. 2 panel A vs. panel E and
Fig. 4 panel A vs. panel F). Moreover, it shows that the resulting
food-web dynamics for flexible predators closely resemble food
web dynamics with specialized predators (cf. Figs. 2 and 4 middle
panels vs. right panels). This is interesting in the light of recent
research on individual specialized feeding (Araujo et al., 2008;
Bolnick et al., 2003) or cryptic species complexes which suggests
that some presumed dietary generalists may be complexes of
dietary specialists (Bickford et al., 2007). For example, if the top
species in food webs in Fig. 1A and C were complexes of
specialized predators, the correct food web topology would
correspond to that shown in Fig. 1B and D, respectively. Predic-
tions for food web dynamics with top generalists depend very
much on whether the top predators are flexible or inflexible
foragers. If top predators are non-flexible generalists then this
article shows that robustness in food webs with top generalists
will be generally lower when compared with top specialists (cf.
Fig. 2A vs. I and Fig. 4A vs. K). Therefore, diversity in food webs
with top predators consisting of dietary specialists should be
higher when compared to the same food web with dietary
generalists. However, when top predators are flexible generalists
then at high environmental carrying capacities there may be no
significant difference in food web robustness when compared with
cryptic species complexes (or polymorphic populations) of dietary
specialists (cf. Fig. 2E vs. I and Fig. 4F vs. K).

Whether or not flexible animal foraging promotes species
stability and persistence was studied both in simple food web
modules (e.g., Roughgarden and Feldman, 1975; Comins and
Hassell, 1976; Hassell, 1978; Abrams, 1987, 1989; Holt, 1983,
1984; Fryxell and Lundberg, 1993, 1994; Holt et al., 1994;
Abrams, 1995; Křivan, 1996, 2000; Fryxell and Lundberg, 1997;
Křivan, 1997; Abrams, 1999, 2005; Křivan and Schmitz, 2003;
Beckerman, 2005; Abrams, 2010; Visser et al., 2012) as well as in
complex food webs (Brose et al., 2003; Kondoh, 2003, 2006;
Garcia-Domingo and Saldaña, 2007; Uchida et al., 2007; Uchida
and Drossel, 2007; Berec et al., 2010). In the case of simple food
webs these findings clearly document that a flexible foraging
behavior of top predators strongly promotes coexistence of two
competing species. In particular, Holt (1984) showed that under
the Ideal Free Distribution of predators among several foraging
patches the apparent competition disappears at the population
equilibrium. The same mechanism leads to high robustness of
models with flexible top predators in this article. In the case of
complex systems researchers focused on the relation between
food web connectance and species survival or stability. This
research followed May (1972) observation that in randomly
generated food webs stability is lost as the connectance exceeds
a critical threshold. A similar result shows that food web robust-
ness decreases with increasing connectance (Brose et al., 2003).
Kondoh (2003) proposed that such a pattern can be partially
overturned when consumers in the food web behave as flexible
foragers that maximize their fitness. It was shown that this
prediction depends crucially on the food web topology (Brose
et al., 2003; Uchida and Drossel, 2007) and on the way how
optimal foraging is modeled (Berec et al., 2010). While these
articles assumed complex food web topologies generated by
stochastic graph theoretical models (i.e., random, cascade, niche),
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in this article I study food webs with fixed (deterministic)
topologies. Variation in food web connectance was achieved by
changes in the initial number of species. Quite interestingly,
robustness in models considered in this article never decreases
with increasing connectance, just the opposite what general food
web models predict. Because connectance is inversely propor-
tional to the initial number of species in food webs considered in
this article, these results also show that robustness decreases with
the number of species in the food web. This prediction agrees with
similar observations for food webs generated by the niche model
(Uchida and Drossel, 2007).
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Appendix A. A Lyapunov function for model (1) with fixed
predator preferences

Here I prove that the interior population equilibrium (2) of
model (1) is globally asymptotically stable whenever it is positive.
Let

V ¼ ∑
n

i ¼ 1
ei xi�xni �xni ln

xi
xni

� �
þ y�yn�yn ln

y
yn

� �
ðA:1Þ

denote the standard Lotka–Volterra type Lyapunov function. The
derivative of V along trajectories of model (1) is

dV
dt

¼ � ∑
n

i ¼ 1

eiri
Ki

ðxi�xni Þ2r0:

Thus, the interior equilibrium of model (1) is stable. As the only
solution of model (1) that satisfies xi ¼ xni for i¼ 1;…;n is the
equilibrium, the LaSalle theorem (LaSalle, 1976; Harrison, 1979)
implies asymptotic stability.

Appendix B. Simulation procedure

All numerical simulations were done in Mathematica 8 or
9 using routine NDSolve for numerical solution of differential
equations. Initial data for resource(s) were set to 1, for consumers
to 0.1 and for predators (in the case of tri-trophic food webs) to
0.01. Simulations were done on time interval ð0;100000Þ. Para-
meters were generated from the normal distribution Nðμ; sÞ with
mean μ and variance s¼ 0:2μ, using Mathematica commands
Random[NormalDistribution[μ, s]] (for parameter values
see figure captions). A species was assumed to survive in the
system when at the final time T its population density was higher
than 0.00001. Population densities and number of surviving
species at the final time were recorded. Plots in figures are
averages over ten simulations at each focal parameter value (i.e.,
at each mean environmental carrying capacity K in Figs. 2 and 4,
and switching precision μ in Figs. 3 and 5. To study robustness as a
function of connectance in bottom panels of Figs. 2 and 4, the
initial number of consumers in the food web was varied between
1 and 50 to generate a range of initial food web connectance.

In those cases where numerical algorithm failed to generate a
trajectory on the whole interval ð0;100000Þ a new set of para-
meters was generated until 10 replicates were obtained.

Appendix C. A Lyapunov function for model (1) with
instantaneous prey switching

Provided predators switch instantaneously at current popula-
tion densities and consumers exist at a positive density at an
equilibrium, the equilibrium resource and predator densities of (1)
must satisfy the following equalities:

ri 1� xi
Ki

� �
�λiuiy¼ 0

∑
n

i ¼ 1
uiðeiλixi�miÞ ¼ 0:

Moreover, at this equilibrium feeding on any resource must
provide consumers with the same fitness, so that

eiλixi�mi ¼ c

for all consumers that coexist at the population equilibrium. It
follows that c¼0 at the equilibrium. Thus, if a resource j is not
included in predators' diet ejλjKj�mjr0. This shows that only
resources with low carrying capacity will not be included in
predators' diet. Thus at the population equilibrium population
densities of resources that are included in consumers' diet are
xni ¼mi=ðeiλiÞ. Substituting this equilibrium in the equation for
resources, leads to expression (3). I remark that model (1) can be
written in the form:

dxi
dt

¼ ri
Ki
xiðxni �xiÞ�λixiðuiy�un

i y
nÞ

dy
dt

¼ y ∑
n

i ¼ 1
uieiλiðxi�xni Þ ðC:1Þ

where xni , i¼ 1;…;n and yn are equilibrium population densities
(3). I will show that function V given by (A.1) with equilibrium
population densities (3) remains a Lyapunov function for model
(C.1). The derivative of his function along trajectories is

dV
dt

¼ � ∑
n

i ¼ 1

ri
Ki
ðxi�xni Þ2þeiλiðxi�xni Þðun

i �uiÞyn:

Let us assume that the first k resources are included in the diet at
current population densities, i.e.,

e1λ1ðx1�xn1Þ ¼…¼ ekλkðxk�xnkÞZeiλiðxi�xni Þ; i¼ kþ1;…;n;

and ui¼0 for i¼ kþ1;…;n. It follows that

dV
dt

¼ � ∑
n

i ¼ 1

ri
Ki
ðxi�xni Þ2þ ∑

k

i ¼ 1
eiλiðxi�xni Þðun

i �uiÞyn

þ ∑
n

i ¼ kþ1
eiλiðxi�xni Þun

i y
n

¼ � ∑
n

i ¼ 1

ri
Ki
ðxi�xni Þ2þyn ∑

n

i ¼ 1
ðeiλiðxi�xni Þ�e1λ1ðx1�xn1ÞÞun

i o0:

It follows that trajectories converge to the set where dV=dt ¼ 0 and
the only solution of (1) in this set is the equilibrium solution. Thus,
the equilibrium is asymptotically stable.

Appendix D. Model (6) with flexible predators

Without loss of generality, I will assume that the first k (krn)
consumers are included in the predator's diet at the population
equilibrium. Because the profitability of these consumers must be
the same (and higher or equal than the profitability of other
consumers not included in predators' diet)

E1Λ1y1�M1 ¼…¼ EkΛkyk�MkZEiΛiyi�Mi; i¼ kþ1;…;n:

ðD:1Þ
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Moreover, at the population equilibrium where predators are
present (z40)

r 1� x
K

� �
� ∑

n

i ¼ 1
λiyi ¼ 0;

eiλix�mi�Λiuiz¼ 0; i¼ 1;…; k;

yiðeiλix�miÞ ¼ 0; i¼ kþ1;…;n;

∑
k

i ¼ 1
uiðEiΛiyi�MiÞ ¼ 0: ðD:2Þ

It is generically impossible for two or more competitors that
are not included in predator's diet to survive at the equilibrium
(because for general parameters eiλix�mi ¼ 0 can hold for not
more than one index i). Thus, at most one competitor that is not
included in the predator's diet can survive at the population
equilibrium. I calculate the interior equilibrium now.

First, I will assume that predators feed on all consumers. It
follows from (D.1) and (D.2) that at the population equilibrium
EiΛiyi�Mi ¼ 0; i.e.,

yn

i ¼
Mi

EiΛi
; i¼ 1;…;n: ðD:3Þ

Consequently,

xn ¼ K
r

r� ∑
n

i ¼ 1

λiMi

EiΛi

 !
;

and

un

i z
n ¼ eiλixn�mi

Λi
; i¼ 1;…;n

where un

i is predators preference for consumer i at the population
equilibrium. As ∑n

i ¼ 1u
n

i ¼ 1; I get

zn ¼ ∑
n

i ¼ 1

eiλixn�mi

Λi

and

un

i ¼
eiλixn�mi

Λizn
:

Now I will show that once all consumers are included in
predators' diet, model dynamics (6) are those of a food chain.
Because under the IFD feeding on any consumer provides pre-
dators with the same payoff, EiΛiyiðtÞ�Mi ¼ kðtÞ for every
i¼ 1;…;n. It follows that

EiΛi
dyi
dt

¼ dk
dt

¼ c:

Substituting dyi=dt from model (6) leads to

ui ¼
eiλix�mi

Λiz
� c

EiΛ
2
i yiz

where

c¼
∑n

i ¼ 1
eiλix�mi

Λiz
�1

∑n
i ¼ 1

1

EiΛ
2
i yiz

:

Because

yi ¼ ðE1Λ1y1�M1þMiÞ=ðEiΛiÞ ðD:4Þ
and ∑n

i ¼ 1ui ¼ 1 model (6) can be rewritten as a food chain:

dx
dt

¼ rx 1� x
K

� �
�x ∑

n

j ¼ 1

λj
ΛjEj

ðE1Λ1y1�M1þMjÞ

dy1
dt

¼ y1ðe1λ1x�m1�Λ1u1zÞ

dz
dt

¼ zðE1Λ1y1�M1Þ: ðD:5Þ

Because the interior equilibrium of a food chain is globally
asymptotically stable (Harrison, 1979), interior equilibrium (8) is
also globally asymptotically stable.

Second, I will assume that predators feed on all but one
consumer. It follows from (D.1) and (D.2) that at the population
equilibrium EiΛiyi�Mi ¼ 0; for i¼ 1;…;n�1, i.e.,

yn

i ¼
Mi

EiΛi
; i¼ 1;…;n�1: ðD:6Þ

Consequently,

xn ¼ mn

enλn

un

i z
n ¼ eiλixn�mi

Λi
; i¼ 1;…;n�1

where un

i denotes predators preference for consumer i at the
population equilibrium (and un

n ¼ 0). As ∑n�1
i ¼ 1u

n

i ¼ 1; I get

zn ¼ ∑
n�1

i ¼ 1

eiλixn�mi

Λi

and

un

i ¼
eiλixn�mi

Λizn
; i¼ 1;…;n�1:

In addition

yn

n ¼
r
λn

1�xn

K

� �
� ∑

n�1

i ¼ 1

λi
λn
yn

i ¼
r
λn

1� mn

enλnK

� �
� ∑

n�1

i ¼ 1

λiMi

λnEiΛi
:

For the nth consumer to be excluded from predators diet at the
equilibrium, EnΛnyn

n�Mn must be non-positive, which yields the
following condition on parameters for which this can happen:

EnΛn
r
λn

1� mn

enλnK

� �
� ∑

n�1

i ¼ 1

λiMi

λnEiΛi

 !
rMn:

Appendix E. A Lyapunov function for model (11) with
specialized predators

Here I prove that the interior equilibrium (12) of model (11) is
globally stable. Let

V ¼ x�xn�xn ln
x
xn

þ ∑
n

i ¼ 1

1
ei

yi�yn

i �yni ln
yi
yni

� �
þ ∑

n

i ¼ 1

1
eiEi

zi�zni �zni ln
zi
zni

� �
:

ðE:1Þ
Then

dV
dt

¼ � r
K
ðx�xnÞ2

along trajectories of model (11) and V is a Lyapunov function.
Moreover, it follows that x(t) converges to the equilibrium xn.
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