
Behavioral refuges and predator–prey coexistence

Vlastimil Křivan a,b,n
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H I G H L I G H T S

c Optimal predator foraging or optimal predator avoidance by prey creates a behavioral refuge for prey in predator–prey models.

c Such a behavioral refuge promotes predator–prey coexistence in the Gause predator–prey model.

c Predator avoidance by prey leads to a game that has two evolutionarily stable strategies at current population densities.

c The existence of these ESS leads to a hysteresis in prey behavior.
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The effects of a behavioral refuge caused either by the predator optimal foraging or prey adaptive

antipredator behavior on the Gause predator–prey model are studied. It is shown that both of these

mechanisms promote predator–prey coexistence either at an equilibrium, or along a limit cycle.

Adaptive prey refuge use leads to hysteresis in prey antipredator behavior which allows predator–prey

coexistence along a limit cycle. Similarly, optimal predator foraging leads to sigmoidal functional

responses with a potential to stabilize predator–prey population dynamics at an equilibrium, or along a

limit cycle.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Presence of a refuge has been known to promote predator–

prey coexistence for a long time. One of the first such experi

mental evidence was reported by Gause et al. (1936) who

observed in experiments with protists and yeast that when at

low densities, yeast formed into a sediment that was not

accessible to protists staying in the water column. When at low

density, the yeast was effectively in a refuge and protists and

yeast densities fluctuated. Using a predator–prey model with

exponentially growing prey and decelerating functional response

these authors also showed that a refuge can promote predator–

prey coexistence along a limit cycle (for a full analysis see Křivan,

2011). For the Lotka–Volterra predator–prey model Maynard

Smith (1974) considered a refuge that protects either a fixed

number of prey, or a constant fraction of prey. He concluded that

refuges protecting a constant number of prey stabilize population

dynamics more strongly than refuges protecting a proportion

of prey.

The work mentioned so far assumes passive (non-adaptive)

refuge use by prey: either a fixed number or a fixed proportion of

prey stays in the refuge. However, using a refuge leads to a trade-

off, because being in a refuge increases survival due to lower

predation but decreases other components of prey fitness (e.g.,

food intake or mating opportunities). It has been clearly documen-

ted that under increasing predation risk prey reduce their activity

or change their habitat adaptively (e.g.., Sih, 1980, 1986; Lima and

Dill, 1990; Peacor and Werner, 2001; Brown and Kotler, 2004).

Models of adaptive refuge use (reviewed in Křivan, 1998) were also

studied in the literature (e.g., Ives and Dobson, 1987; Sih, 1987;

Ruxton, 1995). These models assume that prey strategy is a

function of predation risk. Křivan (1998) used a game theoretical

approach to derive evolutionarily stable prey antipredator strategy

as a function of predator density. For fitness functions based on the

Lotka–Volterra population dynamics there were only two possibi-

lities: below a critical predator density all prey were outside of the

refuge while above the threshold they were in the refuge. The

corresponding population dynamics then had a neutrally stable

equilibrium at which either all prey were in the refuge, or out of

the refuge. It was predicted that a similar behavior can be expected

in the case where the linear functional response is replaced by the

Holling type II functional response. In this paper I will study such a
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model and I will show that for the Holling type II functional

response the situation is much more complex as the prey fitness

depends not only on predator abundance but also on prey

abundance. This makes the prey fitness frequency dependent,

and the optimal prey strategy must be sought in the form of an

evolutionarily stable strategy (ESS Hofbauer and Sigmund, 1998).

I will also survey how predator’s optimal foraging (Oaten and

Murdoch, 1975; Charnov, 1976a) can create a behavioral prey refuge.

Both of these optimal foraging models predict that at low preferred

prey densities the interaction strength between prey and predators

sharply decreases because predators either switch to an alternative

prey type, or include an alternative prey type to their diet. Such a

behavior creates a refuge for the primary prey type. Although the

effects of optimal foraging were studied extensively in the literature

(e.g., Holt, 1983; Fryxell and Lundberg, 1994; Abrams and Matsuda,

1996; Fryxell and Lundberg, 1997; Křivan, 1997; Abrams, 1999;

Křivan and Eisner, 2003; Ma et al., 2003) analysis in this paper allows

me to compare effects of adaptive refuge use by prey with the refuge

caused by predator’s optimal foraging.

2. Adaptive refuge use by prey

In this paper I study the effect of refuges on the Gause predator–

prey population dynamics

dR

dt
¼ rR�Cf ðRÞ,

dC

dt
¼ ðgðRÞ�mÞC ð1Þ

and its variants. Here R is prey density, C is predator density, r is the

per capita prey population growth rate, f is the functional response, g

is the numerical response, and m is the predator mortality rate. The

above model is not of the Kolmogorov type (Svirezhev and Logofet,

1983), because it assumes unlimited exponential prey growth. When

the functional response is of the Holling type II (f ¼ lR=ð1þlhRÞ

where h is the handling time and l is the predator search rate),

predation alone cannot stabilize population dynamics at an

equilibrium or along a limit cycle (Fig. 1A) (e.g., Gause et al., 1936;

Hofbauer and Sigmund, 1998; Křivan, 2008) and predators cannot

coexist with their prey.

A mechanism that was shown to lead to predator–prey coex-

istence is existence of a prey refuge that protects a fixed number of

prey from predation (e.g., Gause et al., 1936; Maynard Smith,

1974). These models assume that prey prefer to be in the refuge,

and only when the refuge is fully occupied, the surplus of prey

moves outside. A Holling type II functional response that reflects

such prey behavior is

f ðRÞ ¼
0 if RoRc ,

lðR�Rc Þ
1þhlðR�Rc Þ

if RZRc ,

(

ð2Þ

(e.g., Ma et al., 2009), where Rc denotes the refuge size. Presence of

a refuge changes the shape of the Holling type II functional

response to an (extreme) sigmoid type (i.e., the Holling type III)

functional response (Fig. 2A, solid line). In this case the Gause’s

equilibrium stability criterion (ðdf ðRÞ=dRÞ4ðf ðRÞ=RÞ; Gause et al.,

1936) holds for prey densities that are smaller than Rcþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rc=ðhlÞ
p

(see the vertical dotted line in Fig. 2A). The resource equilibrium

density of model (1) with functional response (2), R% ¼ Rcþm=

ðlðe�hmÞÞ satisfies this stability condition provided the refuge size

is large enough, i.e.,

Rc4
hm

2

lðe�hmÞ2
,

(Fig. 1C). Numerical simulations show that for a smaller refuge size

a locally stable limit cycle appears (Fig. 1B, D). This is because the

prey isocline C ¼ rRðhþ1=ðlðR�RcÞÞÞ (the dashed curve in Fig. 1B),

for prey population densities that are just above the refuge size Rc,

is almost vertical and it effectively bounds the amplitude of

predator–prey populations (Rosenzweig and MacArthur, 1963).

However, neither this limit cycle nor the locally stable equilibrium

are global phenomena. Depending on the handling time and initial

population numbers there can be trajectories that completely

escape predator regulation (Fig. 1B and C, bottom trajectories).

Numerical simulations show that as the refuge size asymptotically
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Fig. 1. Trajectories of model (1) with functional response (2). Panel A assumes no refuge (Rc¼0), panel B assumes a small refuge (Rc¼2, see the dotted vertical line) that

leads to predator–prey coexistence along a limit cycle, and panel C assumes a large refuge size (Rc¼4) which stabilizes predator–prey interactions at an equilibrium. There

are also trajectories along which population densities tend to infinity (the bottom solid curves in B and C). Bifurcation diagram in panel D shows dependence of the

amplitude of the locally stable limit cycle (solid dots) and the locally stable equilibrium (solid thick line) on the refuge size Rc . Other parameters: r¼1, l¼ 1,m¼0.8, e¼0.5,

h¼0.3.
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decreases to a critical value (about 0.5 in Fig. 1D), the amplitude of

fluctuations increases to infinity and below the critical refuge size

the limit cycle disappears and predator–prey coexistence is impos-

sible. This analysis clearly shows that a refuge alone can lead to

coexistence of predators and exponentially growing prey either at

a population equilibrium, or along a limit cycle. No bottom-up

regulation of prey growth is needed to achieve species coexistence.

So far I have considered the situation where a prey used the refuge

non-adaptively. Now I will consider the case where prey trade-off

increased safety of refuges with decreased feeding rate and their

preference for refuges depends on predation risk.

It is well known that when predators are present, prey often

decrease their activity and/or change habitat to avoid predation

risk (e.g., Werner and Gilliam, 1984; Holbrook and Schmitt, 1988;

Brown and Alkon, 1990; Brown, 1998; Lima, 1998a, 1998b; Sih,

1998; Peacor and Werner, 2001; Preisser et al., 2005). Reduction

in prey activity is an example of a behavioral refuge. However,

whether prey reduce their activity, or move to a physical refuge

leads to a trade-off, because being in a refuge (either behavioral or

physical) increases survival due to lower predation but decreases

other components of prey fitness (e.g., food intake or mating

opportunities). To model this trade-off I consider the following

variant of model (1):

dR

dt
¼ r1u1R�Cf ðu1RÞþr2u2R,

dC

dt
¼ ðe1f ðu1RÞ�mÞC: ð3Þ

Here u1 is the proportion of prey lifetime spent out of the refuge so

that u2 is the proportion spent in the refuge (u1þu2 ¼ 1). I assume

that being out of the refuge provides prey with a positive per capita

intrinsic population growth rate (r140) that is higher than the

intrinsic population growth rate in the refuge (r2). As the refuge may

not provide enough resources to achieve a positive population growth

rate there, r2 can be negative. Model (3) does not describe mechan-

istically the transition process of moving in and out of the refuge.

Instead, it assumes that this process occurs very fast when compared

to demographic processes (e.g., if the refuge is physical it does not

take too much time to reach it, or when the refuge is behavioral, it

does not take too much time to change behavior). Provided that the

refuge use by prey is a plastic trait, the question is what is the optimal

prey strategy ðu1,u2Þ? I remark that in the case of a monomorphic

prey population, this strategy also defines the prey population

distribution in and out of the refuge.

To answer this question I need to specify prey fitness as a

function of prey strategy. If proportion u1 of prey is out of the

refuge, their payoff, expressed as the per capita prey population

growth rate there is

V1 ¼ r1�
l1C

1þh1l1u1R
:

As the proportion of prey outside the refuge (u1) increases,

payoff will increase, because the chance that a single prey will be

captured by a predator decreases due to the risk dilution effect

(e.g., Foster and Treherne, 1981). As I assume that prey in the

refuge are completely protected from predation, the payoff in

the refuge is V2 ¼ r2 (possibly negative). Thus, fitness of a mutant

prey (with strategy ~u ¼ ð ~u1, ~u2Þ) in a monomorphic resident popu-

lation (with distribution u¼ ðu1,u2Þ) is given by the mean payoff

Wð ~u,uÞ ¼ ~u1V1þ ~u2V2 ¼ r1 ~u1�
l1 ~u1C

1þh1l1u1R
þr2 ~u2: ð4Þ

Mutant fitness is not only density dependent but also frequency

dependent, because it depends on the resident strategy.

Appendix A analyzes the evolutionarily stable strategy (ESS) as

a function of population densities. Because fitness function (4) is

non-linear, I use the local ESS definition (Hofbauer and Sigmund,

1998) that requires Wðun
,uÞ4Wðu,uÞ for all strategies uaun

in some neighborhood of the ESS un. It is proved in Appendix A

that the evolutionarily stable strategy as a function of predator

0 1 2 3 4 5

0

2

4

6

8

10

12

0 1 2 3 4 5
0

2

4

6

8

10

0 1 2 3 4 5

0

2

4

6

8

Fig. 2. Panel A shows functional response (2) with the refuge size Rc¼1. The

dotted vertical line denotes the critical prey density below which the Gause

equilibrium stability criterion holds and the functional response is stabilizing

predator–prey population dynamics. Panel B shows functional responses (12).

Panel C shows functional response for predators that follow predictions of the

optimal foraging theory (9). The alternative resource density is set here to Ra¼10.

Other parameters are the same in all three panels: e¼1, ea ¼ 0:5, h¼ ha ¼ 0:1,

l¼ la ¼ 10.
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and prey numbers is

un

1 ¼

1 if Co r1�r2
l1

,

f0,1g if r1�r2
l1

oCo r1�r2
l1

ð1þh1l1RÞ,

0 if C4 r1�r2
l1

ð1þh1l1RÞ:

8

>

>

<

>

>

:

ð5Þ

For low predator densities (Coðr1�r2Þ=l1), predation risk out of

the refuge is low too, and prey stay outside of the refuge (un

1 ¼ 1)

where they achieve a higher intrinsic per capita population

growth rate that in the refuge (r2). When predator density is high

(C4ðr1�r2Þ=l1ð1þh1l1RÞ), predation risk out of the refuge is not

compensated for by the higher intrinsic per capita population

growth rate, because fitness out of the refuge (V1) is lower than

the fitness in the refuge (V2 ¼ r2). The best prey strategy is to

be in the refuge (un

1 ¼ 0). For intermediate predator densities

three Nash equilibria exist. Besides the two boundary ESSs

(ðu1,u2Þ ¼ ð1,0Þ and ðu1,u2Þ ¼ ð0,1Þ) there exists an interior equili-

brium ðv1,v2Þ ¼ ðv1,1�v1Þ

v1ðR,CÞ ¼
1

l1h1R

l1C

r1�r2
�1

� �

:

However, this interior Nash equilibrium is not evolutionarily stable

(Appendix A). Without considering some strategy dynamics it is

impossible to predict which of the two boundary ESSs will get

established in the population.

Several strategy dynamics were considered in the game theo-

retical literature. These include replicator dynamics (Taylor and

Jonker, 1978), best response dynamics (Hofbauer and Sigmund,

1998), imitation dynamics (Schlag, 1998), adaptive dynamics

(Abrams, 1999, 2003; Dieckmann and Law, 1996; Abrams and

Matsuda, 2004; Abrams, 2006), Darwinian dynamics (Vincent and

Brown, 2005), and dispersal dynamics (Cressman and Křivan,

2006). I will consider here the best response dynamics (Hofbauer

and Sigmund, 1998)

du1

dt
¼ kðbðu,R,CÞ�u1Þ, ð6Þ

where bðu,R,CÞ ¼ arg max0r ~u1 r1 Wð ~u,uÞ denotes the best strategy

a mutant can play to the current resident strategy u. Appendix A

shows that

b¼

1 if u14v1ðR,CÞ,

½0,1� if u1 ¼ v1ðR,CÞ,

0 if u1ov1ðR,CÞ,

8

>

<

>

:

ð7Þ

i.e., b as a function of the resident strategy is a step-like function.

Parameter k in (6) is an arbitrary positive constant that measures

the speed with which individuals react to their environment. When

this parameter is high, behavioral dynamics (6) converge quickly to

either 1 or 0, which are the locally stable equilibria of (6) at current

population numbers.

What interests us here is the feedback between behavioral

dynamics (6) and population dynamics (3). Prey strategy influ-

ences population dynamics that, in turn, drive strategy dynamics.

I remark that population dynamics (3) with prey strategy fixed at

some value are unstable because predators cannot control prey

exponential growth. The question here is whether prey behavioral

dynamics (6) can make predator–prey coexistence possible.

Numerical simulations as those shown in Fig. 3 suggest that this

is indeed so, as adaptive refuge use by prey can lead to predator–

prey coexistence along a limit cycle. Let us consider the trajectory

in Fig. 3A. Initially, predators are in low numbers (below 1)

and the only prey ESS is to be out of the refuge (u1 ¼ 1). The

corresponding population dynamics follow a spiraling trajectory

of model (3) (assuming the handling time is small) with u1 ¼ 1.

At certain moment the predator population density reaches the

lower threshold (C ¼ ðr1�r2Þ=l1, see the dashed horizontal line in

Fig. 3A), but because all prey are out of the refuge, and payoff

there is higher than payoff in the refuge due to risk dilution, the best

strategy is to keep staying there until the trajectory reaches the upper

threshold (C ¼ ðr1�r2Þ=l1ð1þh1l1RÞ, see the dashed slanted line in

Fig. 3A). At this moment predation risk is so high it cannot be

compensated for by the higher intrinsic per capita population growth

rate out of the refuge and the best prey strategy is to move to the

refuge. Thus, following the best response dynamics (6), prey start to

move to the refuge with speed given by parameter k (k¼1 in panel A

and k¼10 in panel C). However, this will lead to a decrease in

predator population growth rate and, eventually, predator population

starts to decline. Assuming prey population growth rate in the refuge

is negative (panels A–D), prey population will decrease too. Thus, in

the prey–predator phase space the trajectory will, with some delay,

start to move downwards and it will reach the slanted dashed line

again. As some prey already moved to the refuge, the best prey

strategy is to stay in the refuge, because due to the low prey density

outside of the refuge, the risk dilution effect is weak and predation

risk is high there. Thus, the best prey strategy is to keep staying in the

refuge until the trajectory reaches the lower threshold (the horizontal

line). At this moment predation risk is low and it pays off for prey to

move out of the refuge which, in turn, leads to a positive predator

population growth rate. Simulations as those given in Fig. 3A and C

show that through this mechanism predator–prey population

dynamics can converge to a limit cycle. In fact, along the predator–

prey trajectory we observe a hysteresis in prey preferences (Fig. 3B,

D). These panels show prey preference for staying outside of the

refuge (dashed line) along the population limit cycle, and the best

response along this limit cycle (solid line). As the relative speed of the

best response dynamics with respect to population dynamics mea-

sured by parameter k increases (cf. panel B vs. panel D), prey strategy

dynamics closely follow the best response strategy.

Numerical simulations for positive intrinsic per capita population

growth rates in the refuge are shown in panels E–H. Even in this case

population dynamics can converge on a limit cycle, although in this

case faster behavioral dynamics lead to a larger amplitude population

fluctuations (cf. panel E vs. panel G). Thus, large values of k in model

(6) can be detrimental for species coexistence. Dependence of

predator amplitude along the limit cycle on prey selectivity para-

meter k is shown in Fig. 4. Panel A corresponds to the case where the

prey intrinsic per capita population growth rate in the refuge is

negative, while panel B assumes a positive growth rate. These plots

document the fact that for intermediate values of prey sensitivity

parameter k, predators and prey can coexist along a limit cycle, when

prey antipredator strategy is adaptive. Solid dots denote the locally

stable limit cycle shown in Fig. 3, while the open dots show another

unstable limit cycle (not shown in Fig. 3). Thus, the locally stable limit

cycle exists for intermediate prey sensitivities k.

In this section I studied adaptive refuge use by prey. In the

next section I will consider behavioral refuges due to predator

adaptive foraging.

3. Refuges caused by predator foraging behavior

In this section I briefly review some consequences of predator

optimal foraging behavior in the context of behavioral prey refuges.

I will consider the optimal diet choice and prey switching models.

The diet choice model (Charnov, 1976b; Stephens and Krebs,

1986) assumes that predators rank potential prey types on the

basis of their profitability measured by the ratio of energy gain

over the handling time (i.e., e=h). Here I consider two prey types, a

primary prey type (R) which is more profitable than an alternative

prey type (Ra) (i.e., e=h4ea=ha). The optimal foraging theory then

predicts that the primary prey type will be included in predators’

diet upon each encounter, while the alternative prey type will be
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fed upon only provided density of the primary prey type drops

below the switching threshold

Rc ¼
ea

lðeha�eahÞ
, ð8Þ

where l is the predator search rate for the primary prey type

(Stephens and Krebs, 1986). The corresponding Holling type II

functional response for the primary prey type is then described by

a piece-wise continuous function

f ðRÞ ¼

lR
1þlhRþhaRa

when RoRc ,

lR
1þlhR

when R4Rc ,

8

<

:

ð9Þ

(Fig. 2C). This figure clearly shows that optimal foraging creates a

partial behavioral refuge for the primary prey type; below the

critical prey density Rc, predation on the primary prey decreases

because predators include the alternative prey type in their diet.

Thus the switching threshold Rc sets the effective refuge size in

this model. Formula (8) shows that the behavioral refuge caused

by optimal foraging increases with the quality of the alternative

resource (i.e., with ea). As ea increases, the difference in profit-

ability of the two resources decreases and predators will

include the alternative prey type to their diet at a higher primary

prey density. In fact, if density of the alternative prey (Ra) in

the environment is high enough, feeding on the primary prey

can be very negligible when RoRc . The corresponding numeric
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Fig. 3. Trajectories of model (3) with the best response behavioral dynamics (6). Panels A–D assume a negative prey population growth rate in the refuge (r2 ¼�0:1) while

panels E–H assume a positive population growth rate in the refuge (r2¼0.1). Panels A, B, E, and F assume relatively low speed of behavioral dynamics (k¼1) while panels C,

D, G, and H assume that behavioral dynamics run on a fast time scale when compared to population dynamics (k¼10). The left panels show predator–prey population

dynamics, while the right panels show the prey preference for the open habitat as a function of predator density along the population limit cycle (dashed curve). The solid

hysteresis loop shows the best response dynamics along the population limit cycle. Other parameters: r1 ¼ 1, l1 ¼ 1, m¼2.6, e1 ¼ 1, h1 ¼ 0:1.
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response is

gðRÞ ¼

elRþealaRa

1þhlRþhalaRa
when RoRc ,

elR
1þhlR

when R4Rc:

8

<

:

ð10Þ

Model (1) with functional response (9) and numerical response

(10) was studied in detail by van Baalen et al. (2001) (for the case

where both prey types undergo population dynamics see e.g.,

Holt, 1983; Fryxell and Lundberg, 1994; Abrams and Matsuda,

1996; Fryxell and Lundberg, 1997; Křivan, 1997; Abrams, 1999;

Křivan and Eisner, 2003; Ma et al., 2003). It was shown there that

although prey and predators cannot coexist at an equilibrium,

coexistence is possible along a limit cycle (Fig. 5). This is because

a part of the prey isocline is vertical (see the vertical segment of

the dashed line in Fig. 5A, B). Here I am interested in dependence

of predator–prey population dynamics on the refuge size Rc . The

results are given in Fig. 5. Panel A shows the case where the

refuge (Rc) is small and the unstable predator–prey equilibrium is

to the right of the vertical part of the prey isocline. As the refuge

increases, the vertical part of the prey isocline (located at R¼ Rc)

moves to the right which causes the amplitude of the limit cycle

to shrink (Fig. 5C). When Rc ¼m=ðl1ðe1�mh1ÞÞ, the equilibrium is

exactly on the vertical part of the prey isocline and it is locally

asymptotically stable. Increasing Rc furthermore moves the

predator–prey equilibrium to the left of the vertical part of the

prey isocline (Fig. 5B) and the population oscillations increase

again. Fig. 5C (solid dots) shows dependence of this limit cycle

amplitude on the refuge size (Rc) given by formula (8). In this

figure the solid dots correspond to the locally stable limit cycle

shown in (5A, B) while the open circles denote the unstable large

amplitude limit cycle (not shown in Fig. 5A, B). Both the stable

and unstable limit cycle exists for intermediate refuge sizes.
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Fig. 5. This figure shows effects of behavioral refuge caused by optimal predator

foraging on predator–prey population dynamics. The corresponding functional

response is given by (9) and the numerical response by (10). Panel A assumes a

small density of the alternative prey type (i.e., small behavioral refuge, Rc¼15,

ea¼0.3) so that the vertical part of the prey isocline is to the left of the equilibrium

of model (1). Panel B assumes a larger behavioral refuge (Rc¼23.3, ea¼0.35) and

the corresponding equilibrium of the prey-predator model is to the left of the

vertical part of the prey isocline. Bifurcation diagram in panel C shows depen-

dence of the amplitude of the stable (solid dots) and unstable (circles) limit cycles

on Rc. Other parameters: r¼1, l¼ la ¼ 1, e¼ 0:5, h¼ ha ¼ 0:1, m¼3.2. Ra¼50.
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Oaten and Murdoch (1975) examined how predator preference

for prey might stabilize predator–prey population dynamics. They

assumed that the proportion of prey in the predator’s diet

increases with increased prey proportion in the environment

faster than linearly what they called switching. This happens,

for example, when consumers exploit resources that are locally

mixed but switching from one resource species to another

requires some initial training or conditioning. The Holling type

II functional response for the primary resource is (e.g., Holt, 1983;

Abrams, 1999)

f ðRÞ ¼
ulR

1þhluRþhalauaRa
, ð11Þ

where u (ua ¼ 1�u) is the predator preference for the primary

(alternative) prey type R (Ra). At an extreme case where predators

forage on the more abundant species only functional response

(11) is piece-wise continuous (Fig. 2B)

f ðRÞ ¼
0 when RoRa,

lR
1þhlR

when R4Ra

(

ð12Þ

and the corresponding numerical response is

gðRÞ ¼

ealaRa

1þhalaRa
when RoRa,

elR
1þhlR

when R4Ra:

8

<

:

ð13Þ

Once again the alternative prey density sets the refuge size

because when primary prey density decreases below Ra, primary

prey are not consumed at all. Model (1) with functional response

(12) and numerical response (13) is analyzed in Appendix B.

Depending on the refuge size (Ra) there are three qualitative

cases. First, when refuge size is so small that RaoRn (where Rn ¼

m=ðlðe�mhÞÞ is the prey equilibrium of model (1) when predators

feed on primary prey only) a limit cycle along which predator and

prey population densities periodically fluctuate exists (Fig. 6A). Sec-

ond, if the refuge size is intermediate, Rn
oRaom=ðlaðea�hamÞÞ,

there exists an interior equilibrium

E¼ ðRn
,Cn

Þ ¼ Ra,

rRaðeðlþhaRallaÞ�eað1þhRalÞlaÞ

lðmþðham�eaÞRalaÞ

� �

,

with prey density equal to the refuge size (i.e., to the alternative

prey density) (Fig. 6B). As the alternative resource density

approaches m=ðlaðea�hamÞÞ the predator equilibrium tends to

infinity. When Ra crosses this upper bound (i.e., Ra4m=

ðlaðea�hamÞÞ), no equilibrium exists along the vertical line R¼ Ra

and trajectories of the model once they fall on this line move along it

to infinity. This is a consequence of the fact that the alternative

resource density, which is not depleted, supports positive predator

population growth. As it is unrealistic to assume that the alternative

prey could reach such a high density and still be not influenced by

predation or competition, these results are limited to alternative

prey densities that do not allow for such unlimited predator growth.

Fig. 6C shows dependence of the equilibrium and the amplitude of

the limit cycle (solid dots denote the locally stable limit cycle) on the

refuge size Ra.

4. Discussion

In this paper, effects of a refuge on the Gause predator–prey

model are studied. Two types of adaptive prey or predator behavior

are studied in detail. First, I consider the effect of adaptive refuge use

by prey. In this case the prey fitness is frequency dependent and

I analyzed the corresponding prey ESS as a function of prey and

predator numbers. Due to the risk dilution effect (e.g., Foster and

Treherne, 1981) caused by the Holling type II functional response

(i.e., the decrease in predation risk per an individual prey when the

number of conspecifics increases) adaptive refuge use by prey leads

to a bi-stable situation where for some predator and prey population

densities two alternative ESSs exist (prey are either in the refuge or

out of the refuge). Which of these two will be attained depends on

the strategy dynamics. In this paper I consider the best response
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Fig. 6. This figure document effects of behavioral refuge caused by prey switching

(12) on predator–prey population dynamics. Panel A assumes a small behavioral

refuge when density of the alternative prey type (Ra¼0.3) is smaller than the

equilibrium prey density of model (1). In this case the behavioral refuge leads to a

limit cycle. For an intermediate refuge size (Ra¼1, panel B) refuge can stabilize

predator prey population dynamics at an equilibrium. Panel C shows a bifurcation

diagramwith respect to Ra. Solid dots denote predator maxima and minima along the

limit cycle and the solid line shows the locally stable interior equilibrium. Other

parameters: r¼ 0:2, ra ¼ 0:1, l¼ la ¼ 1, m¼ 0:2, e¼ 0:5, ea ¼ 0:05, h¼ 0:2, ha¼0.1.

V. Křivan / Journal of Theoretical Biology 339 (2013) 112–121118



strategy dynamics that assume prey strategy evolves towards an ESS

(Hofbauer and Sigmund, 1998). When the inherently unstable and

impermanent Gause predator–prey population dynamics are com-

bined with the adaptive prey refuge use, the resulting population

dynamics converge on a limit cycle. It is interesting that existence of

the two alternative ESSs leads to hysteresis in the prey preference

for the refuge along the predator–prey population dynamics (Fig. 3).

This shows that a behavioral refuge can cause coexistence between

predators and their prey in models, where such coexistence without

refuge is impossible. However, such coexistence is possible only for

intermediate reaction speeds with which prey adjust their antipre-

dator behavior to changes in population densities (Fig. 4). These

results extend those given in Křivan (1998) where a similar model

with linear functional response was considered. The optimal prey

strategy there was much simpler, because prey fitness function

(4) was independent of the prey density as the handling time was

set to zero. For predator densities below a certain threshold the

optimal prey strategy was to be out of the refuge while above

that threshold all prey were in the refuge. Thus, there was no

bi-stability in prey strategy. Predator–prey population dynamics

oscillated around a neutrally stable equilibrium similarly to the

classic Lotka–Volterra predator–prey model. Adaptive refuge use

limited the maximum amplitude of predator–prey oscillations there.

My hypothesis was that when the linear functional response was

replaced by the Holling type II functional response the effect on

population persistence would be similar and predators and their

prey would coexist along a limit cycle. Present analysis shows that

this is indeed so, but population dynamics are more complicated

than those shown in Fig. 6 in Křivan (1998).

Second, I reviewed behavioral refuges caused either by pre-

dator optimal foraging (Charnov, 1976a), or by prey switching

(Murdoch, 1969). Both these foraging behavior create a beha-

vioral refuge for the preferred prey type because due to predator

behavior the interaction strength with the preferred prey type

decreases when at low densities. As a consequence of these

foraging behaviors, the corresponding functional responses are

of the sigmoidal Holling type III with possibly a steep (in its

extreme form even vertical) part (Fig. 2B, C). Such functional

responses cause prey isoclines to have a vertical (or almost

vertical) part. Models with such isoclines were graphically ana-

lyzed in the seminal paper by Rosenzweig and MacArthur (1963)

who recognized their potential to bound the amplitude of

predator and prey oscillations. However, these authors did not

provide explicit mechanistic models where this occurs. It is also

well known that sigmoidal functional responses have a stabilizing

effect on predator–prey population dynamics (Gause et al., 1936).

An important observation for population ecology is that refuges

whether they are physical or behavioral promote such shape of

isoclines, thus predator–prey coexistence. Although this has

already been observed by many authors (e.g., Rosenzweig and

MacArthur, 1963; Hassell and May, 1973; Maynard Smith, 1974;

Murdoch and Oaten, 1975; Sih, 1987; McNair, 1986; Ives and

Dobson, 1987; Ruxton, 1995; Hochberg and Holt, 1995; Křivan,

1998; Ma et al., 2009) most of these models also include other

stabilizing mechanisms (e.g., prey negative density dependent

growth) that can mask the stabilizing effect of refuges per se. The

Gause predator–prey model which assumes exponential prey

growth is thus very suitable for disentangling the effect of refuges

from other possibly stabilizing mechanisms. The only two

mechanisms that operate in models considered in this paper are

the refuge size and predation. A small refuge size leads to

predator–prey persistence along a limit cycle, while a large refuge

size has the potential to stabilize population dynamics at an

equilibrium, but this depends on model details. For example,

predictions for non-adaptive refuge use by prey and for the

behavioral refuge caused by predator switching behavior lead to

qualitatively similar predictions (cf. Fig. 1D vs. Fig. 6C). When

refuge is small, predator–prey coexistence is achieved along a

limit cycle, while for larger refuges, coexistence is at a locally

stable equilibrium. In these cases increased refuge size effectively

stabilizes predator–prey population dynamics. This contrast with

adaptive prey refuge use (Fig. 4) and a refuge caused by predator’s

optimal foraging (Fig. 5), where predator–prey coexistence is

achieved along a limit cycle (except at a single refuge size in

Fig. 5C where predators and prey coexist at an equilibrium). This

shows that non-adaptive refuge use and the refuge caused by

prey switching have a stronger stabilizing effect on predator–prey

population dynamics when compared with prey adaptive refuge

use or a refuge caused by predator optimal foraging. In the

context of predator’s optimal foraging species coexistence is a

consequence of decreased predation pressure at low prey densi-

ties. Optimal foraging weakens the interaction strength at low

prey densities and leads either to an equilibrium or to a limit

cycle in population dynamics. This shows that weak interactions

are important for maintaining species coexistence (McCann et al.,

1998).

The results of this paper are based on some important assump-

tions. First, in real populations, there will always be some prey

negative density dependent growth that will further promote

species coexistence. On the other hand, refuges considered in this

paper assumed complete protection of prey. This can be the case of a

physical refuge, but when a refuge is behavioral (either due to

changes in prey antipredator behavior, or predator optimal foraging)

this is unlikely to be the case. In the latter case it is more likely that

the refuge will provide prey only a partial protection from predation.

Results for the Lotka–Volterra predator–prey dynamics with a

partial prey refuge (Křivan, 1998) suggest that as protectiveness

(measured as the inverse of interaction strength between predators

and prey in the refuge) will decrease, predator–prey population

dynamics will tend to get destabilized.
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Appendix A. ESS for adaptive prey refuge use

First I compute, for each resident prey strategy 0ru1r1 the

corresponding best response strategy bðu1,R,CÞ that maximizes

prey fitness Wð ~u,uÞ given by (4) at current population densities.

I remark that for

v1ðR,CÞ ¼
1

l1h1R

l1C

r1�r2
�1

� �

,

@Wð ~u,vÞ=@ ~u1 ¼ 0. When u14v1ðR,CÞ, the best response strategy is

to stay out of the refuge (i.e., bðu1,R,CÞ ¼ 1), while if u1ov1 the

best response strategy is to be in the refuge (i.e., bðu1,R,CÞ ¼ 0).

If u1 ¼ v1 then the best strategy is not uniquely defined (bðv1,R,CÞ ¼

½0,1�) and any strategy between 0 and 1 provides the same fitness
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Wð ~u1,v1Þ ¼ r2. Because for

C4
r1�r2
l1

ð1þl1h1RÞ,

v141, the best response strategy is bðu1,R,CÞ ¼ 0. For low predator

abundance satisfying

Co
r1�r2
l1

,

v1o0, and the best response strategy is bðu1,R,CÞ ¼ 1. For predator

and prey abundances that satisfy

r1�r2
l1

oCo
r1�r2
l1

ð1þl1h1RÞ,

the best response strategy depends on the resident strategy

bðu1,R,CÞ ¼

1 if u14v1ðR,CÞ,

½0,1� if u1 ¼ v1ðR,CÞ,

0 if u1ov1ðR,CÞ:

8

>

<

>

:

ðA:1Þ

The Nash equilibria are defined as the rest points of the best

response map, i.e., u1Abðu1,R,CÞ, (Nash, 1951). Thus, there are

three Nash equilibria: u1 ¼ 0, u1 ¼ 1, and u1 ¼ v1. The two bound-

ary equilibria 0 and 1 are strict Nash equilibria and therefore they

are evolutionarily stable. The interior equilibrium is not evolu-

tionarily stable, because

Wðv1,u1Þ�Wðu1,u1Þ ¼�
ðr2þh1r2u1Rl1þCl1�r1ð1þh1u1Rl1ÞÞ

2

h1ðr1�r2ÞRl1ð1þh1u1Rl1Þ
o0

and the local stability condition (Hofbauer and Sigmund, 1998)

Wðv1,u1Þ4Wðu1,u1Þ for every u1 in a neighborhood of v1 does

not hold.

Appendix B. Analysis of predator–prey dynamics with prey

switching

Here I analyze model (1) with functional response (11) and

numerical response (13). For prey population densities below the

threshold (RoRa) population dynamics are

dR

dt
¼ rR,

dC

dt
¼

ealaRa

1þhalaRa
�m

� �

C: ðB:1Þ

Thus, at each point of the prey–predator density phase space to

the left of the critical prey density R¼ Ra, prey exponentially

increase and predators increase (when ealaRa=ð1þhalaRaÞ4m),

or decrease (when ealaRa=ð1þhalaRaÞom).

For prey population densities above the threshold (R4Ra),

population dynamics (1) are given by the Lotka–Volterra model

with the Holling type II functional response

dR

dt
¼ rR�C

lR

1þhlR
,

dC

dt
¼

elR

1þhlR
�m

� �

C: ðB:2Þ

In the vicinity and to the right of the vertical line R¼ Ra, the prey

population decreases provided predator density is high enough,

i.e.,

C4Cc ¼
r

l
ð1þlhRaÞ:

Here the point ðRa,CcÞ corresponds to the intersection of the prey

isocline of model (B.2) with the switching line R¼ Ra. Similarly, to

the left of this line, the prey population increases. It is clear that

above the critical predator density Cc trajectories of model (1) are

pushed from both sides to the line R¼ Ra and they cannot leave

this line. Thus, trajectories of model (1) cannot cross the critical

line R¼ Ra above the point Cc. To fully analyze model (1) with

functional response (11) and numerical response (13) we need to

know population dynamics along the vertical part of the prey

isocline. For R¼ Ra population dynamics are

dR

dt
¼ rR�

ulRC

1þhluRþhalauaRa
,

dC

dt
¼

eulRþeaualaRa

1þhluRþhalauaRa
�m

� �

C, ðB:3Þ

where u is any number from interval ½0,1� and ua ¼ 1�u. Because

trajectories cannot leave the switching line R¼ Ra when predator

density is higher than Cc, the corresponding preference u can be

calculated from equation dR=dt¼ 0. This gives

u¼
rð1þhaRalaÞ

ClþrRaðhala�hlÞ
:

Substituting this u in predator growth equation leads to the

following population dynamics along the vertical part of the prey

isocline:

dR

dt
¼ 0,

dC

dt
¼ e

Rað�eaðr�ClþhrRalÞlaþerlð1þhaRalaÞÞ

lð1þhaRalaÞ
�mC: ðB:4Þ

These dynamics have the following equilibrium:

EF ¼ ðRF
,CF

Þ ¼ Ra,

rRaðelð1þhaRalaÞ�ealað1þhRalÞÞ

lðmþðham�eaÞRalaÞ

� �

, ðB:5Þ

for model (B.4) which is also an equilibrium of model (1),

provided this point is on the vertical part of the prey isocline,

i.e., when CF
4Cc. This holds whenever the prey critical density

satisfies

m

laðea�hamÞ
4Ra4

m

lðe�mhÞ
¼ Rn

, ðB:6Þ

i.e., when the predator isocline of model (B.2) is to the left of the

prey critical line R¼ Ra, or, in other words, if the refuge size (Ra) is

large enough.
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