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c.

ail addresses: vlastimil.krivan@gmail.com, kri
a b s t r a c t

This article re-analyses a prey–predator model with a refuge introduced by one of the founders of

population ecology Gause and his co-workers to explain discrepancies between their observations and

predictions of the Lotka–Volterra prey–predator model. They replaced the linear functional response

used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey

density. At concentrations below this critical density prey were effectively in a refuge while at a higher

densities they were available to predators. Thus, their functional response was of the Holling type III.

They analyzed this model and predicted existence of a limit cycle in predator–prey dynamics. In this

article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov

method, I define and analyze solutions of the Gause model. I show that depending on parameter values,

there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause,

(2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and

grows to infinity.

& 2011 Elsevier Ltd. All rights reserved.
0. Introduction

Soon after Lotka (1926) and Volterra (1926) published their
theoretical treatments on prey–predator population dynamics,
their predictions were experimentally tested by Gause (1934)
and Gause et al. (1936). Gause focused on three experimental
predator–prey systems consisting of prey (Aleuroglyphus agilis)
and predatory (Cheyletus eruditus) mites, prey (Paramecium cau-

datum) and predatory (Didinium nasatum) protists, and yeast
(Saccharomyces exiguus) and protists (Paramecium bursaria). In
none of these experiments population dynamics were consistent
with the Lotka–Volterra neutrally stable limit cycles. In experi-
ments with protists and mites a prolonged coexistence of both
prey and predators was obtained only when both species were
regularly added to the system. In a completely homogeneous
environment Didinium destructed all prey and it collapsed sub-
sequently. When the environment was not homogeneous and
there was a refuge for prey, prey survived in the refuge but the
predator population collapsed. The situation was different when
protists fed on the yeast. There was strong experimental evidence
that population dynamics tended to a limit cycle that was
independent from initial population numbers. These observations
lead Gause et al. (1936) to search for discrepancies in
ll rights reserved.
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assumptions of the Lotka–Volterra predator–prey model when
applied to their experimental systems. First, they observed that
protists were not able to feed on yeast at low densities, because at
low yeast densities the prey formed into a sediment at the bottom
which was not accessible to predators inhabiting the water
column. Thus, prey were effectively in a refuge when at low
concentrations. When prey reached above the critical density,
they re-appeared in the water column and became accessible to
predators. Second, they postulated that consumption of prey was
a saturating function of prey density. Third, they observed that
the predator population did not start to decrease until most of the
predators were in the refuge. To describe their observations
mathematically, Gause et al. (1936) substituted the linear con-
sumption rate used in the Lotka–Volterra model by a saturating
function that was zero below the critical prey density and had a
jump (discontinuity) at the critical prey density. Hereafter I will
refer to this model as the Gause model. Models with a saturating
functional response were introduced to theoretical ecological
literature later on by e.g., Rosenzweig and MacArthur (1963)
who replaced the linear functional response in the Lotka–Volterra
model by the Holling (1959) type II functional response. Besides
the fact that the Rosenzweig–MacAthur model assumes negative
density dependent prey growth, another difference between these
two models is the jump in the functional response in the Gause
model. The Rosenzweig–MacArthur model became one of the
keymodels of prey–predator interactions because it documents
that prey–predator coexistence is not limited to an equilibrium.
So did the Gause model. However, the mechanism that leads to
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the limit cycle in the Rosenzweig–MacArthur model is entirely
different from the mechanism that causes fluctuations in the
Gause model. In the Rosenzweig–MacArthur model the limit cycle
is caused by interaction between bottom-up and top-down prey
regulation. When prey are limited by resources (i.e., when
environmental carrying capacity is low), bottom-up regulation is
strong and keeps predator and prey population dynamics at an
equilibrium. As environmental carrying capacity increases due to
enrichment, bottom-up regulation gets weaker and the popula-
tion equilibrium becomes unstable due to the destabilizing
Holling type II functional response. In the case of the Gause
model there is no bottom-up regulation of prey growth so the
nature of the limit cycle is solely due to top-down regulation and
refuge presence. In fact, the Gause functional response is of the
Holling type III, so their analysis clearly showed that such a
functional response can lead to a limit cycle in predator–prey
population dynamics.

In general, proving existence and uniqueness of a limit cycle in
predator–prey population dynamics is not trivial. For example,
the limit cycle in the Rosenzweig–McArthur model appears when
the stable equilibrium undergoes the Hopf bifurcation and its
uniqueness was proved only much later (e.g., Huang and Merrill,
1989). Certainly, these concepts were unknown when Gause et al.
(1936) analyzed their system. Therefore, it is quite remarkable
that using a simple geometrical argument, they were able to
predict that trajectories of their model converge to a limit cycle
(see their Figure 5). However, there is one crucial problem with
their analysis. The Gause model was described by a differential
equation with a discontinuous right-hand side (due to the jump in
the functional response). Such differential equations may not
have solutions in the usual sense1 and the Gause model is an
example. A concept of a ‘‘solution’’ for such models was intro-
duced later on by Filippov (1960) (see also Aubin and Cellina,
1984; Filippov, 1988). No such mathematical concept existed at
the time when Gause with his co-workers analyzed their model to
achieve a better fit with experimental data. This is really a
remarkable example of biological research that used a mathema-
tical methodology that was not yet developed at that time.

In this article I will explain how solutions of the Gause model
can be defined and will analyze this model with respect to
parameter values and initial population densities. I will show
that trajectories of the Gause model can converge to a limit cycle
as correctly predicted by Gause et al. (1936), but they can also
converge to an equilibrium, or prey can escape completely
predator regulation.
1. The Gause model

Gause et al. (1936) considered the following adaptation of the
Lotka–Volterra predator–prey model

dR

dt
¼ rR�Cf ðRÞ

dC

dt
¼ ðef ðRÞ�mÞC ð1Þ

Here R is the prey density, C is the predator density, r is the per
capita prey population growth rate, f is the Gause functional
response specified below, e is the efficiency rate with which
captured prey are converted to new predators, and m is the
predator mortality rate. There are three distinctive features of this
1 A trivial example is the differential equation dx=dt¼ 1 when xo0 and

dx=dt¼�1 when x40. Unless we set dx=dt¼ 0 when x¼0, this differential

equation has no solution starting at x(0)¼0.
functional response: (1) below a critical prey population thresh-
old (denoted by Rc) prey are not consumed, (2) the functional
response has a discontinuity at the threshold, (3) consumption
saturates with increasing prey density (Gause et al., 1936). The
first feature corresponds to the refuge of a fixed size Rc. The jump
at the critical prey density was motivated by their observation
that ‘‘y predators y do not seriously decrease in concentration
until the destruction of the prey down to this thresholdy’’ (Gause
et al., 1936). This suggests that the functional response in the
vicinity of Rc is quite steep, and can be approximated by a
functional response with a jump at Rc. In fact, as we will see
below, this assumption allowed authors to analyze the predator–
prey population dynamics using a simple geometric argument.
Moreover these authors also asked that ‘‘the tangent to f y

crosses the ordinate and not the abscissa’’. This latter condition
excludes coexistence of prey and predators in a locally asympto-
tically stable equilibrium and it is interesting to note that this
seems to be the first occurrence of the now well known
(in)stability condition for prey–predator interactions (Murdoch
and Oaten, 1975). A prototype of such a functional response is
(see the solid curve in Fig. 1A)

f ðRÞ ¼

0 RoRc

lR

1þhlR
RZRc

8<
: ð2Þ
Fig. 1. Panel A (solid line) shows the Gause functional response (2). Panel B shows

the Filippov regularization (7) (solid line) of the Gause functional response. The

dashed line in both panels is the Holling type III functional response given by (3).

Parameters: Rc¼1, l¼ 10, h¼0.1, m¼ 10.
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Here parameter l describes the search rate of a predator and h is
the handling time a predator needs to process one unit of prey. Rc

is the critical prey density below which prey are not accessible to
predators. Thus, for above-critical prey density, f is the Holling
type II functional response. The Gause functional response (2) is a
limiting case of the Holling type III functional response (dashed
curve in Fig. 1A)

fIIIðRÞ ¼
lRm=ðRmþRm

s ÞR

1þhlRm=ðRmþRm
s ÞR

ð3Þ

when the exponent m tends to infinity. I will show now that
model (1) is not well defined in the sense that solutions cannot be
continued in forward time once prey density reaches the critical
threshold Rc, and predator density is high enough.

For prey population densities below the threshold (RoRc),
prey not being eaten by predators grow exponentially while
predators die exponentially, i.e., model (1) becomes

dR

dt
¼ rR

dC

dt
¼�mC ð4Þ

Thus, at each point of the prey–predator density phase space to
the left of the critical prey density R¼Rc, trajectories move in the
south-east direction.

For prey population densities above the threshold (R4Rc),
population dynamics (1) are given by the Lotka–Volterra model
with the Holling type II functional response

dR

dt
¼ rR�C

lR

1þhlR

dC

dt
¼

elR

1þhlR
�m

� �
C ð5Þ

First, I will recall properties of model (5) when no refuge exists
(Rc¼0, e.g., Murdoch and Oaten, 1975; Svirezhev and Logofet,
1983; Křivan, 2008). For small handling times that satisfy hoe=m

this model has an interior, unstable equilibrium E% ¼ fR%,C%g ¼

fm=ðlðe�mhÞÞ,re=ðlðe�mhÞÞg (Appendix A). Depending on para-
meters and initial conditions, model (5) has two types of solutions
(Appendix A). For small handling times that satisfy hoe=ðrþmÞ

all trajectories of model (5) spiral outward from the interior
equilibrium with ever increasing amplitude. For larger handling
times (e=m4h4e=ðrþmÞ) there exist trajectories that tend to
infinity without spiraling around the equilibrium (see the bottom
trajectory in Fig. 2B, F). In such a case, the prey population
completely escapes predator regulation.

Second, I will assume a refuge exists (Rc 40) and I will
consider model (1) with the Gause functional response (2). For
R4Rc the prey isocline coincides with the prey isocline of
model (5) and it is given by

C ¼
r

l
ð1þlhRÞ

(thick dashed line in Fig. 2). For small prey densities satisfying
RoRc the prey isocline is not defined. Let us consider the line
R¼Rc in the prey–predator density phase space. The isocline
analysis shows that in the vicinity and to the right of this line,
the prey population decreases provided predator density is high
enough, i.e.,

C4Cc ¼
r

l
ð1þlhRcÞ ð6Þ

Here the point (Rc, Cc) corresponds to the intersection of the prey
isocline of model (5) with the critical prey line R¼Rc (the corner
of the thick dashed line in Fig. 2). Similarly, to the left of this line,
the prey population increases. It is clear that above the critical
predator density Cc trajectories of the Gause model are pushed
from both sides to the line R¼Rc and they cannot leave this line if
they exist. Thus, trajectories of model (1) cannot cross the critical
line R ¼Rc above the point Cc and, by definition (the prey isocline
consists of points in the prey–predator density phase space where
prey population neither increases nor decreases, Rosenzweig and
MacArthur, 1963), this half-line must be a part of the prey isocline
of the Gause model. Thus, the prey isocline of the Gause model is
L-shaped (the thick dashed line in Fig. 2).

However, the most interesting feature of the Gause model is
the fact that once a trajectory falls on the vertical part of the prey
isocline, it cannot be continued any further. Indeed, as the
‘‘trajectory’’ cannot leave the line R ¼Rc above the point Cc it
follows that dR=dt¼ 0. But the right-hand side of model (1)
evaluated at R¼Rc gives dRc=dta0. In other words, the Gause
model is not well posed because its trajectories are not defined
when they fall on the vertical part of the prey isocline. This is a
consequence of the fact that the Gause functional response has a
‘‘jump’’ at the critical prey density, because such models may not
have solutions. In other words it is not clear how Gause et al.
(1936) defined the vector field in their Figure 5, panel 1’ for R¼Rc.
It took more than 20 years after Gause et al. (1936) published
their article before Filippov (1960) (see also Filippov, 1988)
introduced a new solution concept for such models. The crucial
step is provided through suitable definition of the vector field at
the critical prey density, which I briefly describe now. The
Filippov solution concept applied to the Gause model defines a
new vector field at the critical prey density Rc as the line segment
with end points given by the two adjacent vector fields f1 and f2.
Here f 1 ¼ ðrRc ,�mCÞ stands for the vector field defined by the
right-hand side of model (4) and f 2 ¼ ðrRc�ClRc=ð1þlhRcÞ,
elRcC=ð1þlhRcÞ�mCÞ for the vector field defined by model (5).
This new (multivalued) vector field is given by

F ¼ af 1þð1�aÞf 2

where 0rar1. In other words, this vector field associates to
every point along the vertical part of prey isocline a whole set of
possible directions given by F. This definition of the Filippov field
re-defines the functional response (2) at the critical prey density
to

f ðRÞ ¼

0 RoRc

0,
lRc

1þlhRc

� �
R¼ Rc

lR

1þhlR
R4Rc

8>>>>><
>>>>>:

ð7Þ

It follows that under this new definition f(Rc) is the line segment
½0,lRc=ð1þlhRcÞ� that fills the gap in the Gause functional
response (Fig. 1B). This definition is very natural as it reflects
the fact that at the critical prey density the functional response
does not specify exactly the prey consumption by predators. Thus,
functional response (7) is a very reasonable approximation of a
continuous Holling type III functional response that is steep
enough at prey densities close to the critical prey density
(Fig. 1B). Appendix B shows that model (1) with Filippov vector
field at the critical prey density has uniquely defined trajectories
for every initial condition.

To analyze the Gause model we need to know the dynamics
along the vertical part of the prey isocline. When trajectory of
model (1) falls on the vertical part of the prey isocline and the
predator density satisfies C4Cc , the trajectory cannot leave the
isocline and it must move vertically, i.e., dR/dt¼0. This implies
that along such a trajectory

a¼ 1�
rð1þlhRcÞ

lC
,



Fig. 2. Panels A–D assume that the critical prey density (Rc¼0.2) is smaller than the equilibrium prey density R% of model (5), while panels E and F assume the opposite

case (Rc¼0.6). Panel A shows the trajectories of the Gause model when handling time is small (h¼0.1) and all trajectories converge to a limit cycle. For intermediate

handling times (h¼0.5, panel B) a locally asymptotically stable limit cycle exists, but there are also trajectories that tend to infinity. For yet larger handling times (h¼0.7,

panel C) all trajectories diverge from the equilibrium. Panel D shows the case where handling time is zero. Panel E assumes low handling time (h¼0.1) in which case all

trajectories converge to an equilibrium point that is located at the vertical part of the prey isocline. Panel F assumes a larger handling time (h¼0.7) where the equilibrium

is only locally asymptotically stable because some trajectories tend to infinity. Other parameters: r¼1, l¼ 1, m¼0.2, e¼0.5.
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which corresponds to the vector f F ¼ ð0,erRc�mCÞAF, and the
population dynamics are

dR

dt
¼ 0

dC

dt
¼ erRc�mC ð8Þ

The above equation describes population dynamics along the line
R¼Rc as long as C4Cc . At the point (Rc, Cc) the trajectory leaves
the line R¼Rc and because the consumer density is low, it enters
the region where R4Rc (this also follows from considerations
in Appendix B). Thus, model (8) provides a formal definition of the
vector field along the horizontal line in Figure 5, panel 1’ of Gause
et al. (1936) (I remark that axes are swapped in Gause et al., 1936
so the line R¼Rc is horizontal there.) It is interesting to observe
that there exists a new equilibrium EF ¼ ðRF ,CF Þ ¼ ðRc ,erRc=mÞ of
model (8), provided this point is on the vertical part of the prey
isocline, i.e., when CF 4Cc. This holds whenever the prey critical
density satisfies Rc 4m=ðlðe�mhÞÞ, i.e., when the predator isocline
of model (5) is to the left of the prey critical line R¼Rc, or, in other
words, if the prey refuge is large enough.

Now I will analyze qualitative behavior of the solutions of the
Gause model with respect to parameters and initial population
densities. I will consider two cases, depending whether the
critical prey population density Rc is smaller or larger than the
equilibrium prey density R% ¼m=ðlðe�mhÞÞ of model (5). First, I
will assume that the critical prey density is smaller (Rc oR%, Fig. 2
A–D). Fig. 2A shows the case where the handling time is so small
that all trajectories of model (5) spiral around the equilibrium.
In this case, starting from any initial population densities, the
corresponding trajectory must fall at certain time onto the
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vertical part of the prey isocline. The trajectory will then follow
dynamics described by (8) and because in this case there is no
equilibrium on the vertical part of the prey isocline, the trajectory
must reach at a positive time the lower end-point (Rc, Cc) (i.e., the
corner of the prey isocline). At this point it will leave the isocline
and a limit cycle is formed (the heavy solid cycle in Fig. 2A). All
trajectories will reach this limit cycle in a finite time. This is the
limit cycle predicted by Gause et al. (1936).

For larger handling times (i.e., e=m4h4e=ðrþmÞ), model (5)
also has trajectories that do not spiral around the equilibrium.
There are two possibilities depending on the position of the
critical point (Rc,Cc). The trajectory that starts at this point returns
to the critical line R¼Rc (Fig. 2B) in which case a limit cycle exists.
However, this limit cycle is not globally stable, because there are
trajectories that tend to infinity (see the bottom trajectory
in Fig. 2B). Numerical simulations show that for yet higher
handling times the trajectory that starts at the point (Rc, Cc) tends
to infinity (Fig. 2C) and predators lose control over their prey.

Second, I consider the case where Rc 4R% (Fig. 2E, F). In this
case, equilibrium E% of model (5) is located to the left of the prey
critical density line in the prey–predator phase space where
dynamics are described by (4). Thus, it is no longer an equilibrium
of the Gause model. However, the equilibrium EF is on the prey
isocline and therefore is the only equilibrium of the Gause model.
Similar to the case where the prey critical density line was to the
left of the predator isocline, for small handling times all trajec-
tories must fall onto the vertical part of prey isocline and then
move along it to reach the equilibrium EF (Fig. 2E). For higher
handling times, some trajectories will escape predator regulation
(Fig. 2F) so that the equilibrium is then only locally asymptoti-
cally stable.

These results are summarized in Fig. 3. This is an example of a
bifurcation diagram in the (h,Rc) parameter space. The solid curve
in Fig. 3 corresponds to the transition from the locally stable limit
cycle in Fig. 2A to the locally stable equilibrium (panel E). This
curve is given by equation Rc¼Rn, i.e., Rc ¼m=ðlðe�mhÞÞ. Such
bifurcation was called the boundary-focus bifurcation (see the
case BF3 in Figure 5 in Kuznetsov et al., 2003). The dashed line
in Fig. 3 corresponds to transition between Fig. 2B and C, i.e.,
disappearance of the limit cycle in Fig. 2B, and was obtained by
numerical simulations.
Fig. 3. A bifurcation diagram for the Gause model with respect to handling times

and the refuge size. The solid curve corresponds to the transition from the limit

cycle (Fig. 2A) to the stable equilibrium (Fig. 2E) and is given by Rc ¼m=lðe�mhÞ.

The dashed curve corresponds to the set of parameters where the limit cycle

disappears. LC stands for the limit cycle, Eq stands for the interior equilibrium,1

means that no bounded attractor exists, and the right region (Cons. ext.) denotes

the set of parameters for which consumers extinct and prey grow exponentially.
2. Discussion

In this article I have analyzed a prey–predator model introduced
by Gause et al. (1936) to explain cycles in prey–predator population
dynamics which they observed in some experiments. They replaced
the linear functional response used by Lotka and Volterra by a
functional response that was zero below some critical prey thresh-
old density, had a ‘‘jump’’ at this threshold, and was saturating at
high prey densities. Such a functional response is an extreme form of
the Holling type III sigmoid functional response that was introduced
later on (Holling, 1959). Using this functional response Gause et al.
(1936) was able to show that predators and prey can coexist along a
limit cycle. This is perhaps the very first models in ecology that
shows species coexistence is possible not only at an equilibrium.
They also showed that a prey refuge can lead to predator–prey
coexistence as the same model without a refuge does not predict
such a coexistence. Moreover, they derived a general stability
condition for predator–prey models. Thus, this article was really
fundamental for further development of population ecology.
Although their analysis is very elegant, there is one crucial problem
because their model is not well defined as there are initial popula-
tion densities for which no solutions exist. The question then is
whether and in which sense the predictions these authors obtained
from the model are correct. In this article, using the approach
developed by Filippov (1960), I showed how trajectories in the
Gause model can be defined. I also analyzed this model with respect
to parameters and initial population densities. Gause et al. (1936)
predicted that the model has a globally stable limit cycle (see their
Figure 5). I showed that predators and prey can coexist along a limit
cycle provided that the refuge size and handling times are not too
high (see the region LC in Fig. 3). In fact, for small handling times
this limit cycle is globally stable, but for slightly higher handling
times there are also trajectories along which both populations tend
to infinity (Fig. 2B). Along such trajectories prey ‘‘escape’’ predator
control due to low predator efficiency to handle prey items. For yet
higher handling times the limit cycle disappears and predators
cannot control prey growth (see the region in Fig. 3 denoted as1).

A different situation occurs when prey critical density is high
enough, i.e., when the prey refuge is large. Then, for small
handling times a globally asymptotically stable equilibrium point
exists. As handling time increases, there will be again some
trajectories that will tend to infinity.

As prey below the critical density are effectively in a refuge,
this analysis nicely demonstrates the stabilizing role of refugia
that protect a fixed number of prey (e.g., Rosenzweig and
MacArthur, 1963; Hassell and May, 1973; Maynard Smith, 1974;
Murdoch and Oaten, 1975; Hassell, 1978; Sih, 1987; Ives and
Dobson, 1987; Ruxton, 1995; Hochberg and Holt, 1995; Křivan,
1998). When the refuge is large enough, i.e., when the critical
prey density below which prey are protected is high, provided
predators are able to regulate the prey population (i.e., when
handling times are small) then the two species coexist at an
equilibrium. As refuge size decreases, less prey are protected and
prey–predator coexistence occurs along a limit cycle.

Because the Gause functional response is of the Holling type III,
analysis of the Gause model shows that such a functional response
can lead to predator and prey coexistence without any prey density
dependence. In fact, the effect of a refuge on predator–prey
stability is somewhat parallel to the effect of enrichment on
predator–prey stability in the Rosenzweig–MacArthur model.
While in the Rosenzweig–MacArthur model a higher environmen-
tal capacity weakens the bottom-up control and leads to popula-
tion oscillations, the effect of refuge is just opposite. A larger refuge
stabilizes otherwise unstable population equilibrium.

A similar analysis for the Lotka–Volterra model where functional
response is linear with a ‘‘jump’’ at the critical prey density shows the
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same pattern (Fig. 2D). Here all trajectories converge to a global
attractor which is bounded by the largest Lotka–Volterra cycle that is
to the right of the vertical part of the prey isocline. For larger Rc the
population dynamics converge on an equilibrium (results not shown)
exactly as in the case with the Holling type II functional response.

The ultimate reason for species coexistence at an equilibrium or
along a limit cycle in the Gause model is the fact that the prey
isocline has a vertical segment. This vertical segment then limits
the amplitude of species fluctuations as suggested by Rosenzweig
and MacArthur (1963) in their seminal work. Since then it was
shown that such isoclines arise when prey–predator models
consider optimal foraging of predators (Křivan, 1996; van Baalen
et al., 2001), optimal activity level of prey and/or predators (Křivan,
2007) or optimal use of refuges (Křivan, 1998). All these models
show that prey isoclines with vertical segments (or equivalently
predator isoclines with horizontal segment) can arise naturally in
real populations. In fact, using models with discontinuous right-
hand sides is a very natural methodology for analyzing such
systems and can lead to a much simpler analysis when compared
to models with strong non-linearities. Such an approach was used
for example by Crowley (1981) to demonstrate an existence of a
limit cycle in Rosenzweig and MacArthur (1963) model where prey
isocline was assumed to be vertical at the prey carrying capacity.
This corresponds to strong density dependence that operates only
when prey density reaches the carrying capacity.

It is likely that the Gause predator–prey model was one of the
first models in biology where discontinuous differential equations
were used. It is remarkable that this happened even before
mathematicians provided a formal definition of a solution for such
systems. Although it does not seem that Gause work motivated
some research in this field, this example clearly shows that biology
can be a source of interesting problems for mathematicians. Since
that time, similar models were used in ecology (e.g., Křivan, 1996,
2007; Meza et al., 2005; Dercole et al., 2007), and in gene networks
(e.g., Edwards, 2000; de Jong et al., 2004; Gouzé and Sari, 2003;
Casey et al., 2006). Moreover, a complete qualitative theory was
developed for two-dimensional models with a discontinuity
(Kuznetsov et al., 2003), and a systematic approach (called ‘‘the
puzzle method’’) for analyzing such models was developed
(Dercole et al., 2007). Moreover, software for numerical analysis
of such models is also available (Dercole and Kuznetsov, 2004,
2005; Piiroinen and Kuznetsov, 2008; Thota and Dankowicz, 2008).
These methodological advances open further possibilities to study
models with discontinuities that were not available at times
when Gause et al. (1936) wrote their pioneering treatise.
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Appendix A. Analysis of model (5)

At the interior equilibrium E% ¼ fR%,C%g ¼ fm=ðlðe�mhÞÞ, re=ðl
ðe�mhÞÞg of model (5), the Gause criterion

df ðR%Þ

dR
¼

l
ð1þlhRÞ2

o
l

1þlhR
¼

f ðR%Þ

R%
implies instability. Moreover, because

@

@R

1

RC
ðrR�f ðRÞCÞ

� �
þ

@

@C

1

RC
ðef ðRÞC�mCÞ

� �
¼

1

R

f ðRÞ

R
�

df ðRÞ

dR

� �
40

the Dulac (1937) criterion (see also Hofbauer and Sigmund, 1998)
with the Dulac function 1=ðRCÞ excludes existence of a limit cycle
for model (5).

When prey density is high, model (5) asymptotically tends to

dR

dt
¼ rR�

C

h

dC

dt
¼

e

h
�m

� �
C ð9Þ

The prey isocline is the line C¼hrR. Below this isocline prey
population increases while above it decreases. Let us consider a

line given by C¼kR with 0okohr (i.e., this line is below the prey
isocline in the prey–predator density phase space). Trajectories of

model (9) cross this line upwards provided k4hðmþrÞ�e because

under this condition dC=dR4k at every point of this line. It

follows that when hoe=ðmþrÞ then k4hðmþrÞ�e for every

0okohr and trajectories of model (9) will reach the prey
isocline, i.e., trajectories of model (5) will spiral around its

equilibrium. However, when h4e=ðmþrÞ there will be trajec-
tories of model (9) that never reach the prey isocline (see bottom
trajectories in Fig. 2B and F). Along such trajectories prey
population escapes predator control.
Appendix B. Existence and uniqueness of trajectories of the
Gause model

Let n¼(nR, nC)¼(1,0) be the vector perpendicular to the line R¼Rc

in the prey–predator density phase space. Projection of the two vector
fields given by the right-hand sides of (4) (denoted as f1) and (5)

(denoted as f2) are /n,f 1S¼ rRc and /n,f 2S¼ rRc�lRcC=ð1þlhRcÞ.

If /n,f 1S40 and /n,f 2So0 trajectories are pushed from both
below and above to the line R¼Rc. These conditions hold when
predator population density is large enough, i.e., C4Cc .

The existence of trajectories for the Gause model follows from
general existence theorems that can be found in Filippov (1988)
(see also Colombo and Křivan, 1993). Uniqueness of trajectories
for the Gause model follows from the fact that /n,f 1S¼/n,f 2Sþ
lRcC=ð1þlhRcÞ. Thus, it is impossible that at some points of
discontinuity /n,f 1So0 and /n,f 2S40 which would imply
non-uniqueness of trajectories (Filippov, 1988; Colombo and
Křivan, 1993).
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Colombo, R., Křivan, V., 1993. Selective strategies in food webs. IMA Journal of
Mathematics Applied in Medicine and Biology 10, 281–291.

Crowley, P.H., 1981. Dispersal and the stability of predator–prey interactions. The
American Naturalist 118, 673–701.

de Jong, H., Gouz’e, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J., 2004.
Qualitative simulation of genetic regulatory networks using piecewise-linear
models. Bulletin of Mathematical Biology 66, 301–340.

Dercole, F., Gragnani, A., Rinaldi, S., 2007. Bifurcation analysis of piecewise smooth
ecological models. Theoretical Population Biology 72 (2), 197–213.

Dercole, F., Kuznetsov, Y.A., 2004. User guide to SlideCont 2.0. Department of
Mathematics, Utrecht University, The Netherlands /http://www.math.uu.nl/
people/kuznet/cm/slidecont.pdfS.

Dercole, F., Kuznetsov, Y.A., 2005. SlideCont: an Auto97 driver for bifurcation
analysis of Filippov systems. ACM Transactions on Mathematical Software 31,
95–119.

http://www.math.uu.nl/people/kuznet/cm/slidecont.pdf
http://www.math.uu.nl/people/kuznet/cm/slidecont.pdf
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