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TECHNICAL NOTE 

On the Intersection of Contingent Cones 

V, KftIVAN I 

Communicated by F, Giannessi 

Abstract. In this paper, we give a new condition that ensures the 
equality TK(x)c~ TL(x)= TK~L(X) for convex closed sets K, L. This 
condition, which is given in terms of support functions of the sets K, L, 
generalizes, in a Hilbert space, the usual condition 0eint(K-L) .  
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1. Introduction 

Different tangent cones, like the Bouligand contingent cone, the Clarke 
tangent cone, etc, play an important role in nonsmooth analysis, control 
theory, viability theory, etc (see Refs. 1-4). In the case of convex sets, these 
cones coincide and are called the tangent cone. Calculus on contingent (or 
tangent) cones may be found, for example, in Refs. 1-4. In general, the 
contingent cone to the intersection of  two sets is not equal to the intersection 
of  the corresponding contingent cones. Some attempt has been made to find 
a condition under which the equality would be ensured. In Refs. 1-3, it was 
proved that, if  AeSf(X,  Y) is a linear continuous map, with X, Y Banach 
spaces, if L c X ,  K c  Y are convex closed subsets, and if 

Oeint(K-A(L)) ,  (1) 

then for every x s A  - t (K)  ~ L, 

A -  '( TK(A(x) ) ) ~ TL(x) = TA ~(m ~ L(x). (2) 

~Researcher, South Bohemian Biological Research Center, (2esk6 Bud~jovice, Czechoslovakia. 
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Since the proof of this theorem was based on the Robinson-Ursescu theorem 
(see Ref. 1, Theorem 1.3.1), condition (1) was essential. On the other hand, 
it is not difficult to see that there are cases in which (1) is not satisfied and 
(2) is still valid. Let X = Y= R 2, K be a triangle with vertices in points (0, 0), 
(1, 1), ( -1 ,  1). Let L = - K  and A(x):=x. Clearly, 0 $ i n t ( K - L ) ,  yet 

Tx(O) n TL(O) = T x,~ L(O). 

In this note, we assume that X, Y are Hilbert spaces. Using support 
functions of  convex subsets of a Hilbert space, we prove that the following 
condition implies Eq. (2): there exists c > 0 such that, for every e~X*, 

aL~A-~(m(e)=inf{crL(e--A*(e'))+ax(e')[e'~Y*, Ne'[[r.<c[[el[x.}. (3) 

We show that condition (3) is satisfied in the above mentioned example. 
Moreover, we prove that, if L is bounded, then (1) implies (3). 

2. Main Result 

Let X be a Hilbert space and KcX.  Let 

a~e )  := sup(e, x), eeX*, 
x ~ K  

denote the support function of the set K (see Refs. 1-4, 6). Let xeK. Then, 
the Bouligand contingent cone is defined to be 

TK(X):={vEX]li~oinf[dist(K, x+ hv)/h]=O}, 

and the Clarke tangent cone is 

Crdx):={wXIlimj.nf[dist(K, x'+ hv)/h]=O}, 
x' ff~ x 

where x' x x denotes the convergence in the set K; see Refs. 1-4. 
Let us recall that, for a convex set K, these two cones coincide 

(Refs. 2-3). 

Theorem 2.1. Let X and Y be Hilbert spaces; let L~X,  Kc  Y be 
nonempty closed convex sets and A e 5°(X, Y) be a continuous linear map. 
By A*e ~ (  Y*, X*), we denote the transpose of A. Let there exist a constant 
c > 0  such that, for every e~X*, 

aL~A '(m(e)=inf{aL(e--A*(e'))+ax(e')le '~Y*, Ile'lhy*<cllellx*} • (4) 
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Let x e L  c~ A - I ( K ) .  Then, 

TL~,A-'(m(X) = TL(x) c~ A - l (Tx(A(x ) ) ) .  

P r o o f .  Since the inclusion 

TA-'(m ~L(X) c TA-~(m(X) c~ TL(x) c A -  l( Tx(A(x)  ) ) ~ TL(x) 

is always true (see Ref. 1, p. 225), we have to prove that 

A -  ' (Tx(A(x) ) )  ~ TL(x) ~ TA-~(m ~, L(X). 

Let 

v~ TL(x) c~ A -I(TK(A(x))) .  

From the definition of the Clarke tangent cone, it follows that, for every 
sequence x,  ~ x, xn~L c~A-1(K), and every sequence hn ]. 0+, there exist 
sequences vn --* A(v),  un ~ v, such that 

xn+h,unsL,  A(x , )  +h,v ,~K.  

Since L and K are convex sets, it follows that, for every e~X*,  e'~ Y*, and 
every n e N, 

O'L(e)>_(x~+hnun,e), o'ic(e')>_(A(x~)+h, vn, e'). 

Let 

eeb (L  ~ A - I ( K ) ) ,  

where b stands for the barrier cone, 

b(L):={eeX*lcrL(e)<oe} ,  L c X ,  

(see Ref. 1), i.e., 

i:= o'L~A-~(m(e) < oc. 

From (4), it follows that there exist e), j = i  . . . . .  such that, for 
lie; [t r* < cljet[x*, 

crL(e-- A*(ej)) + (r~ej) ~ i. 

Consequently, for every e> O, there existsjo > 0 such that, for everyj>j'o and 
every n ~ N, 

crL~A-~(m(e) > crL( e-- A*(ej) ) + cr~ej) -- e 

>_ ( x .  + h.u.,  e -  A*(e~) ) + ( A(x . )  + h.v. ,  e j ) -  ~ 

= ( x . + h . u . ,  e) - h . ( A ( u . )  - v.,  ej) - e. 
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Since 

llejllr*<-cllellx*, for every j =  1, . . . .  

it follows that 

( x ,  + h,u,,, e )  < e lm ~-~(m(e) + h,,cllelIx* II A(u~) - Vnll r +  e. 

Since the last expression holds for every e>  0 and every e eb(L  n A - I ( K ) ) ,  
it follows that 

x,, + h .u . eBx (  L c~ A -  1(K), h.cilA(u.) - vn II y), 

where Bx(x,  r) denotes the closed ball in X centered at x with the radius r. 
It follows that, for every n~N, we can find y . ~ L  c~ A - I ( K ) ,  such that 

[Ix~ + hnu . -  Y,,Hx <- h,,cltA(u.) - v,,II r. 

Let 

u ' :=(y , , -x , , ) /h , , ,  h':=h,,. 

Then, we have 

llu" - u,,llx<cl[h(u,,) - v, ll r ,  (5a) 

x,, + h'u" e L  ~ A - l ( K ) .  (5b) 

From (5), it follows that 

U~ ----~/3. 

Hence, 

veTA-~(m~(x). [] 

Corollary 2.1. Let L, K c X  be two nonempty closed convex subsets of 
a Hilbert space X, and let there exist a constant c > 0 such that, for every 
e~X* ,  

~rL,~x(e)=inf{~rL(e--e')+ crr(e')le' ~X* ,  tle'llx* <_cliellx*}. (6) 

Let x e L n K. Then, 

TL ~ x(x)  = TL(x) n Tx(x).  

Remark 2.1. Let X = R  2. We identify X with its dual X*. It is easy to 
see that (6) is satisfied in the example given in the introduction. Since 

/~x(O, 1) ~ (NK(O) c~/~x(O, t))  + (NL(O) c~/~x(O, 1)) 
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[Nx(0) denotes the normal cone to the set K at 0, see 
follows that, for every e~X, there exist 
e2~(NL(O) ca Bx(O, 1)) such that 

e= [[e[lxe, + HeHxe2. 

Let 
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Refs. 1-2], it 
e~(Nx(O)  c~ Bx(O, 1)) and 

5':= llelfxei. 

Since 5' ENK(0) and e -  Y sNr(0),  it follows that 

inf{tyx(e') + O'L(e--e')[e'eX, ite'jlx < _ lfetlx} < o ' ~ ' )  + crL(e--g) =0. 

From the convexity of the support function cr,:~ L, it fbllows that 

aK ~ L(e) <_ aK ~ L(O') + CrK~ L(e -- 5') <_ aX(g) + crL(e- 5'). 

Since crx~L(e)=0 for every e~X, it follows that 

0 = aKr~ L(e)  = inf{ type') + o ¥ ( e -  e')[e'EX, []e' [[xG ][ei[x}. 

Therefore, condition (6) is satisfied, and consequently 

TL ~ x(O) = TL(O) C~ Tx(O). 

Proposition 2.1. Let X and Y be Hilbert spaces; let L c X ,  K c  Y be 
nonempty closed convex sets, LcBx(O,p ) ,  for some p > 0 ;  and let 
A e £¢(X, Y) be a continuous linear map. Let 

O e i n t (K-A(L ) ) .  

Then, there exists c > 0 such that (4) is fulfilled. 

To prove Proposition 2.1, we will use the following lemma. 

Lemma 2.1. Under the assumptions of Proposition 2.1, for every l>p, 
there exists c>  0 such that, for every eeX*,  

Kl(e):={e'~Y*]ax(e')+aL(e-A*(e'))<_lNel[x.}ccHellx,.Br.(O, 1). (7) 

Proof. Let Zoe Y. Since OEin t (K-A(L) ) ,  it follows that there exists 
r > 0 such that 

/~r(O, r) c K -  A(L).  
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Consequently, there exist xo~L, yosK, such that 

rZo/llZoll r = y o -  a(Xo). 

Let e e X *  be fixed. Let, for every e'e Y*, 

U(e') := tyx(e') + o-L(e-A*(e')). 

For the conjugate function U* : Y ~  R (see Ref. 6), the following estimate 
holds true: 

U*(rZo/llzoll r) = sup ( (rZo/ llzoll r, e') - crK(e') - -  oz(e - A*(e') ) ) 
e '~ Y *  

< sup ( (Yo-  A(xo), e') - (Yo, e') - (Xo, e -  A*(e') ) ) 
e 'e  Y* 

= - (Xo ,  e)  <Pllellx*. 

The Fenchel inequality (see Ref. 6, p. 29) implies that 

sup (e', rZo/Ilzo 11 r)  -< llle [Ix* + U*(rZo/Ilzo II r) < (l+p)lie Ilx*. 
e' e Kl(e)  

We proved that, for every e CX* and every z ~ Y, 

aX,(e)(Z) -< ti z il r / r  I[e fix 41+p).  

Hence, 

VeeX*,  Kt (e) ~ tlellx.(l+p)/rBy.(O, 1). 

Condition (7) is satisfied if we set 

c: = (l+p)/r.  [] 

Proof of Proposition 2.1. 

A - I ( K )  c~ LcBx(O,p ) ,  

it follows that 

aa-'(hq ~ L(e) <p [Ie II x . ,  

Since 

Let l>p. Since 

for every e~X*.  

tYL ~ A-~(x)(e) = inf{ o'L(e - A*(e')) + aK(e') I e' E Y*} 

(see Ref. 2, p. 31), it follows that 

K~ (e) ¢ ~ ,  for every eeX*.  
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Since e' ~-~ crK(e') + crL(e- A*(e')) is a lower semicontinuous convex function, 
it follows that / ( l  (e) is a nonempty convex closed set. From Lemma 2.1 and 
Ref. 2, p. 31, it follows that there exists 

el e Y*, 

such that 

Ilel II Y* <~ clletlx* , 

inf aK(e') + aL(e--A*(e'))  = inf aK(e') + a L ( e - A * ( d ) )  
e" e Y *  e' e K l ( e )  

= o'~e~) + crL(e-A*(e[)), 

and therefore (4) is satisfied. D 

I f X  is an n-dimensional Euclidean space (with Euclidean norm denoted 
by IJ-I[) identified with its dual, a condition ensuring (6) was given in Ref. 
5. We recall it here. 

Definition 2.1. Let L, K be linear subspaces in R n. Let HL denote the 
projection of  the best approximation on the set L. We define 

a(L, K) := sup{ 1 - JJIIL(x)It JxeK, Ifxlt = 1 }. 

Proposition 2.2. Let H c  B(0, R), (R > 0) be a convex compact set; let 
L be a linear subspace of R", L c aft(H) - a f t ( H )  [aft(H) denotes the affine 
hull of  the set H, see Ref. 6]; and let there exist xoeR ~ and 8 > 0  such that 

B(xo, 8) c~ (L + xo) c H. 

Let K b e  a linear subspace in R" such that K + L = R "  and K e e L =  {0}. Let 
Lo = NK(0) and a(L, Lo) < 1. Then, there exists a constant c > 0 such that 

O's~ K(e) = inf{crH(e') + crK(e")[e'+ e" = e, [[e'[t + Ire"l] <_ ct[el] }, VeeR", 

where e depends only on a, R, 3. 
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