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1. INTRODUCTION 

Let us consider a control problem 

i(t) =f(x(t), u(f)) 

u(t) E wdt)h 
(1) 

where the set-valued map V( .) denotes a priori feedbacks, see [2-4]. 
Moreover, let a set K that defines the state constraints be given, i.e., 

x(t)~K. (2) 

Let us assume that control problem (1) with state constraints (2) has a 
solution. Let K denote a perturbation of the set K, T( ., .) and r( .) denote 
perturbations of f( ., .) and V( .). The question is whether for such 
perturbed control problem there exists a solution, i.e., a control such that 
the corresponding trajectory will satisfy the perturbed constraints x(t) E E. 
A non-stochastic approach to robustness in control problems with distur- 
bances, perturbations, etc., has been advocated by G. Leitmann and his 
follow workers [l&13] and A. Kurzhanski [7-91. We use here a viability 
approach to touch these issues. Let us recall that control problem (1) is in 
fact a differential inclusion 

--i(t) E fix(t)), (3) 

where F(X) :=f(x, V(x)). We can study at least two invariance properties 
of the set K with respect to (3). The first one, called invariance, consists in 
the fact that all solutions for (3) starting from any initial point x0 E K 
should stay in K. The second one, called also viability [2, 31, requires 
that for any initial point x0 E K there exists at least one trajectory to (3) 
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satisfying (2). Such a trajectory is called viable. There is no doubt that 
from the control theory point of view this approach is more adequate 
than invariance, since it means that there exists at least one control r( .) for 
control problem (1) such that the corresponding trajectory stays in K. 

Moreover, viability theory [2, 31 plays an important role in many “soft” 
sciences like economics, biology, etc. Quite often we do not know exactly 
either the viability set K or the right hand side of differential inclusion -F( .). 
This leads us to study the perturbed viability problem 

i(t) E F(x(t)) + @x(t)) 

x(t) E K(u) (4) 

x(0) = xg, 

where the set-valued map K( .) denotes perturbations acting on the set K 
of constraints and the set-valued map t( .) denotes the perturbation of F(. ). 
The question is under which conditions the perturbed problem (4) has a 
viable solution. There are several consequences of this problem both in 
biology (and in the other soft sciences as well) that mainly motivated this 
paper and in the theory of control systems with state constraints or systems 
under uncertainty. For example, every biological system must satisfy certain 
constraints that define the viability set. These constraints can be disturbed 
unpredictably by external forces in the course of time. Therefore the system 
must be able to survive at least within some small range of the perturba- 
tions. The measure of the robustness for the system under study may be 
given by the range of the perturbations that do not destroy the viability 
property of the system. 

Let us recall that the main viability theorem [2, 31 says that for upper 
semicontinuous set-valued map F( .) with convex and compact values and 
for closed K the necessary and sufficient condition (in finite dimension) for 
existence of a viable solution to (3) is the condition 

where TK(x) denotes the contingent cone. 

2. NOTATION AND BASIC DEFINITIONS 

R” is the Euclidean n-dimensional space; d(x, y) is the Euclidean dis- 
tance from x to y. B(x, M) denotes the open ball of radius A4 about x and 
B := B(0, 1). S denotes the unit sphere. If A, C are subsets of R”, A + C := 
{u + c 1 a E A, c E C}, A-C:=(a-c 1 UEA, CEC}, d(x,A):= 
inf{d(x, v) 1 y E A}, &A, C) := sup(d(x, C) ) x E A} denotes the separation 
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of A from C, and d*(A, C) := sup(G(A, C), 6(C, A)) is the Hausdorff dis- 
tance of the sets A and B. By a,: SH R” we denote the support function 
of the set A, i.e., oA(e) := supaea (a, e) where ( ., . ) stands for scalar 
product. Let XEA then Ta(x):=fiE,,, nl,, lJhca (l/h.(A-x)+&.B) 
denotes the contingent (or Bouligand) cone, see [Z-4]. If Kit R”, i = l,..., 
then by lim inf,, oc K, we denote the Kuratowski lower limit of the 
sequence Kj, i.e., liminf,,, K, :=n,,, UN,O nna,,, B(K,,c), see 
[S, 6, 13, 14-J. 

3. MAIN THEOREM 

THEOREM 1. Let X be a Banach space and let K: X -+ R” be a lower 
semicontinuous set-valued map with nonempty convex compact values. Let 
u,, E X be given and F: R” + R” be a bounded set-valued map with nonempty 
values which is lower semicontinuous on the boundary of K(u,). Let 

F(x) n int(TK,,Jx)) + 0, Vx E K( w-J. 

Then there exists E > 0 and n > 0 such that for every u E X, I/u - uO(I f E holds 
K(u) n B(K(wJ, v) Z 0, and 

vx E K(u) n B(K(ud, v), F(x) n T,&) Z 0. (5) 

Moreover, if the set-valued map K( . ) is continuous then there exists E > 0 
such that for every u E X, 11 u - uOII < E 

Vx E K(u), F(x) n TKcu#4 Z 0. (6) 

Remark. Let K( .) be continuous. From viability theory [2, 31 follows, 
that in the case when F( .) is a bounded upper semicontinuous set-valued 
map with nonempty convex and closed values, that is, continuous on the 
boundary of K(uO), condition (6) ensures the existence of a viable solution 
to the problem 

a(t) E F@-(t)) 

x(t) E K(u) (7) 
x(O) =x,, E K(u) 

for every u E X, 1124 - uOll < E. 

Remark. Let Kc R” and 

T&J n F(x) Z 0, VXEK. 
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Let 

such that 

Then 

QXE K, (8) 

T,(x) n (F(x) + 5(x)) Z 0, QxEK. 

For I;( .), <( .) upper semicontinuous with nonempty convex compact 
values condition (8) ensures existence of a viable solution to the problem 

i(t) E Vx(t)) + F(x(t)) 

x(t) E K (9) 

x(0) = x0 E K. 

To prove Theorem 1 we need the following two simple lemmas. 

LEMMA 1. Let X be a Banach space and let K: X + R” be a lower semi- 
continuous set-valued map with nonempty convex values and let u, + u, 
u,EX. Let x,+x, x,~K(u,), x~K(u). Then 

ProojI Let x E K(u) and 

S,(,)(X) := u K’“;- x. 
h>O 

Since K(u) is a convex set and lim inf,,, ocI TKCU,)(x,) being the Kuratowski 
lower limit is closed it follows that it is enough to prove the inclusion 

see [3]. Let v E SKCuj(x); i.e., there exists h > 0 such that 

x+h.vEK(u). 

Since K(u) c lim inf,, _ o3 K(u,) being lower semicontinuous it follows that 
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there exists a sequence y,,~K(u,,) such that y, -+X+/I .v. Let v, := 
(y, - x,)/h. For 0 < h, < h 

x, + h, . v, E K( u,) 

and consequently 

0, E TK(U”)(X,). 

Since v, -+ v it follows that 

v E lim’,“’ TK(U”)(x,). 

Remark. In the case when K( .) is continuous, then using the dual 
version of the Attouch theorem [l], it can be proved 

LEMMA 2. Let X be a Banach space and let K: X q R” be a lower semi- 
continuous set-valued map with nonempty convex closed values and u E X, 
c > 0. Then for V’E > 0, VXE K(u), 37(x) > 0 such that for Q~?E X, 
llu-iill <q(x), Vz-~K(ii), Ijx-Zll <q(x) holds 

6( T,(,,(x) n c . B, T,(,,(Z) n c . B) < E. 

ProofI Let us suppose that Lemma 2 does not hold, i.e., 3s >O, 
3x~ K(u), such that for Vn E: N, 3~4, E X, JIu- u,II < l/n, ~X,E K(u,), 
IIx - x,II < l/n, 6( T,,,,(x) n c. B, T,(,Jx,) n c . B) > E, i.e., for Qn E N there 
exists 

z, E T,&) n c. 4 z, $ BK,,,,(x,) n c. 4 E). 

From the sequence z,, n = l,..., we choose a convergent subsequence 

zn --* z E T/q,,(x) 

and 

i.e., 

We got a contradiction with Lemma 1. 
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Proqj‘ of Theorem 1. Since F( ) is bounded we may define 

c := 1 + sup sup ll.f’ll < X’ 
~tbd(K(rr,,iI /et.‘(\) 

Let x0 E bd(K(u,)). Due to the assumptions there exists 

and 1 > &,(x0) > 0 such that 

Since F is lower semicontinuous in x0, we get that for s1(x0)/4 there exists 
q(xO) > 0 such that 

From Lemma 2 it follows that there exists sZ(xO)> 0 such that if 
I/U - zq,JI < Q(x,,) and (12 -x011 <&*(x0), I E K(U), then 

~(TK,,,,M n c. & TK,,,(3 n c B) < s1(x0)/4. 

Since K(u,) is a compact set there exist points x, E bd(K(u,)), i= 1, . . . . N, 
such that 

bd(Wu,)) c () B(xi, min(vl(x,), EAxJ)). 
i= 1 

Let 

E2 := min Ed. 
i= 1, . . . . N 

Let 

M := K(u,) u 6 B(xi, min(v(x,), Ed)). 
i=l 

Since M is an open set there exists q > 0 such that 

i.e., Vx E B(bd(K(u,)), 7) there exists ig { l,..., N}, such that 

x E W,, min(ilb,), h(xi))). 
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Since K( .) is lower semicontinuous it follows that there exists s3 > 0 such 
that if I/U - uOll < .sg then K(U) n B(K(u,), ‘1) # @ and consequently 

&K(u) f-7 B(K(&d, vl), au,)) < r. 

Moreover, since the map K(u) n B(K(u,), 4) is lower semicontinuous for 
11~ - u,,ll < ej, see [5], it follows that there exists e4 > 0, s3 > .c, such that 

11~ - hll < c4 * W(h), K(u) n B(NkJ, ~1) cr. 

It follows that 

llu - hll < c4 * d*W(kA K(u) n B(Nud, 9)) < 9. 

If we assume that K( .) is continuous then again there exists .s4 > 0 such 
that 

lb- AI < 84 * d*(Nu), a&l)) < ‘I* 

It follows that for every 2.~ bd(K(u) n B(K(u,), q)) (2~ bd(K(u)) in the 
continuous case, respectively) there exists xi E bd(K(u,)) such that 

II-f - wxill < min(V(xi), &*tXi)). 

Let IIu - uOIJ GE := min(s,, s4). For every 1c bd(K(u) n B(K(u,), q)) 
(2 l bd(K(u)) in the continuous case, respectively) there exists 
xi E bd(K(u,)) such that 

Let 

F(f) n Nfi, E1(Xi)14) + 0. 

We prove 

BG EI(Xi)/4)C TK(u)(z.). 

Let e E S. It follows that 

7+3/4.~I(xi).e~B(J: 3/4.~l(xi))~ T,(,,,(xi)nc.B. 

Since 

d(T,(u,,(Xi) n c . By TKcu)(z) n C. B) < EI(Xi)/4v 

then there exists m E T,,,,(Z) n c. B such that 

IIf+3/4.c,(x,)~e-ml( <.zI(xi)/4, 

(10) 
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Therefore 

grK,u,( i) (e)> cm> e> > 0,(7.3,4 ,,,.J,(e)-f:,(-~,)/4 

= a,,7,1:2 ,:,(.x,,,(e) (11) 

and (10) follows. Consequently 

It follows that 

For 2 E int(K(u) n B(K(u,), 9)) (2 E int(K(u)) in the continuous case, 
respectively) obviously 

An Application in the Theory of Control Systems with State Con- 
straints. Now we go back to the beginning of the paper to show how 
Theorem 1 can be used in the framework of the theory of control systems 
with state constraints. 

Let V: X-+ Z, f: Graph(V) H X, where X, Z are finite dimensional 
spaces and Kc Dom( V) := (XE X 1 V(x) # 0 1. Let us regard a control 
system (1) with state constraints (2). Then the regulation map is defined as 

&4x) := {u E v(x) I f-(x, 0) E T,&)}. 
Let us assume that V( .) is upper semicontinuous, f is continuous, F(x) := 
{fb, 0) I IJE J’(x)> h as convex values, and S( ., . ), V( -) have linear growth. 
Then the existence of the viable solutions to control system is equivalent 
with RK(x) # 0, Vx E K, see [2, 31. 

If we assume that V( -) is continuous on the boundary of the set K and 
Vx E K, ii,(x) # 0 where B,(x) := (u E V(x) I f(x, u) E int( T,(x))} then 
from Theorem 1 it follows that the control problem has a viable solution 
even for a small perturbation of the viability set K. 
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