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ABSTRACT

Food web dynamics are usually studied using model systems in which food web features, such as
distribution of interaction strength, are fixed. This neglects adaptive foraging behaviour, which
makes interaction strength a function of consumer preferences. In an endeavour to understand
the effects of adaptive foraging behaviour on food web persistence, I consider here a diamond-
like food web consisting of resources, two consumer species and top predators. Using a simple
Lotka-Volterra type food web dynamics, I compare stability of this model when top predators
are inflexible with the case where they are adaptive foragers that maximize their fitness. I show
that adaptive consumer switching by predators significantly enlarges the set of parameters
for which the two consumer species co-exist in the food web. Moreover, adaptive consumer
switching leads to the ideal free distribution of predators. The results suggest that predator
species which behave in an adaptive way are more likely to be keystones than those species
which are inflexible foragers.
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INTRODUCTION

Arising from the pioneering work of Gause (1934), the principle of competitive exclusion
suggests that complete competitors cannot co-exist on a single resource. More generally, no
stable equilibrium is possible if N species are limited by less than N factors (Levin, 1970). In
accordance with this principle, simple models of competition that assume limitation by
common resources (bottom-up control) do not predict species co-existence (Tilman, 1982).
How, then, can competing species co-exist? It is the role of ecologists to search for other
mechanisms that can explain long-term species survival. Paine (1966, 1969a,b, 1980)
showed that removal of a starfish Pisaster ochraceus resulted in the competitive exclusion of
most barnacle species on which the starfish normally feeds. Thus, co-existence of barnacle
species was mediated by the presence of predators. Species like the starfish, whose impact on
its community is disproportionally large relative to its abundance (Paine, 1992) or to its
proportional biomass (Power et al., 1996), are called keystone species. Identification of
keystones in ecosystems is crucial in conservation ecology because their extinction is likely
to affect several other species and can lead to a dramatic loss of biodiversity. A common
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mechanistic explanation for species co-existence in communities with keystone predators
is that predation keeps the competitively dominant consumer species at low densities,
which reduces interspecific competition and allows the competitors to survive indefinitely.

In this article, I consider a diamond-like food web that consists of three trophic levels:
resources, two consumer species and top predators. The two consumer species compete
directly for the shared resources, and indirectly (apparent competition; Holt, 1977, 1984;
Holt et al., 1994; Bonsall and Hassell, 1997; Abrams, 1998) through the shared predators. I
ask: ‘Under which circumstances can such a food web topology persist?’ Following the
extended principle of competitive exclusion (Levin, 1970), it is clear that the two consumers
in a diamond-like food web cannot survive if the food web is controlled solely by resources
or solely by predators. The reason is that there must be two limiting factors for consumer
co-existence. For low predator densities, the food web is regulated by the lack of resources
(bottom-up control), direct competition between consumers is strong and one of the two
competing consumer species is outcompeted by exploitative competition. For high predator
densities, the food web is regulated by predators (top-down control), apparent competition
between consumers is strong and one of the two consumer species is again outcompeted.
Naturally, the stronger competitor for exploitative competition can be the weaker com-
petitor for apparent competition, and vice versa. Adding a constant number of predators to
a purely exploitative system can lead to a switch in the surviving consumer species. Thus,
consumers can co-exist only provided the food web is controlled both by predators and by
resources (Levin, 1970). This requirement sets some constraints on system parameters that
render the food web persistent (Leibold, 1996).

The above analysis assumes inflexible predators with fixed preferences for either con-
sumer type. In this article, I focus on the case in which predators are flexible and they switch
their diet adaptively (by which I mean that they maximize their fitness). I show that
consumer switching enlarges the set of parameters for which the two competing species
co-exist when compared with inflexible predators. I also show that adaptive switching leads
to the ideal free distribution (IFD) of predators (Fretwell and Lucas, 1970) with respect to
foraging on consumer 1 and consumer 2. The mechanisms that lead to species co-existence
are similar to those for other models of population dynamics with adaptive predators
(Gleeson and Wilson, 1986; Fryxell and Lundberg, 1993, 1994, 1997; Křivan, 1996, 1997,
1999, 2003; Hambäck, 1998; Genkai-Kato and Yamamura, 1999; Křivan and Sikder, 1999;
van Baalen et al., 2001; Křivan and Eisner, 2003; Křivan and Schmitz, 2003). Namely,
adaptive consumer switching by predators relaxes the strength of both apparent and direct
competition between consumer species, which allows for species co-existence. In fact,
adaptive predators render the population equilibrium densities to the levels at which the
food web is controlled both by top-down and bottom-up regulation, which is a necessary
condition for species co-existence due to the extended exclusion principle (Levin, 1970). If
I define keystone predators for the diamond-like food web as those species that allow
for indefinite co-existence of the two competing consumer species, then the results of this
study suggest that adaptive predators are more likely to be keystones than non-adaptive
predators.

In this article, I consider two cases. The simpler case, with which I start, assumes that
the density of the top predator is constant – that is, predators do not undergo
population dynamics and they are treated as a component of the environment. This
system allows for a straightforward analysis and for clear understanding of mechanisms
that promote species co-existence. Then I consider the fully dynamical system, which is
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more difficult to analyse, but I show numerically that the conclusions derived from the
simpler case still hold.

MODEL

I consider a diamond-like food web consisting of a common resource (R), two consumer
populations (C1 and C2) and top predators (P). Population dynamics of the resource and
consumer species are described by the following Lotka-Volterra model

dR

dt
= rR �1 −

R

K � − λ1C1R − λ2C2R

dC1

dt
= C1(e1λ1R − m1(P1)) (1)

dC2

dt
= C2(e2λ2R − m2(P2))

where r is the resource per capita intrinsic growth rate, K is the resource environmental
carrying capacity, λ1 and λ2 are consumer cropping rates of resources, e1 and e2 are efficiency
rates with which resources are converted to new consumers, and m1 and m2 are consumer
mortality rates. The model assumes tritrophic interactions between resources (R), two
consumer species (C1 and C2) and predators (P). The predator population splits in two
parts: those individuals that feed on consumer 1 (P1) and those that feed on consumer 2
(P2). The above model does not describe predator population dynamics explicitly. Instead, it
assumes that predator dynamics are slow when compared with resource and consumer
population dynamics and it treats the predator density as a constant. However, predators
influence consumer mortality rates, which I indicate by writing mi(Pi). Thus, the above
model treats resources and competitors dynamically, while predators are taken to be a
component of the environment, which does not change in time, but predator preferences for
either consumer 1 (u1 = P1/P) or consumer 2 (u2 = P2/P) can change. Thus, the distribution
of interaction strength in the food web is not static, but it can vary as predator foraging
preferences change in response to changes in consumer densities. In what follows, I consider
two types of predator behaviours. First, I assume that predator preferences for consumers
are fixed. This corresponds to a non-adaptive predator foraging behaviour. Second,
I assume that predators are adaptive foragers that maximize their fitness, which corresponds
to a more contemporary dynamic view of food webs, where not only interaction strength
but also food web topologies are treated dynamically (Kondoh, 2003; Křivan and Schmitz,
2003). I compare both types of behaviours.

Inflexible predators

This case assumes that the proportions of predators feeding on consumer 1 (u1) and on
consumer 2 (u2) do not change in time. Thus, predators are inflexible because they do not
react to changing densities of consumers and the interaction strength in the food web does
not change. The food web dynamics is controlled by a combination of predation and
resource limitation, but these two factors are not independent for the two consumer species
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(e.g. both consumer species will decrease simultaneously if predator density increases). Due
to the competitive exclusion principle, no stable species co-existence is possible (Levin,
1970). Moreover, the R* rule implies that the consumer which suppresses resources to
a lower equilibrial level will survive in the above model, while the other species will
be outcompeted (Hsu, 1978; Waltman, 1983). Thus, if the second species is the weaker
competitor, i.e.

m1(P1)

e1λ1

<
m2(P2)

e2λ2

(2)

then it will be eliminated from the food web and the resulting food web topology will be of
the linear food chain (resource–consumer 1–predators; Fig. 1A). Similarly, if the opposite
inequality holds, then consumer 1 will be eliminated from the food web. Figure 1A shows
the switch in the food web topology along the consumer 1 mortality gradient (the unrealistic
case where equality holds in (2) is not shown in Fig. 1A).

It is well known (Armstrong and McGehee, 1980; Hofbauer and Sigmund, 1984; Butler
and Waltman, 1986; Hutson and Schmitt, 1992) that for species pesistence, it is necessary
that at the equilibrium of a linear food chain where one consumer species is missing the

Fig. 1. The dependence of the food web topologies originating from the diamond-like food web
topology along the consumer 1 mortality gradient. (A) assumes inflexible predators, while (B) assumes
adaptive predators. In the case of inflexible predators, the food web topology is generically a linear
food chain in which one consumer species is outcompeted. If predators are adaptive, then both
consumer species can survive in the food web.
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missing species can invade. This gives two necessary conditions for species permanence.
While these conditions do not hold for inflexible predators (Appendix 1), I show in the next
section that they can be satisfied if predators are adaptive foragers.

Adaptive predators

Now I assume that predators are adaptive foragers and that they choose their diet so that
their per capita population growth rate is maximized. I assume that the per capita predator
population growth rate is proportional to per capita food intake rate, i.e.

W = F1u1C1 + F2u2C2

where Fi denotes the instantaneous per capita population growth rate when feeding on
consumer i (i = 1, 2). Thus, W is a surrogate for predator fitness. The optimal foraging
strategy of predators is to feed on consumer 1 when F1C1 > F2C2 (u1 = 1, u2 = 0) and to feed
on consumer 2 when the inequality is reversed (u1 = 0, u2 = 1). Here I assume that predators
are omniscient and that they are perfect optimizers. This leads to dynamic changes in the
food web topology as consumer densities change. When it is more profitable to feed on
consumer 1, the food web topology is described by a linear food chain consisting of
resources (R), consumer 1 (C1) and predators (P). As the consumer not being preyed upon
(consumer 2) grows, at a certain instant feeding on consumer 2 gives the same fitness as
feeding on consumer 1. This can lead to the situation in which predators control densities of
both consumer species at levels under which feeding on consumer 1 gives the same fitness
as feeding on consumer 2. Such a distribution of predators was termed the ideal free
distribution (IFD; Fretwell and Lucas, 1970) because predators are free to choose on which
food resource to feed and they are assumed to be omniscient with respect to food abundance
and quality. Although the original derivation of the IFD was a static concept, it was later
extended to the case where predators and/or consumers undergo population dynamics
(Lessells, 1995; Křivan, 1996, 2003). In what follows, I derive the ideal free distribution for
predators and I study its consequences for the co-existence of the two consumer types. It is
clear that if predators can regulate consumer populations so that the conditions for the IFD
hold, then this should promote consumer co-existence because as one consumer population
starts to decline, predators start to feed more on the other consumer population, which
decreases predation strength on the first consumer population when compared with
inflexible predators.

If predation on consumer 1 is more profitable than predation on consumer 2
(F1C1 > F2C2; the part of the consumer phase space below the dashed line in Fig. 2), the food
web topology is that of the food chain with consumer 1 and the corresponding population
dynamics are described by model (1) where I set P1 = P and P2 = 0 as all predators feed on
consumer 1.

Similarly, if predation on consumer 2 is more profitable than predation on consumer 1
(F1C1 < F2C2; the part of the consumer phase space above the dashed line in Fig. 2),
the corresponding food web topology is that of the food chain with consumer 2 and the
corresponding population dynamics are given by model (1) where I set P1 = 0 and P2 = P as
all predators feed on consumer 2. I assume that consumer mortality rates m1(P) and m2(P)
increase with increasing predator densities and that without predators the second con-
sumer is the weaker competitor [m1(0)/(e1λ1) < m2(0)/(e2λ2)]. Invasibility analysis shows
(Appendix 2) that for low predator densities that satisfy inequality
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m1(P)

e1λ1

<
m2(0)

e2λ2

(3)

the second consumer remains the weaker competitor and it cannot invade the linear food
chain with consumer 1, exactly as in the case of inflexible predators (Fig. 2A). The corre-
sponding food web topology is the food chain with consumer 1 present (Fig. 1B, low
consumer 1 mortality rates).

The situation changes when predator density is high enough in the sense that the opposite
to inequality (3) holds. Then, both equilibria can be invaded by the missing species and the
diamond-like food web topology can persist (Appendix 2; Fig. 1B, high consumer 1

Fig. 2. Population dynamics for adaptive predators in consumer phase space. (A) assumes low preda-
tor densities (P = 0.01) and the competitively weaker consumer 2 is outcompeted by the dominant
consumer 1 as in the case of inflexible predators. (B) assumes higher predator densities (P = 0.1), in
which case predators reach ideal free distribution because they suppress consumer densities to the
level at which predator fitness is the same regardless of whether they feed on consumer 1 or consumer
2 (shown as the dashed line). Population dynamics converge to an interior equilibrium. Parameters:
r = 1.1, e1 = 0.1, e2 = 0.08, λ1 = λ2 = 1, µ1 = µ2 = 0.1, Λ1 = Λ2 = 1, F1 = F2 = 1, K = 15.
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mortality rates). In this case, predator density is high enough to control consumer densities
at the level where feeding on consumer 1 provides the same fitness as feeding on consumer 2.
Figure 2 shows adaptive population dynamics in the case where consumer mortality rates
are linear functions of predator densities:

mi(Pi) = µi + ΛiPi i = 1, 2 (4)

Here µi denotes the background consumer mortality rate in the absence of predators
(mi(0) = µi) and Λi is the cropping rate of predators when feeding on consumer type i.
Trajectories of model (1) with adaptive predators are pushed from both sides to the
switching plane F1C1 = F2C2 (shown as the dashed line in Fig. 2). Population dynamics in the
switching plane are described by the following model (Appendix 3):

dR

dt
= rR �1 −

R

K � −
λ1F2Λ2 − λ2F1Λ1

F2Λ2

RC1

dC1

dt
= C1 �e2Λ1λ2 + e1λ1Λ2

Λ1 + Λ2

R −
µ1 Λ2 + µ2Λ1 + PΛ1Λ2

Λ1 + Λ2
� (5)

dC2

dt
= C2 �e2Λ1λ2 + e1λ1Λ2

Λ1 + Λ2

R −
µ1Λ2 + µ2Λ1 + PΛ1Λ2

Λ1 + Λ2
�

with an interior equilibrium E* (Fig. 2B) in the IFD plane:

R* =
µ1Λ2 + µ2Λ1 +Λ1Λ2P

e1λ1Λ2 + e2λ2Λ1

C*1 =
F2r(e2KΛ1λ2 + e1Kλ1Λ2 − PΛ1Λ2 − Λ2µ1 − Λ1µ2)

K (F2λ1 + F1λ2) (e2Λ1λ2 + e1λ1Λ2)

C*2 =
F1

F2

C*1

At this equilibrium, predators will feed on both species and the ideal free distribution of
predators is (Appendix 3):

u1

u2

=
e2µ1λ2 − e1λ1 (µ2 + PΛ2)

e1µ2λ1 − e2λ2 (µ1 + PΛ1)

(Fig. 3). As the overall predator density increases, predator preferences for consumer 1
decrease at the population equilibrium. Co-existence of the two consumer species at the
switching plane is possible because the coefficients in model (5) for the two consumer species
are the same. Thus, the co-existence in the switching plane does not contradict the exclusion
principle (Levin, 1970). Figure 4A shows the range of parameters in the P–K parameter
space for which the diamond-like food web is persistent. The minimal predator density for
persistence

P >
e1λ1µ2 − e2λ2µ1

e2λ2Λ1
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is given by the invasibility condition (Appendix 2) and the lower boundary on the resource
carrying capacity is given by

K =
PΛ1Λ2 + Λ1µ2 + Λ2µ1

e1λ1Λ2 + e2λ2Λ1

For lower resource carrying capacities, the interior equilibrium E* is not positive because
consumers die out due to strong predation mortality.

PREDATORS UNDERGO POPULATION DYNAMICS

So far, I have assumed that the predator density is fixed. Now I want to extend previous
results to the full dynamical setting where predators are treated dynamically. I consider the
following model describing the four-species population dynamics:

dR

dt
= rR �1 −

R

K � − λ1C1R − λ2C2R

dC1

dt
= C1(e1λ1R − Λ1u1P − µ1)

(6)
dC2

dt
= C2(e2λ2R − Λ2u2P − µ2)

dP

dt
= P(F1u1C1 + F2u2C2 − m)

where µi and m are the backround consumer and predator mortality rates, respectively.
Leibold (1996) analysed model (6) assuming that predator preferences for either consumer
(ui) are fixed and he showed that model (6) can have a locally stable interior equilibrium at
which all species can co-exist indefinitely. Thus, when predators are treated dynamically,
they can promote co-existence of the two consumer species. However, the co-existence can
be limited to a narow range of parameters. Here I study the range of parameters for which

Fig. 3. The ideal free distribution of predators at the population equilibrium as a function of the
overall predator density. Parameters are the same as those in Fig. 2.
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the diamond-like food web is persistent and I ask whether adaptive predator behaviour
enhances species co-existence as my previous analysis for fixed predator densities
suggests.

The two necessary conditions for consumer invasibility are given in Appendix 4. Figure
4B shows graphically the range in predator mortality rate (m) and the resource carrying
capacity (K) parameter space for which the two invasibility conditions hold and all species
co-exist. The range is either quite narrow (such as in Fig. 4B) or void because the two
invasibility conditions may not be satisfied. A similar analysis for adaptive predators shows
(Appendix 4; Fig. 4C) that adaptive consumer switching strongly enlarges the range of
parameters for which the diamond-like food web is persistent. The reason for this increase
in the range of parameters is the same as that I have already discussed for the model with
fixed predator density. Adaptive predator behaviour relaxes apparent competition between
the two consumer species, which allows both consumers to survive in the food web. This is
numerically documented in Fig. 5, where dependence of the stable equilibrium on the
resource carrying capacity is shown. The left-hand panels show a simulation for inflexible
predators, while the right-hand panels show simulations for adaptive predators. In the
left-hand panels, consumer 1 is outcompeted from the food web at high resource carrying
capacities. In contrast, when predators are adaptive, the two consumers co-exist even at high
resource carrying capacities (right-hand panels), which makes the diamond food web
permanent. This is because at high enrichment levels, adaptive predation relaxes apparent
competition between the two consumer species.

The mechanism that leads to consumer co-existence in the food web with adpative
predators is similar to that we have already observed for model (1). In the lower triangular
region of the consumer phase space (Fig. 6, bottom panels) where predators feed on
consumer 1 only (u1 = 1, u2 = 0), the corresponding food web has the following interior
equilibrium:

Ea = � µ2

e2λ2

,
m

F1

,
e2K(F1r − mλ1)λ2 − F1rµ2

e2F1Kλ
2
2

,
e1λ1µ2 − e2λ2µ1

e2Λ1λ2
�

Similarly, in the upper triangular region of the consumer phase space where predators feed
on consumer 2 (u1 = 0, u2 = 1), the corresponding food web has the following interior
equilibrium:

Eb = � µ1

e1λ 1
,

e1Kλ1(F2r − mλ2) − F2rµ1

e1F2Kλ
2
1

,
m

F2

,
e2λ2µ1 − e1λ1µ2

e1Λ2λ1
�

Thus, only one of these two equilibria can be positive. Following our assumption (2), I
assume that

µ1

e1λ1

<
µ2

e2λ2

This means that equilibrium Eb is never positive, because the predator density at this equi-
librium is always negative. There are two possibilities. Either equilibrium Ea belongs to the
lower triangular region of the consumer phase space, in which case the predators will feed
on consumer 1 only at this equilibrium (Fig. 6, left). Or, the equilibrium is in the upper
triangular region of the phase space, which occurs if
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Fig. 4. (A) The range of parameters in (P, K) parameter space for which the diamond-like food web is
persistent when predators do not undergo population dynamics. (B) and (C) The range of parameters
in (m, K) parameter space for which the diamond-like food web is persistent when predators undergo
population dynamics. (B) assumes inflexible predators (u1 = 0.6, u2 = 0.4), while (C) assumes adaptive
predators. The parameters are the same as those in Fig. 2.
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K[F1F2e2rλ2 − e2λ2m(λ1F2 + λ2F1)] > F1rµ2 (7)

Then, the trajectories of model (6) that start in the lower triangular part of the consumer
phase space tend to equilibrium Ea and the trajectories that start in the upper triangular
part of the consumer phase space tend to the lower triangular region because the com-
petitively weaker consumer 2 tends to be outcompeted by consumer 1. Once again, this
leads to conflict along the switching plane (dashed line in Fig. 6) and to the emergence of a
new equilibrium at the switching plane (Fig. 6, right; Appendix 5). For inequality (7) to
hold, predator mortality rates cannot be too high, and the resource carrying capacity

Fig. 5. Dependence of species equilibrium on resource carrying capacity K for a model with inflexible
predators (left-hand panels, u1 = 0.6, u2 = 0.4) and adaptive predators (right-hand panels). Parameters:
m = 0.39; other parameters are the same as those in Fig. 2.
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Fig. 6. Population dynamics when predators are adaptive foragers. The left-hand panels assume a low
resource carrying capacity (K = 3) so that inequality (7) does not hold. Trajectories converge to the
equilibrium at which predators feed on consumer 1 only. The right-hand panels show the case where
the resource carrying capacity is high (K = 10) so that inequality (7) holds. In this case, a new equi-
librium (E*, Appendix 5) appears in the IFD plane (shown as the dashed line). Parameters are the
same as are those in Fig. 5.
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cannot be too low. Figure 7 shows the proportion of the equilibrium predator population
feeding on consumer 1 as a function of the resource carrying capacity. For low resource
carrying capacities for which inequality (7) holds, both consumers co-exist in the food web
and predators feed on consumer 1 only. For higher resource carrying capacities for which
inequality (7) does not hold, predators feed on both consumers and the corresponding food
web topology is diamond-like.

DISCUSSION

Ecological theory suggests, based on the principle of competitive exclusion (Gause, 1934;
Levin, 1970), that competition is a strong driving force in food webs, which sets an upper
limit on the number of co-existing species. Although this principle is one of the cornerstones
of contemporary ecology, it is based on the assumption that food webs are static in the sense
that their basic features (e.g. interaction strength, food web topology) do not change in time.
Such an assumption does not reflect consumers’ adaptive behavioural or evolutionary
switches in food choice that lead to dynamic changes in interaction strength (Kondoh, 2003)
and food web topologies (Křivan and Schmitz, 2003). Many studies have shown clearly that
adaptive behaviours promote species co-existence when compared with inflexible animals
(see review in Bolker et al., 2003). In this article, I have considered a diamond-like food web
consisting of common resources, two consumer species and top predators. I have compared
two types of top predators: inflexible predators with fixed preferences for either consumer
type, and flexible predators that adaptively change their feeding preferences with changing
consumer densities. According to the competitive exclusion principle (Levin, 1970), the two
consumer species in the diamond-like food web can co-exist if each is limited by an
independent combination of predation and resource limitation. In this article, I ask two
questions: (1) what is the range of parameters for which the two consumer species do co-
exist and (2) does adaptive feeding by top predators enlarge this parameter range – that is,
does it make co-existence more likely? I have considered two cases with increasing complex-
ity. The first case assumed that predator density is fixed – that is, predators were treated as a
component of the environment. Then I studied the full dynamical case where predators also
undergo population dynamics. In a diamond-like food web, consumers compete twice. First,

Fig. 7. The proportion of the equilibrium predator population feeding on consumer 1 as a function of
the resource carrying capacity. Parameters are the same as those in Fig. 6.

Competitive co-existence caused by adaptive predators 1175



they compete for common resources; second, they compete indirectly through the shared
predators. This latter type of indirect competition has been termed ‘apparent competition’
(Holt, 1977, 1984; Holt et al., 1994; Bonsall and Hassell, 1997; Abrams, 1998). For the case
in which inflexible predators do not undergo population dynamics, apparent competition
can reverse the outcome of consumer direct competition for resources, but it cannot (with
the exception of the unrealistic case in which the density of predators is such that both
consumers are equally strong competitors) lead to the indefinite co-existence of both con-
sumer species. This is because of the trade-off between direct exploitative competition and
apparent competition. For low predator densities, the food web is controlled by the lack of
resources and one competitor is outcompeted due to exploitative competition. As predator
densities increase, the food web is controlled by predation (top-down control) and apparent
competition leads to extinction of one competitor. This result is consistent with the
extended competition exclusion principle (Levin, 1970), because the two factors (resources
and predation) that limit the two consumer species are not independent. Second, I con-
sidered flexible (constant density) predators that adjust their food preferences to consumer
densities. Thus, if consumer 1 density is low, it pays predators to feed on consumer 2 only
and vice versa. It is clear that this mechanism reduces apparent competition between the
two consumer types when one consumer density is low because predators do not prey on
this consumer. Using invasibility analysis, I showed that for adaptive predators the
diamond-like food web topology can persist provided the predator density is high enough to
regulate consumer densities at levels for which predator fitness is the same regardless on
which consumer species predators feed. The corresponding predator distribution is then the
ideal free distribution, because by changing its feeding strategy a mutant predator cannot
increase its fitness. I studied population dynamics under the assumption that the consumer
mortality rate is a linear function of predator densities. In this case, population densities
tend to an interior equilibrium at which predator distribution corresponds to the IFD – that
is, at the equilibrium, predators feed on both consumer species. Moreover, consumer popu-
lation dynamics that correspond to the predator IFD are identical, which makes consumer
co-existence at the equilibrium possible (see consumer dynamics described by model (5)). If
keystone predators are those that make survival of both consumer species possible, then my
analysis suggests that for a tritrophic diamond-like food web described by a Lotka-Volterra
model with a fixed predator density, a necessary condition for predators to act as the
keystone species is that they are adaptive foragers. Otherwise, they cannot increase diversity
of the system by allowing indefinite co-existence of the two consumer species.

Then I extended these results to the case where predators are treated dynamically. Such a
model was studied in detail by Leibold (1996), who showed that parameters exist for which
the model (with inflexible predators) possesses a locally stable interior equilibrium. How-
ever, the necessary conditions for co-existence of the two consumer species are rather strin-
gent as Fig. 4B shows. In fact, for some other parameters, the two consumer species may not
co-exist at all. Again, adaptive feeding behaviour of predators enlarges substantially the
range of parameters for which the necessary condition for consumer co-existence holds
(Fig. 4C). The mechanism that allows for consumer co-existence is the same as that in the
case of fixed predator density. Namely, adaptive predation reduces the apparent competi-
tion between consumer species and drives the interior equilibrium to the IFD plane where
profitability of both consumer species for predators is the same.

Species whose impact on their community is large are called keystone species (Paine,
1992; Power et al., 1996). The identification of keystones in ecosystems is crucial in con-
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servation ecology because extinction of keystones can cause a dramatic loss of biodiversity.
Because experimental identification of keystone species through extensive pairwise species
manipulations is either difficult or impossible, Power et al. (1996) suggested identification
of traits that characterize keystone species in natural communities. For several traits, prefer-
ential feeding on dominant prey species seems to be naturally associated with keystone
predation (Menge et al., 1994; Power et al., 1996). However, in a survey of well-studied
marine and freshwater communities (Menge et al., 1994), preferential predation on
dominant prey species appeared both in systems with and without keystones. My analysis
suggests that it is adaptive feeding that distinguishes between keystones and other predators
because adaptive predators can more effectively regulate the food web than inflexible
predators.

My results show, once again, that adaptive food choice is a key factor for species co-
existence. Similar conclusions can be drawn from other population dynamical models that
incorporate optimal foraging behaviour (e.g. Gleeson and Wilson, 1986; Fryxell and Lund-
berg, 1993, 1994, 1997; Křivan, 1996, 1997, 1999, 2003; Hambäck, 1998; Genkai-Kato and
Yamamura, 1999; Křivan and Sikder, 1999; van Baalen et al., 2001; Křivan and Eisner,
2003; Křivan and Schmitz, 2003). These studies suggest that adaptive foraging promotes
species co-existence without necessarily stabilizing population densities at an equilibrium.
This is because adaptive foraging changes interaction strength in food webs, which relaxes
the competition (either apparent or exploitative) between species. Although most of these
studies considered simple community modules consisting of three or four species, a recent
study by Kondoh (2003) shows that similar mechanisms promote species persistence in
complex food webs.
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Křivan, V. 1996. Optimal foraging and predator–prey dynamics. Theor. Pop. Biol., 49: 265–290.
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van Baalen, M., Křivan, V., van Rijn, P.C.J. and Sabelis, M. 2001. Alternative food, switching
predators, and the persistence of predator–prey systems. Am. Nat., 157: 512–524.

Waltman, P. 1983. Competition Models in Population Biology. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

APPENDIX 1: INVASIBILITY CONDITIONS WHEN PREDATORS ARE INFLEXIBLE
FORAGERS

Model (1) has no interior equilibrium. It has, however, two equilibria with one consumer species
missing. These are:

E1 = �m1(P1)

e1λ1

,
r(e1λ1K − m1(P1))

e1λ
2
1K

, 0 �
and

E2 = �m2(P2)

e2λ2

, 0,
r(e2λ2K − m2(P2))

e2λ
2
2K �

Note that conditions

K >
m1(P1)

e1λ1

and K >
m2(P2)

e2λ2
(A1)

are necessary for consumer co-existence. Indeed, if one of these inequalities does not hold, then the
corresponding consumer species cannot survive in the food web because its per capita population
growth rate will be negative.

Consumer 1 can invade the equilibrium E1 of the linear food chain if dC1/(C1dt) evaluated at the
equilibrium is positive. This condition gives

1

C1

dC1

dt �
E1

= e2λ2m1(P1) − e1λ1m2(P2) > 0

Similarly, consumer 2 can invade the equilibrium E2 of the linear food chain if dC2/(C2dt) evaluated at
the equilibrium is positive. This condition gives

1

C2

dC2

dt �
E2

= e1λ1m2(P2) − e2λ2m1(P1) > 0

The two conditions for permanence of the diamond-like food web cannot hold simultaneously and the
system is impermanent.
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APPENDIX 2: INVASIBILITY CONDITIONS WHEN PREDATORS ARE ADAPTIVE
FORAGERS

Consumer 2 can invade the equilibrium E1 (provided this equilibrium is positive) if dC2/(C2dt) evalu-
ated at the equilibrium is positive. As predators do not feed on consumer 2 at this equilibrium, this
condition gives

1

C2

dC2

dt �
E1

= e2λ2m1(P) − e1λ1m2(0) > 0

Thus, consumer 2 can invade provided

m1(P) >
e1λ1m2 (0)

e2λ2

Similarly, consumer 1 can invade the equilibrium E2 of the linear food chain if dC1/(C1dt) evaluated at
the equilibrium is positive. As predators do not feed on consumer 1 at this equilibrium, this condition
gives

1

C1

dC1

dt �
E2

= e1λ1m2(P) − e2λ2m1(0) > 0

Thus, consumer 1 can invade provided

m2(P) >
e2λ2m1(0)

 e1λ1

In contrast to the inflexible predators, the two invasibility conditions can be satisfied when predators
are flexible. For example, if predation mortality rates are linear functions of predator density (4) and
the second consumer is the weaker competitor, then the two invasibility conditions hold if

P >
e1λ1µ2 − e2λ2µ1

e2λ2Λ1

APPENDIX 3: POPULATION DYNAMICS UNDER IFD

If the system moves in the IFD plane given by F1C1 = F2C2, then trajectories of (1) satisfy:

F1

dC1(t)

dt
= F2

dC2(t)

dt

(Colombo and Křivan, 1993; Křivan, 1997; van Baalen et al., 2001). Thus, along the IFD plane we
have:

F1C1(t)(e1λ1R(t) − µ1 − Λ1P1) = F2C2(t)(e2λ2R(t) − µ2 − Λ2P2)

As P1 + P2 = P, we get:

P1 =
e1λ1(PΛ2 + µ2) − e2λ2µ1

e2λ2Λ1 + e1λ1Λ2
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and

P2 =
e2λ2(PΛ1 + µ1) − e1λ1µ2

e2λ2Λ1 + e1λ1Λ2

Substituting these values in model (1), we obtain model (5).

APPENDIX 4: PREDATORS UNDERGO POPULATION DYNAMICS

Model (6) has two equilibria where one of the two consumer species is missing:

E1 = �K �1 −
mλ1

F1ru1
�, 

m

F1u1

, 0,
e1Kλ1(F1ru1 − mλ1) − F1ru1µ1

F1ru 2
1Λ1

�
E2 = �K �1 −

mλ2

F2ru2
�, 0,

m

F2u2

,
e2Kλ2(F2ru2 − mλ2) − F2ru2µ2

 F2ru 2
2Λ2

�
Consumer 1 can invade the equilibrium E2 (provided it is positive) if dC1/(C1dt) evaluated at the
equilibrium is positive. This condition gives

1

C1

dC1

dt �
E2

=
K(F2ru2 − mλ2)(e1u2λ1Λ2 − e2u1λ2Λ1) + F2ru2(− u2Λ2µ1 + u1Λ1µ2)

F2ru 2
2Λ2

> 0

Similarly, consumer 2 can invade the equilibrium E1 (provided it is positive) if dC2/(C2dt) evaluated at
the equilibrium is positive. This condition gives

1

C2

dC2

dt �
E1

=
K(F1ru1 − mλ1)(e2u1λ2Λ1 − e1u2λ1Λ2) + F1ru1(u2Λ2 µ1 − u1Λ1µ2)

F1ru 2
1Λ1

> 0

In contrast to the case where predators do not undergo population dynamics, the two conditions for
permanence of the diamond-like food web can hold simultaneously provided F1ru1 − mλ1 ≠
F2ru2 − mλ2. However, the two conditions strongly restrict the set of possible parameters for which
model (6) can be permanent (Fig. 4B).

Now I consider the case where predators are adaptive foragers. First, I consider equilibrium E2 where I
set u2 = 1. Consumer 1 can invade this equilibrium (provided it is positive) if

1

C1

dC1

dt �
E2

=
K(F2r − mλ2)e1λ1 − F2rµ1

F2r
> 0

Second, I consider equilibrium E1 where I set u1 = 1. Consumer 2 can invade this equilibrium (pro-
vided it is positive) if

1

C2

dC2

dt �
E1

=
K(F1r − mλ1)e2λ2) − F1rµ2

F1r
> 0

These two conditions are then necessary for species co-existence when predators are optimal foragers
(Fig. 4C).
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APPENDIX 5: POPULATION DYNAMICS UNDER IFD

If condition (7) holds, then trajectories of model (6) that start in the lower triangular region of the
consumer phase space tend to equilibrium Ea, which lies in the upper triangular region of the same
phase space. In contrast, trajectories that start in the upper triangular region of the consumer phase
space tend to the IFD plane because I assume that consumer 2 is competitively weaker than consumer
1. This causes a tension along the IFD plane and leads to the emergence of a new equilibrium in the
IFD plane. Because this equilibrium lies in the IFD plane

F1C1 = F2C2

this (together with u1 + u2 = 1) gives the formulae for species equilibrium densities and the interaction
strength at the equilibrium:

R* = K �1 −
mλ1

F1r
−

mλ2

F2r �
C*1 =

m

F1

C*2 =
F2m

F1

P* =
K(F1F2r − m(F2λ1 + F1λ2))(e2Λ1λ2 + e1λ1Λ2)

F1F2rΛ1Λ2

−
Λ2µ1 + Λ1µ2

Λ1Λ2

u*1 =
Λ2(e1Kλ1(F2mλ1 + F1mλ2 − F1F2r) + F1F2rµ1)

K(F2mλ1 + F1mλ2 − F1F2r)(e1λ1Λ2 + e2λ2Λ1) + F1F2r(Λ2µ1 + Λ1µ2)
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