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This study examines the influence of various host-feeding patterns on host-parasitoid 
population dynamics. The following types of host-feeding patterns are considered: concur- 
rent and non-destructive, non-concurrent and non-destructive, and non-concurrent and 
destructive. The host-parasitoid population dynamics is described by the Lotka-Volterra 
continuous-time model. This study shows that when parasitoids behave optimally, i.e. they 
maximize their fitness measured by the instantaneous per capita growth rate, the non-de- 
structive type of host feeding stabilizes host-parasitoid dynamics. Other types of host 
feeding, i.e. destructive, concurrent, or non-concurrent, do not qualitatively change the 
neutral stability of the Lotka-Volterra model. Moreover, it is shown that the pattern of host 
feeding which maximizes parasitoid fitness is either non-concurrent and destructive, or 
concurrent and non-destructive host feeding, depending on the host abundance and parame- 
ters of the model. The effects of the adaptive choice of host-feeding patterns on host-para- 
sitoid population dynamics are discussed. 0 1997 Society for Mathematical Biology . 

Introduction. It is believed that behavioral decisions of parasitoids may 
have a strong impact on host-parasitoid population dynamics. The effects 
of various behavioral decisions of parasitoids on host-parasitoid population 
dynamics were recently studied: searching for food versus ovipositing 
(Kiivan and Sirot, 1997), searching for healthy hosts versus superparasitiz- 
ing (Sirot and IGivan, 19971, ovipositing versus host feeding (Jervis and 
Kidd, 1986; Yamamura and Yano, 1988; Kidd and Jervis, 1991b; Murdoch 
et al., 1992; Briggs et al., 1995; Jervis and Kidd, 1995). Since host feeding 
(i.e. the consumption of host haemolymph by the adult female parasitoid) 
may have a major impact on host mortality, host-feeding parasitoid species 
may prove to be good biological control agents (Kidd and Jervis, 1989). 
Host feeding was also studied in the framework of dynamic state variable 
models (Collier et al., 1994; Houston et al., 1992). These models predict the 
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existence of a threshold egg load below which host feeding occurs. While 
these predictions qualitatively agree with earlier experimental results (Col- 
lier et al., 1994), which showed that probability of host feeding declines with 
the egg load, a similar experiment by Rosenheim and Rosen (1992) does 
not show such a relationship. 

In other work (Jervis and Kidd, 1986), the following types of host feeding 
were considered: concurrent, non-concurrent, destructive and non-destruc- 
tive. Concurrent feeding means that the female parasitoid uses the same 
host individual for both feeding and oviposition, while non-concurrent 
means that different hosts are used. Destructive host feeding means that 
hosts die because of the host feeding, while in the case of non-destructive 
host feeding, hosts survive. Surveying known facts about 64 species of 
hymenopteran parasitoids, earlier work (Jervis and Kidd, 1986) showed that 
the most common host-feeding patterns to appear are: non-concurrent and 
destructive (42 species), and concurrent non-destructive (11 species). Some 
parasitoids also develop a mixed strategy: concurrent non-destructive/non- 
concurrent destructive (eight species), or concurrent non-destructive/non- 
concurrent non-destructive (three species). The decision of a parasitoid 
whether to host feed or to oviposit represents a tradeoff: host feeding 
increases the number of eggs produced, but it may decrease the number of 
ovipositions if host feeding is non-concurrent. 

Effects of various host-feeding patterns on population dynamics were 
discussed earlier (Kidd and Jervis, 1989). The underlying dynamics was 
described by the discrete-time Nicholson-Bailey model. Based on a series 
of simulations, they concluded that “host-feeding behavior is unlikely to 
contribute to population regulation” since their models exhibit unstable 
oscillations of increasing amplitude as in the original Nicholson-Bailey 
model. This result supports the idea of Flanders (1953) that host feeding 
results in a low persistence of the parasitoid population when hosts are 
scarce and produces population oscillations of high amplitude. A similar 
result was also obtained (Briggs et al., 1995), which found that host feeding 
per se does not affect stability of a host-parasitoid system described by a 
continuous-time Lotka-Volterra model. However, they showed that if the 
parasitoid mortality rate is a decreasing function of the egg load, then the 
model may stabilize. Moreover, the input of nutrients from a non-host 
source has a stabilizing effect, while the use of host material for mainte- 
nance is destabilizing. Previously (Yamamura and Yano, 1988), the 
Lotka-Volterra continuous-type model with time delay was considered. In 
this model, host feeding increased the speed of convergence of trajectories 
to an equilibrium. 

In the present paper, we want to compare the effects of various host- 
feeding patterns on host-parasitoid population dynamics described by the 
Lotka-Volterra continuous-time model. We assume that parasitoids be- 
have in order to maximize their fitness as measured by an instantaneous 



CONSEQUENCES OF HOST FEEDING 811 

per-capita growth rate. We find the optimal host-feeding strategy for each 
host-feeding pattern, and we study the effects of optimal behavioral deci- 
sions of parasitoids on host-parasitoid population dynamics. Our model 
predicts that, while the destructive type of host feeding has little influence 
on host-parasitoid dynamics, non-destructive host feeding strongly affects 
the population dynamics, and may lead to a stable equilibrium. We also 
discuss the effect of adaptive selection of host-feeding patterns on 
host-parasitoid population dynamics. 

Fitness and Optimal Host Feeding. In this section, we describe parasitoid 
fitness with respective to various host-feeding patterns. The host abundance 
is denoted by x and the parasitoid abundance by y. By A, we denote the 
search rate of a parasitoid, u denotes the probability that upon an en- 
counter with a host a parasitoid will host feed, e is the net energy (or 
protein, depending on the currency used) gained from feeding on one host, 
o is the energy needed for producing one egg, and s is the maintenance 
energy needed in unit of time. If N is the number of hosts required to be 
fed on to satisfy energy demands (i.e. maintenance and egg production) of a 
parasitoid in unit of time, following earlier work (Jervis and Kidd, 19861, we 
have 

s+oE 
N=- 

e 

where E is the number of eggs produced in a unit of time. Assuming that 
during a unit of time a parasitoid will encounter Ax hosts, and it will host 
feed on them with probability u, the total number of hosts which will be 
host fed is 

N=hUX. 

We note that in the above derivation, we neglect the time which a 
parasitoid devoted to handling one host. If hux is smaller than the 
maintenance energy S, no eggs are produced. This gives the maximum 
number of eggs E produced in a unit of time: 

E=max{ “~~-‘,O). 

First, we consider the case of non-concurrent host feeding. In this case, a 
parasitoid upon an encounter with a host either host feeds or oviposits 
provided it has some eggs. We assume that parasitoids that do not have 
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eggs always feed on hosts upon an encounter. Neglecting the time delay 
between egg production and oviposition, the maximum number of oviposi- 
tions in unit time is limited by the number of encounters with hosts and the 
number of eggs produced. If host feeding and oviposition are mutually 
exclusive (which is the case in non-concurrent host feeding), only hosts that 
are not host fed may be oviposited. Since the number of hosts encountered 
in unit time by a single parasitoid which are not host fed is (1 - u)hx, the 
maximum number of ovipostions in unit time is constrained by the number 
of eggs produced and the number of hosts encountered which can be 
oviposited, i.e. 

Now, we consider concurrent host feeding. In this case, parasitoids may 
both host feed and oviposit in the same host. Since all encountered hosts 
may be oviposited, the maximum number of ovipositions in unit time is 

minjmaxj hUzBs ,O}, Ax}. 

We define fitness as the number of offsprings produced by an average 
parasitoid in unit time. This means that only those ovipositions which lead 
to the emergence of a new parasitoid add to parasitoid’s fitness. In what 
follows, we consider the following host-feeding patterns: non-concurrent 
and destructive (ND), non-concurrent and non-destructive (NN), and con- 
current and non-destructive (CN). We do not consider concurrent and 
destructive host feeding since, in this case, oviposited hosts are also host 
fed, which necessarily reduces fitness of this rarely observed host-feeding 
pattern (Jervis and Kidd, 1986). 

We make the following assumptions. First, we assume that the energy 
gain from destructive 
feeding, i.e. 

host feeding is higher than from non-destructive 

where e, denotes the net energy gained from feeding on a host when host 
feeding is destructive, and similarly for eN. Second, we assume that non-de- 
structive feeding has no ill effects on the parasitoid’s developing progeny. 

For a fixed host abundance x and host-feeding strategy U, the number of 
ovipositions in unit time, i.e. the parasitoid’s fitness, is given by (the 
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subindex refers to the type of host-feeding pattern considered) 

f,,(x,u> = min max ( i huxe, - s 
o ,,)A1 4*X}, 

f&x,u) = min max 
i i 

rU;-s ,,),(I 41X), 

f&x,24) =min(max( Amy-s ,O},k}. 

We assume that parasitoids behave so as to maximize their fitness with 
respect to host feeding, and for each host abundance, we define the 
maximal parasitoid fitness 

E;:(x) = opylf,(n, u), i = ND, NN, CN. 
. \ 

Thus, F,(x) is the maximal possible fitness of a parasitoid measured 
through the number of offspring produced in unit of time. The values of u 
which maximize f&x, u) define the optimal strategy of parasitoids with 
respect to host feeding. 

We set 

s 
l-- UD - Axe, ’ 

2 _ ohx+s 
UN- AxeN ’ 

S 
I=-_ 

xD he ’ D 

S 
4=he,’ 

2_ 
S 

xD - 
h(eD -0) ’ 

S 

xs= A(e, - 0) ’ 

Since fitness functions fi, i = ND,NN, CN are piecewise linear in u, it is 
easy to determine the optimal strategy for each type of host feeding. For 
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Figure 1. Maximal fitness for various host-feeding patterns plotted as a function 
of host abundance. In A, the parameters are such that o < e,e,/(e, - e,), 
which leads to the existence of the critical host abundance x* such that below 
it, non-concurrent and destructive host feeding gives the highest fitness, while 
above it, the concurrent and non-destructive host feeding is the best choice. For 
0 > eNeD/(eD - e,), see B. In this case, the non-concurrent and destructive 
host-feeding pattern gives the highest parasitoid fitness. 

non-concurrent and destructive host feeding, the optimal strategy is as 
follows (see Appendix A and Fig. 1). 

. If x <XL, then F&X) is identically zero since the energy obtained 
through host feeding does not meet the amount of energy necessary 
for the maintenance, and no eggs are produced. Consequently, the 
optimal strategy uopt cannot be uniquely determined; thus, 0 < u,_+,~ < 1. 
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In this case, there must be another source of energy (like pollen, 
honeydew, etc.) which allows parasitoids to survive. Whether a para- 
sitoid will host feed or not may depend on the distribution of the 
alternative food type. If a parasitoid encounters hosts when searching 
for the alternative food type, it is likely that it will host feed on them 
(i.e., u,rt = 1). If the alternative food is located at a place where are no 
hosts, parasitoids will have no possibility to host feed. 

l If x ax;, then u,rt = (ohx + s)/( hx( e, + 0)) and F&X) = (Axe, - 
s)/(e, + 0). In this case, the egg production rate equals the encounter 
rate with hosts which are not host fed. 

The strategy for non-concurrent and non-destructive host feeding is 
obtained from the optimal strategy for non-concurrent and destructive host 
feeding by replacing index D by N. 

The optimal strategy for concurrent and non-destructive host feeding 
depends on the relation between o and eN. First, we assume eN > o, which 
means that feeding on one host is sufficient to produce more than one egg. 
Under this assumption, the optimal strategy is as follows (see Appendix A). 

l If X <Xi, then the optimal strategy is not uniquely determined, 

0 Q *opt 4 1 and F~.(x) = 0, which means that no eggs are produced 
because hosts are scare. 

l If x$ <n <x&, then uopt = 1 and F&X) = (Axe,,, - s)/o. In this case, 
the number of hosts is too small to produce enough eggs to oviposit 
each encountered host due to the loss of energy which goes to the 
maintenance. A convenient strategy for parasitoids would be to obtain 
additional energy to cover the maintenance cost from non-host food 
sources which would allow for higher egg production and for a higher 
parasitoid growth rate. 

l If x>x;, then the optimal strategy is not uniquely determined, 
u$ G uopt G 1 and F&,X) = Ax. The number of ovipositions is limited 
by the number of hosts available for oviposition rather than egg 
production. In this case, the egg production rate exceeds the oviposi- 
tion rate if u,rt > z.4;, which would lead to the growth of the egg load 
in ovaries. It is therefore reasonable to assume that if parasitoids have 
small (or zero) egg load, then they may increase host feeding (i.e. uopt 
may be higher than u&j, which will increase the average egg load. If 
the average egg load reaches the maximum storage capacity of ovaries, 
then uopt = ui since, in this case, the number of eggs produced will 
balance the number of eggs deposited keeping the egg load constant. 

Second, we assume that feeding on one host is not sufficient to produce 
one egg, i.e. eN G o, which gives the following optimal strategy (see Ap- 
pendix A). 
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l If x <xk, then 0 < u,,rt 4 1 and F,,(x) = 0 due to the host scarcity. 
l If x ax;, then u,,~~ = 1 and FcN(x) = (Axe, - s)/o. In this case, the 

oviposition rate is always limited by the egg production. 

Effects of Host-Feeding Patterns on Population Dynamics. In this section, 
we study the effects of host-feeding patterns on host-parasitoid population 
dynamics. We assume that parasitoids host feed optimally, i.e. they maxi- 
mize their fitness, and for a given parasitoid species, the host-feeding 
pattern is fixed. The underlying population dynamics is of the Lotka-Vol- 
terra continuous time. 

Non-concurrent and destructive host feeding. This host-feeding pattern is 
the most common type observed among hymenopteran parasitoids (Jervis 
and Kidd, 1986). All encounters of a parasitoid with hosts are lethal for 
hosts either due to oviposition or host feeding, i.e. the functional response 
is Ax. Assuming that a parasitoid lays one egg per host, which gives to rise 
F&x) new parasitoids in a unit of time, we get the following continuous- 
time dynamics: 

x’ =x(a - Ay), 

y’ = F&)y - my. (1) 

Here, a is the intrinsic per-capita growth rate of hosts, and m is the 
intrinsic per-capita mortality rate of parasitoids. Thus, we do not consider 
any density dependence in the growth of the host population. 

The dynamics of (1) is described for x > xb by 

x’ =x(a - hy), 

Y’ =Y 
Axe, - s 

e, + 0 
(2) 

and for x d xh by 

x’ =x(a - Ay). 

y’= -my. 

It is proved in Appendix B that trajectories of 
centered at the neutrally stable equilibrium of (2): 

E2= 

(3) 

(1) are closed curves 
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Figure 2. For non-concurrent and destructive host feeding, equilibrium E2 is 
surrounded by closed curves. In this case, host feeding does not qualitatively 
influence the neutral stability of the underlying Lotka-Volterra model. Parame- 
ters are as follows: a = 1.5, A = 1, e, = 2, 0 = 1, m = 0.5, s = 1. 

see Fig. 2. Qualitatively, trajectories look the same as for the classical 
Lotka-Volterra model. If a trajectory moves in the part of the space where 
x > xh, the egg production rate is (Axen - s>/(e, + 01 and the probability 
of host feeding is (ohx + s)/(hx(e, + 0)). The ratio of ovipositions/feed- 
ing attacks 

1 - %pt Axe, - s 
= 

U 
forxaxh 

opt ohx+s 

is declining with declining host abundance, which corresponds to observa- 
tions (Kidd and Jervis, 1991b). 

If x < xb, no eggs are produced because all energy available is used for 
maintenance, and the parasitoid population is declining, which reduces the 
pressure on the host population that can recover. 

Concurrent and non-destructive host feeding. In this case, only those 
hosts which are parasitized will die since host feeding is non-destructive. 
Assuming that each parasitoid lays one egg per host, the functional re- 
sponse is given by the number of ovipositions F,,(x), which is also the 
numerical response. This leads to the following model: 

x’ = ax - F,(x)y, 

y' = F,(x)y - my. (4) 
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First, we assume that eN > o, i.e. feeding on one host leads to the 
production of more than one egg. The dynamics of (4) driven by the optimal 
strategy is described for x > x& by 

x’ =x(a - Ay), 

y'=y(hx-m), (5) 

x’=(JX- 
AxeN - s 

0 
Y, 

y' = 
Axe, - s 

Y-my, 
0 

and for x <XL by 

x’=ax 

y’= -Irty. (7) 

If the host abundance is below XL, then the host population is growing 
since parasitoids do not have enough energy to produce eggs. Thus, all 
trajectories for which the initial host abundance is below xh enter in a 
finite time the region x > x& and stay there forever. Equation (5) has 
equilibrium 

and (6) has equilibrium 

mo+s a(mo+s) 

If 

s 
m<- , (8) 

eN-0 

then E5, E6 are to the left of the line x =x$ and E6 is -globally asymptoti- 
cally stable for (4); see Appendix C and Fig. 3A. The mechanism which 
drives trajectories to the stable equilibrium is the following. If a trajectory 
of (4) reaches the line x =x$ below the point y = a/A from the left, then it 
will cross this line, and in the region x >x$, it will move along a 
Lotka-Volterra cycle centered at Es. Since equilibrium ES is to the left of 
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Figure 3. For concurrent and non-destructive host feeding, equilibrium E6 is 
globally asymptotically stable if it is to the left of the line x =x$ (A). In this 
simulation, eN = 2; other parameters are the same as those given in Fig. 2. If E6 
is to the right of the line x =x& (B), then trajectories converge from outside to 
the largest Lotka-Volterra cycle of (5) which is to the right of the line x =&. 
In this simulation, m = 1.5 and other parameters are the same as those given in 
Fig. 2. 

the line x =xi, the trajectory will necessarily return to the region x <xi 
where it is attracted by E6. In this way, trajectories will converge to E6, and 
host feeding has a stabilizing effect. At the equilibrium, the egg deposition 
rate equals m, and parasitoids will play pure strategy (U = 11, i.e. they will 
host feed upon each encounter with a host. 

If m > s/(eN - o), then E5, E6 are to the right of the line x =x$, and it 
is proved in Appendix C that the qualitative behavior of trajectories 
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depends on initial conditions. If the initial condition belongs to the set 
bounded by the largest Lotka-Volterra cycle of (5) which is to the right 
of the line x =x$, then the corresponding trajectory will follow a Lotka- 
Volterra cycle of (5) (see the small amplitude cycle in Fig. 3B). If initial 
conditions are outside this set, the corresponding trajectory will converge to 
the largest Lotka-Volterra cycle which is to the right of the line x =xi; see 
Fig. 3B. In this case, host feeding has a partially stabilizing effect on 
population dynamics in the sense that there exists a bound on population 
fluctuations. The amplitude of maximal fluctuations is proportional to the 
distance of E5 from the line x =x$. This distance is given by 

m(e,--0) -s 

Me,-0) ’ 

For example, fluctuations in the host-parasitoid population dynamics in- 
crease with increasing instantaneous predator mortality rate m. 

If we assume eN G o, the host-parasitoid dynamics is described by (6) for 
x > XL, by (7) for x gxh, and all trajectories converge to E6 which is 
globally stable; see Appendix C. 

Non-concurrent and non-destructive host feeding. In this case, only those 
hosts which are oviposited will die, which leads to the following host-para- 
sitoid dynamics: 

x’ = ax - F&)y, 

y' = F&)y -my. 

The dynamics of (9) driven by the optimal strategy is described for x > x& 
bY 

x’=QX- 
Axe, - s 

e,+o YY 

Y’ =Y 
i 

Axe, - s 

e,+o 
-my I (10) 

and for x GX~ by (7). System (9) has a globally asymptotically stable 
equilibrium which is the equilibrium of (10) (see Appendix Cl: 

El0 = 
m(e,+o) +s 

e,h 
,a 
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Trajectories qualitatively look the same as those in Fig. 3A. Host feeding 
stabilizes, in this case, the Lotka-Volterra dynamics. At equilibrium, partial 
preferences for host feeding appear since 

mo+s 
U opt = 

m(e,+o) +s ’ 

Effects of Adaptive Host Feeding on Population Dynamics. In this section, 
we will assume that the host-feeding patterns may be adaptive. This means 
that the host-feeding pattern which gives the highest fitness should be 
selected. We find which type of host-feeding pattern gives the maximum 
fitness. We note that 

for any host abundance and any host-feeding strategy (we recall that we 
assume e, > e,). This implies that 

see Fig. 1. Assume 

eN eD 
0-c 

eD -eN’ 
(11) 

and denote 

A( eNeD - o(eD - eN)) ’ 

We note that for o < eN, inequality (11) is satisfied. We get that F,,(x) > 
F&X) if x >x*, and F&X) < F&x) otherwise; see Fig. 1A. Thus, if 
hosts are abundant, concurrent and non-destructive host feeding should be 
selected, while if the host abundance is below x*, non-concurrent and 
destructive host feeding should prevail. The optimal parasitoids behavior 
leads to switching between the concurrent and non-destructive, and non- 
concurrent and destructive host feeding with respect to changing host 
abundance. 

If 0 > eNeD/(eD - eN), then F,,(x) > F&X) for all parasitoid densities 
above x;; see Fig. lB, i.e. the non-concurrent and destructive strategy is 
always the best host-feeding pattern. 

Thus, the two best possible host-feeding patterns are non-concurrent and 
destructive, and concurrent and non-destructive host feeding, which quali- 
tatively agrees with observations (Jervis and Kidd, 1986). 
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Now, we will consider the host-parasitoid dynamics in the case in which 
switching between concurrent and non-destructive, and non-concurrent and 
destructive host feeding occurs, i.e. (11) holds. Let ui (here i = ND,CN and 
UcN + Um = 1) be the probability that host-feeding pattern i is chosen by a 
parasitoid. The corresponding population dynamics is described by 

x’ = ax - v,,hxy - %YNFl&)y, 

y’= -my+v,, F (dy + vmFm(x)y, m (12) 

and the average fitness per parasitoid is 

F(x) = vNDFm(d + v~&&)~ 

The optimal strategy is the vector <v,,(x), v,(x)) which maximizes F(n): 

l If x > x*, then the best host-feeding pattern is concurrent and non-de- 
structive host-feeding, i.e. v,(x) = 1, v,(x) = 0. 

l If x =x*, then the optimal strategy is not uniquely given, v,(x) + 
v,(x) = 1. 

l If xh <x <x*, then the best host-feeding pattern is non-concurrent 
and destructive host feeding, i.e. v,,(x) = 1, v,(x) = 0. 

. If x<.& then the optimal strategy is not uniquely defined, vND(x) + 
v,(x) = 1. 

The reason that, for host densities below nh, the host-feeding strategy is 
not uniquely determined is due to the fact that, for all possible host-feeding 
scenarios, the energy obtained from host feeding is lower than the mainte- 
nance energy and, consequently, no eggs are produced. We will assume 
that, for low host abundances, destructive host feeding will prevail since it 
provides more energy for parasitoids to satisfy their energy requirements 
than non-destructive host feeding. Thus, for a host abundance below xh, 
the dynamics is described by (3). 

In what follows, we will assume that eNeo/(eo - e,) > f?N > 0, and we 
note that 

x:, <x:, <x* <x;. 

Population dynamics which corresponds to the optimal choice of a host- 
feeding pattern is described by (2) for XL <x 4x*, by (6) for x* Xx <xc, 
and by (5) for x$ <x. If 

de, -eN) 
m< 

e+N - o(e, - eN> 
(13) 
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we show that adaptive host feeding may destabilize the host-parasitoid 
dynamics. Let us consider a segment of the line x =x* which is between 
the points 

ae, 

y2= Ace,-e,) ’ 

Trajectories starting from a point which is close to this segment move away 
from this segment; see Appendix D. For this reason, trajectories which start 
from the segment are not uniquely defined since they may move either to 
the left or to the right. Consider initial densities of host and parasitoids 
which are close to E*. Since, due to (131, E2 is to the left of the line x =x*, 
the corresponding dynamics is described by (2) and follows a Lotka-Vol- 
terra cycle; see Fig. 4A. Thus, E2 is neutrally stable. If the initial densities 
are such that the corresponding trajectory intersects with the line x =x*, 
then it cannot return to the region where x <x* below the point y2; see 
Appendix D. This results in destabilization of the dynamics, and trajectories 
spiral away from the equilibria E*; see Appendix E and Fig. 4A. We note 
that, in this case, the parasitoid will switch the host-feeding pattern be- 
tween non-concurrent and destructive, and concurrent and non-destructive 
periodically with respect to changing host abundance. 

If the opposite inequality to (13) holds and m < s/(eN - o), then E*, E6 
are to the right of the discontinuity line x =x*, and E6 is to the left of the 
line x =xk. In this case, E6 is locally stable, but numerical simulations 
such as those given in Fig. 4B suggest that E6 is not globally stable. 

If m > S/(eN - o), then all trajectories do converge to the global attrac- 
tor given by the largest Lotka-Volterra cycle of (51, which is to the right of 
the line x =x$; see Appendix E. 

The case for which eNeD/(eN - eD> > 0 > eN leads to similar results; see 
Appendix E. In this case, we note that xi < 0, and the dynamics (12) is 
described by (2) for xi G x < x* and by (6) for x* <x. If (13) holds, then the 
dynamics is destabilized in a similar way as in Fig. 4A. 

Discussion. In this paper, we studied the effects of various host-feeding 
patterns on host-parasitoid population dynamics described by the 
Lotka-Volterra model assuming that parasitoids maximize their fitness. We 
showed that, while the destructive type of host feeding does not qualita- 
tively influence host-parasitoid population dynamics, non-destructive type 
of host feeding has a strong effect on population dynamics since it leads 
either to a stable equilibrium, or it reduces the amplitude of maximal 
fluctuations in population densities. Since we did not include in our models 
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Figure 4. This figure shows the possible destabilization of the host-parasitoid 
dynamics when host-feeding pattern is chosen in an adaptive way. In A, 
equilibrium E ‘, which is to the left of the line n =x*, is neutrally stable (since 
it is surrounded by a family of closed curves), but trajectories which move to the 
region where x >x* do spiral away from fhe equilibrium. Parameters are as 
follows: a = 1.5, A = 1, e, = 6, eN = 2, o = 1.3, m = 0.3, s = 1.5. In B, equilib- 
rium E6, which is to the right of the line x=x*, is locally, but not globally 
asymptotically stable. In this plot, m = 1, and other parameters are the same as 
those given in A. 

any density dependence or other mechanism which could itself lead to a 
stable equilibrium, our model predicts that non-destructive host feeding per 
se may stabilize neutrally stable Lotka-Volterra dynamics. Earlier work 
(Briggs et al., 1995) considered the effect of the egg load on host feeding 
and host-parasitoid dynamics for non-concurrent and destructive host 
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feeding. They assumed that per-capita parasitoid mortality rate is an 
exponentially decreasing function of egg load. Without the use of eggs for 
maintenance, host feeding does not qualitatively change the behavior of the 
underlying Lotka-Volterra continuous-time model, which agrees with the 
prediction from our model. However, when maintenance was included in 
the previous model (Briggs et al., 19951, the result switched from no result 
on stability to a destabilizing effect. Instead, in our model, we assumed that 
per-capita parasitoid mortality rate is constant because maintenance re- 
quirements can be met by other non-host resources like pollen, honeydew, 
nectar, etc. and the stability (for destructive type of host feeding) is 
achieved through non-zero maintenance cost s. We note that if parasitoids 
may obtain energy for maintenance from other sources, or if there are no 
maintenance requirements, i.e. when s = 0, the stabilizing effect of non-de- 
structive host feeding is lost, and population densities would fluctuate 
around an equilibrium following the Lotka-Volterra model. 

In previous work (Yamamura and Yano, 1988), the effects of host 
feeding on population dynamics were studied in the framework of the 
Lotka-Volterra model with intraspecific competition in host population. 
They showed that for a positive intraspecific competition, trajectories of the 
model converge to equilibrium, while for zero intraspecific competition, 
ecological equilibrium is neutrally stable. These results are qualitatively the 
same as in the case of the classical Lotka-Volterra equation without host 
feeding. 

In the ecological literature, the decision whether to host feed or to 
oviposit is often interpreted as a tradeoff between future and current 
reproduction (Collier et al., 1994; Heimpel and Rosenheim, 1995). On the 
level of individuals, this tradeoff leads to dynamical programming which 
predicts the best feeding behavior of a parasitoid. The general prediction of 
these models is that there is a threshold in the egg load; if the egg load is 
below the threshold, host feeding appears (Collier et al., 1994). However, 
these models do not consider population dynamics. The main difference 
between the dynamic approach and our model is in the definition of fitness. 
The dynamic approach defines fitness as the overall number of eggs 
deposited over the lifespan of a parasitoid, while in our interpretation, 
fitness is measured through the instantaneous rate of egg laying. Our 
choice of fitness corresponds to the classical rate-maximizing theory 
(Stephens and Krebs, 1986; Abrams, 1983) where fitness is defined as the 
instantaneous rate of increase of the number of genotype copies, which is 
commonly used to measure the advantages of life history traits (Stearns, 
1992). Although this approach is more coarse when compared with the 
dynamic programming approach, it allows the consideration of population 
dynamics. 

We found that the host-feeding pattern which maximizes parasitoid 
fitness is either non-concurrent and destructive, or concurrent and non- 
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destructive host feeding, depending on the host abundance and parameters 
of the model. If the amount of energy required to mature one egg is high, 
then non-concurrent and destructive host feeding is the host-feeding pat- 
tern which maximizes parasitoid fitness. If the amount of energy needed to 
mature one egg is low, then for low host abundances, the non-concurrent 
and destructive host-feeding pattern maximizes parasitoid fitness, while 
when hosts are abundant, concurrent and non-destructive host feeding is 
the best choice. These predictions correspond to an earlier survey (Jervis 
and Kidd, 1986), which found that the most common patterns of host 
feeding are, in descending order, non-concurrent and destructive, concur- 
rent and non-destructive, and concurrent and non-destructive/non-concur- 
rent and destructive. In view of these observations, our models suggest that 
either host abundance for most host-parasitoid systems is low, or the 
amount of energy needed to mature one egg is high since these are the 
conditions predicting the occurrence of the non-concurrent and destructive 
host-feeding pattern. We showed that when the host-feeding pattern is 
chosen in an adaptive way, this may destabilize host-parasitoid population 
dynamics. 

Traditionally, host-parasitoid interactions were modeled by the discrete- 
time Nicholson-Bailey model, but continuous-time models based on the 
Lotka-Volterra like dynamics were also used (Briggs et al., 1995; Yama- 
mura and Yano, 1988; Murdoch et al., 1992; Murdoch and Stewart-Oaten, 
1989). Inclusion of optimal host-feeding behavior of parasitoids leads, in 
this paper, to non-smooth differential equations and differential inclusions. 
A theory for such types of problems has been recently developed (Filippov, 
1988; Aubin and Cellina, 1984; Aubin, 1991; Deimling, 19921, and it seems 
that this methodology may prove to be useful when modelling the effects of 
behavioral tradeoffs on population dynamics (K?ivan, 1996; Kiivan, 1997; 
Sirot and KKvan, 1997; KKvan and Sirot, 1997). Although we used the 
simplest possible type of population dynamics in this paper, which allowed 
for a deeper mathematical analysis, the present methodology also may be 
used for more realistic models, including, for example, Holing second type 
functional response function, delays, etc. 

The author thanks C. Briggs for his comments and useful suggestions on an 
earlier version of the manuscript, and E. Sirot for sending some papers on 
host-feeding phenomena. The visit of the author to the Faculty of Biologi- 
cal Sciences was supported by MSMT CR Grant VS96086. 

APPENDIX A: 
COlVfkJTATION OF THE OPTIMAL STRATEGIES 

First, we consider the non-concurrent and destructive host-feeding pattern. For x <XL 
and for every u E 10, 11, we have (huxe, - s)/o < 0; thus, f&x, U) = 0, and the correspond- 
ing optimal strategy u cannot be uniquely determined. If x > xb, then ( AZLW, - S)/O > 0 for 
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u E [ub, 11. Since (huxep - s)/o is an increasing function of u, while (1 - u)hx is decreas- 
ing, f&x, u) is maximized at the point uopt where these two lines intersect, i.e. 

ohx+s 
u opt = Ax(e, + 0) . 

For the concurrent and non-destructive host-feeding pattern, ( Auxe, - s)/o < 0 for every 
u E [O, l] if x <x&. Therefore, f&(x, u) = 0 if x <xh, and optimal strategy u,rt cannot be 
uniquely defined. Let us assume that eN > o. If x <xi, then (Auxe, - s)/o < Ax for every 
u E [O, 11. Thus, u,rt = 1 and F,.,(x) = (AxeN - s)/o. If xi <x, 

ifu<u2, 
(Al) 

if u>ui. 

Thus, for xi < x, fCN is maximized at any u,rt which satisfies ui Q u,rt Q 1 and F&X) = Ax. 
If eN < o, then (Auxe, - s)/o < Ax for every u E 10, 11, i.e. f&c, u) = max{(Auxe,,, - 

s)/o, 0). In this case, fCN is maximized at u,rt = 1 when x > xfy . If x G xh, then f&x, u) = 0 
for every u E [0, 11. 

APPENDIX B: QUALITATIVE ANALYSIS OF (1) 

We construct a first integral for (1) driven by the optimal strategy. Let 

AeD s+m(e,+o) 
-x - 
eo + 0 e,+o 

Inx-alny+Ay forx>xb 

V(x, y) = 

&(ln$-1) 

(-42) 

-mlnx-alny+Ay- for x <xh. 

We note that the above function is continuous. Moreover, it is easy to see that the derivative 
of V’ along trajectories of (1) is zero almost everywhere, and consequently, solutions of (1) 
which are driven by the optimal strategy are closed curves centered at E’. 

APPENDIX C: QUALITATIVE ANALYSIS OF (4) AND (9) 

The characteristic polynomial corresponding to E6 is 

CT*+ 
as as 

--a+maf-. 
mo 0 

Thus, due to the Routh-Hunvitz criterion, E6 is locally asymptotically stable for (6) since 
we assume that all parameters are positive. We will prove that E6 is globally stable using the 
Poincar&Bendixon theorem (Hartman, 1964; Hotbauer and Sigmund, 1984). To this end, 
we have to exclude the existence of periodic orbits. This can be achieved by using the Dulac 
criterion (Hofbauer and Sigmund, 19&I), which is usually stated only for smooth vector fields 
(Hofbauer and Sigmund, 1984), but it can easily be generalized for piecewise smooth vector 
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fields (see also Busenberg and van der Driessche (1993)), which is the case of the system (4). 
Let us assume that eN > o. In the region xi <x <xi, we have 

a 1 

( ( 

AxeN - s 

axxy 
- --_---y))+~(~(~y-my))=-~<o (A3) 

0 

and in the region & <x, 

Assume that there exists a periodic orbit of (4). If m < s/(eN - 01, equilibria ES, E6 are to 
the left of the line x =x’& and every periodic orbit must partly belong to the region 
xh tx <x6. However, due to (A31, the Dulac criterion excludes existence of a periodic 
orbit, and the PoincarC-Bendixon theorem implies that E6 is globally asymptotically stable. 

If E6 is to the right of the line x =x$ (which happens if m > s/(e, - o)), we construct a 
Lyapunov function for (4). Let 

1 Ax-mlnx-alny+Ay 

for x>x$ 

V(x,y)= 1 

i 

0 ( e,Ax-(mo+s)lnx+hoy-aohry+sln 
(Me:-01) -‘) 

for xT,<xax&. 

The above function is continuous. For x > xi, it is the first integral for the Lotka-Volterra 
equation (5). For XL <x <x$, we have (f6 denotes the right-hand side of (6)) 

yeNAYe, - 0) 
W’,.P) = ozx cx-*:)( y -x). 

Assuming m > s/(e, - o), we note that (mo + s)/(e,h) >xj$. Thus, for XL <x <x5, the 
derivative of V along trajectories of (4) is negative for eN> o. Trajectories of (4) do 
converge to a global attractor bounded by the largest Lotka-Volterra cycle of (5) which is to 
the right of the line x =x& 

If eN < o, then the host-parasitoid dynamics is described by (6) for x > xh and by (7) for 
x Q x&. We see that the part of the (x, y) space for which x > XL is invariant with respect to 
(4) and (A31 holds. The Dulac criterion and the PoincarB-Bendixon theory imply that E6 is 
globally asymptotically stable. 

Now, we consider non-concurrent and non-destructive host feeding. The characteristic 
polynomial corresponding to El0 is 

U2+ 

as 
ff+ 

a(e,m + eNo + s) 

m(e, + 0) e,+o * 

Thus, due to the Routh-Hurwitz criterion, El0 is locally stable provided we assume that all 
parameters are positive. To prove that El0 is globally stable, we again use the Dulac 
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criterion to exclude closed orbits. We have 

d, 1 

dxxy ( ( 
- --sy)) +;( ;(sy-my)) = - (,,tsD)x* CO. 

Thus, there are no periodic orbits, and El0 is globally asymptotically stable. 

APPENDIX D: BEHAVIOR OF THE HOST-PARASITOID 
MODEL ALONG THE LINE x =x* 

Ily n = (l,O), we denote the normal vector to the line x =x*. Denoting the right-hand 
side of (2) by f2 and similarly for (6), we get ((+, * > stands for the scalar product) 

(f2, n> < 0 ify>t 

w, n> > 0 ify< 
aeD 

Me, - eN) ’ 

It follows that trajectories of (12) driven by the optimal strategy cross the line x =x* in the 
direction from left to right if y <y’ and from right to left if y >y*. In the segment with end 
points y’ and y2, trajectories are not uniquely determined by the initial condition, and they 
may move either to the left or to the right. 

APPENDIX E: QUALITATIVE ANALYSIS OF (12) 

First, we assume e,e,/(e, - e,) > e,,, > o, and we define 

r Ax-mhx-ahy+Ay 

for x>xk 

1 I ( - 
0 

e,*x-(mo+s~lnx+*oy-aolny+~h(A~e~_o)i-~) 

V(x, y) = 
for x* 6x <xi 

' --(m+&)lnx+$x-alny+*y+Cr 

I 
forxb<x<x* 

-minx-aIny+Ay+C, 

forx<xb 

where constants C,, C, are chosen in such a way that V is a continuous function. Function V 
is the tirst integral for (21, (3) and (5). Assume 

m< 
de, -eN) 

eDeN-o(eD-e,v) 
(A4) 
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which implies that E6 is to the left of the line x =x*, i.e. 

mo+s 
<x*. 

ed 

We get that, for x* < x <x$, 

ye,P(e, - 0) 
W’,f6> = o2x (x-x:~(~-x)>o. 

Therefore, V is increasing along trajectories of (12) provided they are to the right of the line 
x =x*, which leads to destabilization of the dynamics. 

Now, we consider the case m > s/(e, - 01. In this case, for x* <x <xi, we have 
(V’, f6) < 0 since 

mo+s 

eNA 

>x;>x* 

and all trajectories of (12) do converge to a global attractor given by the largest Lotka-Vol- 
terra cycle of (12) which is to the right of the line x =x$. 

Second, we assume eNeD/(er, - e,) > o > eN, and we define 

1 i(e,hx-(mo+s)lnx+hoy-aolny) for x* Qx 

AeD 
-x-ahly+hy+C, 
e,+o 

forx+x<x* 

-minx-alny+Ay+C, for x<xL 

where constants C,,C, are chosen in such a way that V is a continuous function. The 
stability analysis can be carried along the same lines as for the case eN > o, replacing 
function V by VI. If (A4) holds, we get that, for x* <x, 

yeNAZ(eN - 0) 
w;,f6) = o2x (x-x;,(y-x)>o 

since x& < 0, which leads to destabilization of those trajectories of (12) which enter the 
region x > x*. 
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