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Abstract.—This study examines the influence of individual behavior on predator-prey dynamics
in a two-patch environment. I assume that individuals behave to maximize their fitness measured
by the instantaneous per capita growth rate. The population dynamics in each patch are de-
scribed by the Lotka-Volterra continuous model. Two cases are studied in detail. The first case
assumes only predators are free to move between patches, whereas the second assumes that both
predators and prey move freely between patches. The study shows that the optimal behavior of
animals leads to persistence of predator-prey systems and reduction of oscillations in population
densities.

In this article, I develop a dynamic framework for modeling the spatial distribu-
tion of predator and prey populations, assuming animals behave optimally (i.e.,
they maximize their fitness). I follow the idea behind the ideal free distribution
(Fretwell and Lucas 1970; Kacelnik et al. 1992), which describes the equilibrium
distribution of a population of predators among several habitat patches. The Fret-
well and Lucas model assumes that predators are free to settle in any patch, travel
time between patches is zero, predators are omniscient, and resource densities in
patches remain constant through time (Kacelnik et al. 1992). If each predator
settles in the patch where its rate of resource acquisition is maximized, the model
predicts that at equilibrium, predators in all patches will experience the same
intake rate. The original Fretwell and Lucas model was modified in several direc-
tions to include factors such as interference (Sutherland 1983), differences in
competitive ability (Sutherland and Parker 1985; Parker and Sutherland 1986),
perceptual constraints (Abrahams 1986), learning (Bernstein et al. 1988), and
resource dynamics (Lessells 1995). However, the original Fretwell and Lucas
model and these generalizations do not consider predator-prey dynamics that in
turn will influence the distribution of predators and prey among patches. More-
over, the optimality criterion based on maximization of energy intake should also
be replaced by a more general criterion that includes the consequences of varia-
tion in predator mortality rates among all patches. In natural communities, the
richer habitat is often also the more dangerous one, owing to a higher predation
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rate (Werner et al. 1983). Thus, there is a trade-off between energy intaks and
mortality rate.

Hassell and May (1973) considered the population dynamics of a host-parasitoid
system described by the discrete-time Nicholson-Bailey model. If parasitoids
search at random, their model has one unstable equilibrium. Any deviation from
this equilibrium leads to oscillations with increasing amplitude, preventing the
indefinite persistence (Hofbauer and Sigmund 1984) of both parasitoids and hosts.
Strong aggregation of parasitoids to patches of higher prey density may stabilize
the otherwise unstable Nicholson-Bailey model (Hassell and May 1973). For
Lotka-Volterra continuous models, aggregation of parasitoids (or predators) may
have either a stabilizing or destabilizing effect on population dynamics, depending
on the strength of aggregation (Murdoch and Stewart-Oaten 1989). In their article,
Murdoch and Stewart-Oaten (1989) argued on empirical grounds that in nature,
destabilization would prevail. Godfray and Pacala (1992) showed that the effect
of aggregation on stability depends on the meaning of the term aggregation.
Hassell and May (1973) defined aggregation in terms of parasitoid host-searching
behavior, whereas Murdoch and Stewart-Oaten (1989) apply a statistical meaning.
The influence of individual behavior of animals on population dynamics was fur-
ther elaborated by van Baalen and Sabelis (1993), who used game theory to define
evolutionarily stable strategies of predators and prey. Based on the discrete-time
Nicholson-Bailey model, van Baalen and Sabelis argued that evolutionary stabil-
ity leads to the ideal free distribution but that the conditions for evolutionary
stability may exclude the possibility of high parasitoid aggregation. Thus, evolu-
tionary stability may counteract the stabilizing effect of aggregation.

This article considers population dynamics described by Lotka-Volterra differ-
ential equations with controls that model the individual decisions of predators
and prey. Assuming that individuals behave optimally (i.e., they maximize their
fitness, measured through the instantaneous net reproductive rate), I derive a
model that links individual behavior and population dynamics. Two cases are
analyzed in detail. The first case assumes no prey migration among patches, but
predators are free to move. The second case assumes that both predators and
prey are free to move. This article explores the effect of individual decisions on
persistence and stability of predator-prey (or host-parasitoid) systems. Therefore,
I do not include in the models any other mechanism (e.g., density dependence
or passive diffusion of prey among patches; Holt 1983, 1984, 1985) that could
alone lead to a stable equilibrium. Instead, I start with Lotka-Volterra models
that do not have an asymptotically stable equilibrium and study the consequences
of optimal individual behavior for population dynamics. My main questions are,
What is the effect of optimal individual behavior on population dynamics? Does
optimal individual behavior lead to persistence, stability, or instability of popula-
tion dynamics?

POPULATION DYNAMICS

In this section, I derive a general dynamic model for a two-patch predator-prey
system. I first consider mobile predators and immobile prey. The prey abundance
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in patch i (= 1, 2) at time ¢ is denoted by x,(), and the total predator abundance
is denoted by y(#). The encounter rate of a predator with prey in patch i is \;x,,
and the expected net energy obtained from one item of food is e;. Neglecting
expected handling times and assuming that prey grow exponentially without pred-
ators, I get the Lotka-Volterra system

Xj = apx; = Mxgupy,
X2 = @yX; = MpXylyy

0y

and

’

n

y (el)\,xl - m,)uly + (ez)\2x2 - mZ)uzy.

Here a; and m; are instantaneous per capita growth and mortality rates in patch
i, respectively, and u; denotes the probability that a predator will be in patch i.
I assume that predators move infinitely fast between patches so u; + u, = 1
(i.e., each predator is in either patch 1 or patch 2). Thus, ¥, = 1 means that all
predators aggregate in patch 1. Strategies u; = 1, 4, = Oand 4, = 0, u, = 1 are
pure strategies, whereas all other strategies are mixed strategies. Mixed strategies
lead to the partial preferences of predators for each habitat. However, the con-
trols u; are not assumed to be constant; they may change in time.

I next consider the case in which both predators and prey are mobile. The total
abundance of prey is x, and the probability that prey stay in patch i is v;. Thus,

X =x;+ xy,

x| =vx,

Xy = VX,
and

x'=(a; — Muy)vix + (a; — Lupy)vox, @

Y' = (e\vix — mp)uyy + (e2\,vox = my)uyy.

Again I assume that both predators and prey move between patches infinitely
fast and 4, + u, = v, + v, = 1(i.e., each animal is either in patch 1 or patch 2).

Without loss of generality, in the rest of the article I assume that the growth
rate of prey in patch 1 is greater than or equal to the growth rate in patch 2 (i.e.,
ay = az).

ONLY PREDATORS ARE FREE TO MOVE

Classical optimal foraging theory (Stephens and Krebs 1986) assumes that pred-
ators maximize their energy intake. However, when predators’ mortality rates
are not the same across patches, optimality becomes a complex problem: patches
with higher energy acquisition rates may be riskier. This results in a trade-off
dilemma for predators: stay in a better but riskier patch, or move? To solve this
problem, I define an optimality criterion based on the maximization of predator
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fitness. I assume that fitness is measured through the instantaneous net reproduc-
tive rate (Sibly 1991). This maximizes the per-predator growth rate over all possi-
ble controls u,, u,:
max (el)\lxl - ml)ul + (ezxzxz - M2)UZ. (3)
(uyouz)
Note that this criterion differs from the maximization of the instantaneous rate
of energy acquisition if mortality rates in the two patches are different. If m; =
m, = m, then both criteria lead to the same optimality principle.

The optimal strategy is the set of controls («;, ¥,) that maximize expression
(3) for given abundances of prey (x;, x,). Since the optimal strategy depends on
Xy, X5, it is not constant over time. I split the x; > 0, x, > 0, y > 0 space into
three parts according to values of the optimal strategy. Because expression (3) is
a linear function of u, and u,, it follows that predators aggregate in patch 1 (4,
=1, u, = 0)if e,]\;x; — m; > e,\,x; — m, (denoted by G! in fig. 1), predators
aggregate in patch 2 (1, = 0, u; = 1) if e, A\ x; — m; < eyA\;x; — m, (denoted
by G?in fig. 1), and the predators’ fitness is the same in both patches (u,, u, are
not uniquely determined) if e, A, x, — m; = e;\3X; — m,. This is the classic ideal
free distribution in which no predator can increase its fitness by moving to the
other patch, and it is denoted by G° in figure 1.

Note that if m, = m,, then only the part of the plane G° for which

my —m,

X, >
: el

@)

belongs to the positive octant (fig. 14), whereas if m; < m,, I obtain

my; —m,

Xy >
2 ez)\z

(see fig. 1B).

Global qualitative analysis for system (1) driven by the optimal strategy is
possible using a Lyapunov function. Trajectories of equations (1) driven by the
optimal strategy (which are uniquely defined; see app. A) do converge to a subset
of G that I denote by A in figure 1. Such a set is called a global attractor, because
in the limit, all trajectories of equations (1) governed by the optimal strategy
will move in A. The optimal strategy (i.e., the partial preferences governing the
dynamics of eqq. [1] on the attractor) is given by

a,e,)\lxl + (e,)\lxl - m, -+ mz)(Azy - az)

"r(xh)’) =

&)
[e,)\fxl + kz(e,)\,x, - my + mz)]y

Using this control, I compute the ideal free distribution (i.e., the ratio between
the abundance of predators in the two patches):

i‘i* - e,)\,xl()\zy — Qa, + a,) + (hzy - az)(mz - m,)
uy e Mx Ny + a; — a,) + a,(my, — m,)

©
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FiG. 1.—Position of the global attractor A of equations (1) driven by the optimal strategy
maximizing the predator growth rate. All trajectories of equations (1) driven by the optimal
strategy converge to A. The attractor A is a subset of the plane G° where partial preferences
do appear. The dynamics on the attractor are described by equations (7). In A, the predator
mortalxty rate in the first patch is higher than in the second patch (i.e., m, > m,), whereas
in B, it is lower (m; < m,).

Substituting this ideal free distribution into equations (1) gives the following dif-
ferential equations describing the dynamics on the attractor:

o xy(my — my = e, M x )N Ay — aj\; ~ a,),)
1

e,)\,xl()\l + Kz) + kz(mz - ml) ’
X! = Xy(my — my — €;0:%,) (N A,y — @A, — a,\,) 0
2 ez)\zxz()\, + )\2) + )\,(m] - mz) ’

Y = (e \xy — mypy.
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But the second equation in equations (7) is redundant because in G° (and thus in
A) it holds automatically, because

e,)\,xl - m + m,
e2\; )

Xy =
The trajectories of equations (7) are closed curves in G° centered on the equilib-
rium point
E‘ ( m, mz azx] + alkz)
“\elheN) AN, ’

which is neutrally stable. The attractor A is given by the subset of G® bounded
by the largest cycle of equations (7) above the graph of

g(xy) = max{g,(x)), g2(x)},

where
e\ x(a; — ay) + ay(my, — m,)
gl(xl) = _ )
)\z(e,)\lx, + my ml)
and
a, —a a,(m, — m,)
g,(x;) = 1 2 4 2

Al K%e,x,

The graph of g splits G® into two (fig. 14) or three (fig. 1B) parts. The transient
behavior of trajectories of equations (1) driven by the optimal strategy (i.c., the
behavior of trajectories of eqq. [1] before they reach the attractor A) can be
described in the following way. If a trajectory of equations (1) driven by the
optimal strategy reaches G° at a point below the graph of g (i.e., below the graph
of g, in fig. 14 and below the graphs of g, and g, in fig. 1B), it will cross G°
transversally. At points below the graph of g,, trajectories of equations (1) cross
G° in the direction from G' toward G? and at points below the graph of g, in the
opposite direction. If a trajectory of equations (1) driven by the optimal strategy
reaches a point in G above the graph of g, then it will continue to move along
G° following a cycle given by equations (7). If this cycle is inside the attractor
A, then the trajectory will follow this cycle forever (see fig. 2). If the cycle is not
entirely inside the attractor, then the trajectory will leave G° when it crosses the
graph of g. However, in the limit all trajectories will reach the attractor.

Because all trajectories of equations (1) governed by the optimal strategy con-
verge to the attractor A (which is a subset of G® where partial preferences do
occur), the predator population will necessarily spread over both patches, and
the originally uncoupled dynamics of prey populations in system (1) will become
coupled in system (7). Thus, optimal behavior of predators affects the nature of
interactions among prey populations.

I now examine the two cases with respect to predator mortality rates. First,
consider the case when the first patch is riskier—that is, when m; > m, (sce fig.
1A). Then g,(x,) < 0 in G° because of inequality (4) and the fact that a, = a,,
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Fic. 2.—A solution of equations (1) plotted in space. In this figure only predators follow
the optimal patch choice. The trajectory converges to a cycle given by equations (7) inside
the attractor A. Parameters are as follows: @; = 1.5,a; = 0.5, ¢; = 1.5, e, = 1, A\ = ),
= l,m, = 2,andmz =1,

and the attractor is constrained from below only by the graph of g,. At the limit
prey abundance in patch 1 will never fall below (m, — m,)/(e,\,) (see inequality
[4]), and the predator abundance will never fall below (a; — a,)/\; (which is the
asymptote of g,).

If m; < m,, the attractor is constrained from below by the graph of either g,
or g, (see fig. 1B). At the limit, the prey abundance in patch 2 will always be
larger than (m; — m3)/(e,),).

If predator mortality rates in both patches are the same, m; = m, = m (Co-
lombo and Kftivan 1993), then

a, — a
Ay
is a straight line and g, is always negative. Thus, at the limit the predator density

cannot fall below y*. The dynamics on the attractor A are described by the
Lotka-Volterra system

gz(xl) =y*=

x'=a|)\z+a2)\|x _ XIXZ x

L W W A W VL

x,=a,)\2+a2)\|x _ AA, .

S VIS VI VS Vel ®)

and

y' = (e)\yx; — m)y.

Copyright © 1997. All rights reserved.



DYNAMIC IDEAL FREE DISTRIBUTION 171

The attractor A is given by a subset of G° bounded by the largest Lotka-Volterra
cycle of equations (8) above the line y*. The amplitude of this largest cycle may
be measured by the distance of the equilibrium of equations (8) from y*. This
distance is given by

az(’;\n :‘ Ay) . ©)
1A2
Thus, if a, is small, the limit cycle has a small amplitude.
The ideal free distribution is
uf a,—a,+ X\
_L_ 24 2 2y . (10)
uy  a; = a;+ Ny

If prey populations in both patches are identical (i.e., a; = a;, \; = X,), then
the above fraction will be one; that is, half of the predator population will be in
patch 1 and the other half in patch 2. The control ratio uy/uy decreases with
increasing y if a; > a,.

When predators move randomly between patches u,, u, are held fixed
over time. Then the dynamics of equations (1) are very simple. Assuming that
a;\u; > a, N\ iy, then there is one globally stable equilibrium

m,u, + myl, a, )
ey T Nuy

(see app. B). This equilibrium is not asymptotically stable. The prey population
in patch 2 dies out, and the resulting dynamics are described by Lotka-Volterra
cycles in the (x|, y) plane. Similarly, if a; A4, < a,A,u,, then the prey population
in patch 1 dies out. Thus, the system with predators moving randomly between
patches is not persistent because prey in one patch always die out.

BOTH PREY AND PREDATORS ARE FREE TO MOVE

The model assumes that when both predators and prey are freely mobile, they
move with infinite speed (so at each instant every prey and predator is either in
patch 1 or patch 2). The population dynamics are described by the Lotka-Volterra
equations (2). Because both predators and prey are free to move, their fitness
expressed as instantaneous growth rate should be simultaneously maximized:

(max) (a) = Muyy)vy + (a; = Mipy) vy an
Vi V2

and

(max) (e \vix — mDu; + (e3\y3vyx — my)u,. (12)
uyuy

To determine which control (v*, u*) = (v{, v¥, uf, u3) is the optimal one, I use
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game theory. A pair (v*, u*) is considered optimal if
(ay — MuyIvi + (@ — Musy)vi =(a, — Mufy)vy + (@ — Muiy)ve,
and
(e M Vix — mp)uf + (exhvix — mp)us = (e M vix — my)uy + (e;7,v3 x — my)uy

for all (u,, u,) and (v,, v,) between zero and one. The optimal strategy (u*, v*)
is a Nash equilibrium, because at a Nash equilibrium no individual can unilaterally
increase its fitness by changing its strategy. An invasion-proof Nash equilibrium
is an evolutionarily stable strategy (Hofbauer and Sigmund 1984). The Nash equi-
librium (v§, uf), assuming a, = a, and m; = m,, is

( ) [ml —m2+e2)\2x 01_02+A2y] if my — m, >al"az
a ’
(el)\l + ez)\z)x ()\1 + xz)y el)\l

11— m a —a

. m
® @Difx>= =y <=,

© (1,0 ifx<——"2
e)

(see app. C). If prey abundance is low (case [c]), all prey will be in patch 1 while
predators will stay in patch 2. Because the mortality rate for predators in patch
1 is higher than in patch 2 and prey abundance is low, patch 2 is a refuge for
predators. If predator abundance is low and prey abundance is high (case [b]),
both predators and prey will aggregate in patch 1.

If a, = a, and m; < m,, the Nash equilibrium is

(a') [ml —m2+ ez)\zx a, _a2+X2y] if my — m, y>al —4a,
(e,)\l + ez)\z)x ’ ()\1 + Kz)y ezkz ’ )\‘ ’
. a,— a
®) @, Dify< ,
S
. my; —m, a, — a
! > .
) O, Difx< ey n

If predator abundance is low (case [b']), both predators and prey will aggregate
in patch 1. This is because the prey growth rate in patch 1 is higher than that in
patch 2, and if predator abundance is low (i.e., predation rate is low), then prey
should stay in patch 1. Predators will also aggregate in this patch, because the
predator mortality rate is lower there. If prey abundance is low and predator
abundance is high (case [c']), then patch 1 is no longer better for prey, and they
move to patch 2. However, patch 2’s predator mortality rate is high, so predators
take refuge in patch 1.

Consider the case when the first patch is more dangerous (i.e., m; > m,). Using
a Lyapunov function, it can be shown that trajectories of equations (2) driven by
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4F v v v v

0 1 2 3 4
X

Fic. 3.—Two solutions of equations (2) plotted in space. In this figure, both predators and
prey follow the optimal patch choice. One solution converges from outside to the attractor
B, which is bounded by the largest cycle of equations (14) inside the set H, whereas the
other solution lies inside the attractor B, Parameters are the same as those given in figure 2.

the optimal strategy do converge to a global attractor (denoted by B in fig. 3),
which is a subset of

m; — m, >al—a2}

H={(x,y)lxa ex, Y Z "

The ideal free distribution of predators is given by equation (10) and of prey by

Vr _ ml - mz + ezxzx (13)
v; mz—m|+e|)\|x.

Substituting this ideal free distribution into equations (2) gives the following dif-
ferential equations describing the dynamics on the attractor:

, (az)\,+a,)\2 AAsy )
TEATN TN Nt

and (14)

. ( el)\lm2 + 92)\2m| elez)\l)\z )
Y=y el)\1+e2)\2 el)\,+ez)\2 :

The trajectories of equations (14) are the Lotka-Volterra cycles centered on the
equilibrium point.

Ez _ (el)\,mz + €2x2m1 al)\z + ale).
- e, T NN, ’
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which is neutrally stable. The attractor B is given by the subset of H bounded by
the largest cycle of equations (14) inside H.

There are two possibilities for trajectories. Either the initial condition is inside
the attractor and the corresponding trajectory follows a Lotka-Volterra cycle of
equations (14) (see fig. 3), or the initial condition is outside the attractor, and the
corresponding trajectory converges to the largest cycle of equations (14) inside
the set H. Thus, this largest limit cycle is asymptotically stable from outside and
neutrally stable from inside. The amplitude of the largest limit cycle depends on
the distance of the equilibrium E? to the boundary of H, which is

mi M2(e|)\] -+ 82)\2) az()\l + )\2)
ee\ A, A, )

Therefore, the amplitude of the limiting cycle is small if either a, or m, is small.
The analysis for the case when m; < m, follows the same lines and leads to
similar results.

The random movement of predators and prey corresponds to the case of fixed
values of controls u,, u,, v, v,. Then equations (2) is the classical Lotka-Volterra
system with a neutrally stable equilibrium surrounded by closed curves.

DISCUSSION

In this article I have developed a theory of ideal free distributions that allows
for predator-prey population dynamics. If animals are perfect optimizers, the
resulting dynamics have a neutrally stable equilibrium surrounded by closed tra-
jectories. A global attractor bounded by a limit cycle appears, owing to the opti-
mal individual behavior of animals. The ratio of predators in different patches is
not fixed (because the system is not in equilibrium) but changes over time. The
amplitude of the limit cycle depends on the model’s parameters. For example, if
the growth rate of the prey population in the patch with lower growth rate tends
to zero, the amplitude of the limit cycle tends to zero too. It is interesting to
compare dynamics when animals behave optimally versus when they move ran-
domly. When predators move freely and randomly but prey do not, the system
is not persistent because the prey population in the patch with the smaller value
of a;\;u, is always depleted by predators. This result does not depend on predator
mortality rates. However, when predators behave optimally, the same system is
persistent because when prey abundance in one patch declines, predators move
away and the prey population may recover. After some time, the first patch
becomes more attractive to predators than the second because of the prey popula-
tion's exponential growth rate. When both prey and predators move freely and
randomly, the system is persistent, but the limit cycle that appears when preda-
tors and prey behave optimally does not exist.

Qualitatively, both situations lead to the same conclusions. The assumption of
optimal behavior with Lotka-Volterra dynamics leads to persistence of the system
in which only predators are mobile, reduced amplitude of fluctuations in popula-
tion densities, and the predator-mediated coexistence of prey populations. If sta-
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bility is measured by the amplitude of the system’s largest fluctuations, this article
shows that optimal individual behavior has a partially stabilizing effect on Lotka-
Volterra dynamics.

Because of the Lotka-Volterra dynamics, the system does not converge to an
ecological equilibrium; thus, the basic assumption behind the Fretwell and Lucas
model is not satisfied. Despite this, the model still predicts that after a transient
period during which animals may aggregate in one patch, the system will reach
a dynamic ideal free distribution in which no individual can increase its fitness
by moving to the other patch. However, ecological equilibrium is not reached,
and population densities do fluctuate around this equilibrium. So the ideal free
distribution in the Fretwell and Lucas sense is reached although the system is
not in equilibrium. The distribution of animals is given by equation (6) if only
predators move freely and by equations (10) and (13) if both predators and prey
move freely. These distributions depend not only on the prey abundance but also
on the predator abundance. If predator mortality rates are the same in both
patches, or if both predators and prey move freely, the ratio between the prey
abundance in the first and second patch decreases when the predator abundance
increases.

Substituting the more realistic Holling Type II response function, which does
not omit handling times, for the Holling Type I functional response, which leads
to Lotka-Volterra systems (eqq. [1], [2]) into the model described by equations
(1) gives

, )\lxllll

Xy =Xy -~
O T T g
' _ Kzlelz

X2 = axX; —

1+ 112)\2.\'2 o (15)

and

,__( e\ x ) +( e\, )
A VIR W) R A VI S W) R

For predators moving at random (i.e., u;, u, fixed), model (15) has one positive
equilibrium, which is unstable. The trajectories spiral away from this equilibrium
with increasing amplitude, and, consequently, the dynamics are not persistent.
This model resembles the discrete-time Nicholson-Bailey model, which is also
not persistent. Mathematical analysis of system (15) with the optimal strategy
given by maximization of the predators’ growth rate is more complex, and global
behavior of trajectories of equations (15) with the optimal strategy cannot be
described analytically. However, numerical simulations show that optimal behav-
ior of predators again may lead to persistence. This is in an agreement with the
work of Holt (1983, 1984, 1985, 1987), who studied the effect of optimal habitat
selection on the stability of predator-prey dynamics. However, Holt’'s work as-
sumed that when an ideal free distribution is reached, the system is in equilibrium.
This may be the case when each prey population grows logistically (Holt 1984,
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1987). Whether the system reaches a stable equilibrium depends on the underlying
dynamics. My analysis does not assume that when an ideal free distribution is
reached, the population should also reach an equilibrium. Moreover, because my
model does not assume any other stabilizing mechanism (like density dependence
or passive diffusion between patches; Holt 1983, 1985), I proved that optimal
patch choice alone leads to persistence of predator-prey dynamics. Numerical
simulations show that the system may converge to a stable equilibrium when
logistic growth is included.
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APPENDIX A
UNIQUENESS OF TRAJECTORIES OF EQUATIONS (1) AND (2)

Including optimality criterion (3) and equations (11) and (12), respectively, into Lotka-
Volterra models (1) and (2) yields differential equations in which the right sides are multi-
valued. This may raise some questions concerning how well posed the model is. However,
the results given in Colombo and Kfivan (1993) show that the Lotka-Volterra-type models
used in this article have uniquely defined solutions. I omit these mathematical details and
most other formal proofs that are published elsewhere.

APPENDIX B
GLOBAL ANALYSIS OF SYSTEM (1) WHEN PREDATORS MOVE AT RANDOM
Assume that u,, u, are fixed. Let

v 1 + Y xie,\ 1y )
(xy5 X3, y) = e xie )\ uy = (myuy + myuy) = (myuy + myuy)ln e pTa—

+ +ly— a _a ln()’)\lul)
“X2 T |y ANuyp My a '

Then along the trajectories of equations (1), I get

ivuun—(—a’——i)exux
dt T\, Auy) T

which is negative for
az ay
—_— - —]<0.
()\z"z M“l) 0 . {16

Thus, V is a Lyapunov function for system (1), and under assumption (16) the second
population of prey dies out. In the (x,, y) plane, the dynamics follow Lotka-Volterra
cycles.

Copyright © 1997. All rights reserved.



DYNAMIC IDEAL FREE DISTRIBUTION 177

APPENDIX C
CoMPUTATION OF NasH EQUILIBRIA
Let
Hvpuy) = (@) = Nuyy)vy + [a; = M1 = up)yl(1 = v))
and

ﬁ(v,,u,) = (e,)\lv,x - m,)u, + [ez)\z(l - v,)x - mz](l - u,).
The Nash equilibrium is the set N(x, y) of those controls (v*, &*) that satisfy
AHOT uf) = fivy, uf), HLO7, u}) =f,00F, uy)

for all vy € [0, 1], u4; € [0, 1]. Solving

0 9
gives
« _Mi—mptedx o a;—a,+ Ny
YT Ten + ex T T + )y
For a fixed u, € [0, 1], f; is maximized at the points of the set
((1, uy) ifu, €[0,ut),
Mg (uy) = v, uD)|v €10,11} ifu, = uf,
0, uy) ifu, € (ut, 1],
and for a fixed v, € [0, 1], f; is maximized at the points of the set
((vy,0) ifv, €[0,v}),
Mp(v)) = {07, up)|uy €10, 11} ifv, = v},
\(v,, 1)) ifv,e (@}, 11

Intersection of M;, and M;, gives the set of the Nash equilibria N(x, ¥). Form; = m, 1 get

[/ « .« . my = my a;— a,
(Vlsul) lfx> el)\l ’y> M ’
. m = m, a,—a
(l’ l) lfx > elk| 4 < )\1 ’
(1,0 ifx < 1"
N, ) J ’ * N
X, y) = . m,—mz a; — a,
* 3
{(Luu, €10, utl} ifx PR y> o
. m, = m, a — a,
{(l,u,)lu,E[O, l]} lfx = el)\[ ’ y = )\1 ’
* . m=-m  a-a
L {(Vl’ l)IVl E[vl ] 1]} |fX > elx] Yy = )‘l

The derivation of the Nash equilibria for my < m, follows the same lines, and I omit it.
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