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Abstract
The Hawk–Dove model has been used to explain how aggression evolves in animal species.
However, testing this model with experimental data has proven challenging because the two
model parameters, V and C , are difficult to measure. We propose a novel consumer-resource
model that overcomes these difficulties, and we explore the dynamical behavior of the model.
Furthermore, by studying a series of consumer-resource models with interactions based on
the Hawk–Dove game, we make new predictions for how the level of aggression may change
with the richness of the environment, animal mortality, and the amount of time spent fighting.

Keywords Hawk–Dove game · Aggression · Resource-consumer model · ESS

1 Introduction

The Hawk–Dove model [22] postulates evolution of aggression among consumers that com-
pete for a resource. The model, presented as a game, considers a population consisting of two
behavioral types called Hawks and Doves. Hawks are aggressive individuals that are ready to
fight for the resource while Doves are non-aggressive and avoid fighting. Thus, onlymeetings
between two Hawks result in a fight that is costly, and Hawks always win the contest over
Doves. The model assumes that the resource level is fixed and it is contested only when two
individuals pair. So the model is a prototype of contest competition [20]. The model then
predicts that when the cost of fighting for the resource is low, the Hawk is the only evolu-
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tionarily stable strategy (ESS), while if the cost is high both Hawks and Doves coexist in the
population. The model has two parameters: the cost of fighting and the value of the resource.
These parameters are difficult to link to real biology in the context of resource-consumer
models, because the model does not make a clear mechanistic link between the measurable
quantities (i.e., resource level and mortality rate) and the two model parameters.

Auger et al. [3] advanced toward linking the Hawk–Dove model and the biology by
extending thismodel to consider the resource explicitly. In particular, these authors considered
a prey–predator Lotka–Volterra type model where predators play the Hawk–Dove game.
They assumed that the equilibrium of this game tracks current prey and predator population
densities, and they showed that predators play Hawk when the prey population density is
high and predator population is low. This is a counterintuitive result as it might seem that
aggressivity should increase with either a decrease in prey density or an increase in predator
density, because in both cases the average amount of the resource obtained by a single predator
will decrease [[4, 7], but see Lach [18]].

In this article, we introduce three theoretical models to study further the link between
resource density and aggressivity. The first one (Sect. 2) is the classic Hawk–Dove model
where we assume the resource is fixed and we interpret V as the amount of the fixed resource
and C as the mortality among Hawks due to fighting. In this model, the evolution of the
proportion ofHawks is purely frequency dependent. It is described by the replicator dynamics
where the total consumer population growth is exponential. Thus, themodel describes contest
competition among Hawks and Doves for the resource.

The secondmodel (Sect. 3) considers resource dynamics explicitly. Changes in proportion
of Hawks are again described by the replicator dynamics. By modifying the first model to
allow resource levels to change in response to consumer behavior, this secondmodel combines
scramble competition for resource with contest competition betweenHawks andDoves. Both
of these two models assume that Hawks and Doves compete for the resource only when they
are paired, i.e., individuals do not gain fitness by foraging as a single consumer. This is in
line with the assumptions of the classic Hawk–Dove game.

The third, more mechanistic model (Sect. 4) overcomes this assumption by allow-
ing both Hawks and Doves to gain fitness as single foragers. This model then results
in a resource-Hawk–Dove consumer model that is similar to the Rosenzweig–MacArthur
resource-consumer model, for which, according to the competitive exclusion principle [9,
19], two consumers cannot co-exist with a single resource at equilibrium, unless there is
sufficient heterogeneity. This heterogeneity can take many forms [6], for example, spatial
heterogeneity [25] or other limiting factors [19]. In the Hawk–Dove game, Hawks are more
aggressive than Doves. When Hawks meet Doves, Hawks obtain the resource; when one
Hawk meets another Hawk, only one of the Hawks obtains the resource. As we assume that
Hawks fight for the resource between themselves and Hawks steal resource that is handled
by another Dove, we are also interested to learn whether aggressivity among members of one
population provides sufficient heterogeneity to permit coexistence at an equilibrium.

In this article, we illustrate the development of increasingly sophisticated dynamical
consumer-resourcemodelsmotivated by theHawk–Dove game.With each subsequentmodel,
we re-interpret the game within consumer-resource model frameworks. We explain why a
consumer-resource model motivated by the Hawk–Dove game leads logically to the coun-
terintuitive result about the evolution of aggression given by Auger et al. [3]. With the final
model, we establish connections with the Rosenzweig–MacArthur model and intraguild
predation models, and we produce novel predictions about the dynamics and evolution of
aggressive behavior.
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2 The Hawk–DoveModel with Fixed Resource

The standard payoff matrix for the symmetric Hawk–Dove game [22] is

[ H D

H V−C
2 V

D 0 V
2

]
(1)

where V > 0 is the benefit that the winner of a contest obtains, and C > 0 is the cost of the
fight between two Hawks.When p = H/(H+D) is the proportion of Hawks in a population
of size N = H + D,1 the payoffs of Hawks and Doves are, respectively,

WH = p
V − C

2
+ (1 − p)V (2a)

WD = (1 − p)
V

2
. (2b)

Assuming thatHawk andDove per capita growth rate is proportional to payoffs, population
dynamics are

dH

dt
= (WH − m)H

dD

dt
= (WD − m)D

(3)

wherem is the per capita rate of mortality caused by other reasons than resource competition.
Competition between Hawks and Doves appears in (3) in the frequency-dependent payoffs
WH and WD . Model (3) can be rewritten using variables that correspond to the proportion
of Hawks, p, and the total population size, N , as

dp

dt
= p(WH − m − (W − m)) = 1

2
(V − Cp)p(1 − p)

dN

dt
= N (W − m) = 1

2
(V − Cp2 − 2m)N

(4)

where W = pWH + (1 − p)WD is the average payoff.
System (4) is a replicator equation [26] with added mortality m. When we rewrite model

(3) as model (4), this dynamical system decouples. We can obtain results about the global
stability of equilibria of model (4) by analyzing the dp/dt equation first to determine the
dynamics of the distribution of Hawks and Doves and applying that to dN/dt to determine
the dynamics of N . The dynamics of model (4) predict that the proportion p of Hawks in the
population converges to 1 when C < V , or to V /C when C > V . Because the population
dynamics are density-independent, which is a feature of the replicator dynamics, depending
on the relative values of V , C , and m, the population, generically, exponentially grows or
decays to zero.

We begin to connect the Hawk–Dove game with classical and novel consumer-resource
models by interpreting the game’s payoffs and strategies within this ecological context.
Consumers can be aggressive or non-aggressive. Consumers foraging for resources gain a
benefit, V , when they encounter and consume the resource. Aggressive consumers pay a
cost, C , when they encounter another aggressive consumer and the resource. We interpret
the parameters V and C as quantities that add to or detract from a consumer’s growth rate
due to the resource competition.

1 We assume that N is large.
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Table 1 Variables and parameters for the models analyzed in this article

Symbol Model Description Values

N (5, 6) Total density (hawks & doves) State variable

p (5, 6) Proportion of hawks State variable

e (5, 6, 7) Energy gain rate (per unit time) for 1

Handling Hawks and Doves

λ (5, 6, 7) Encounter rate of resource and consumers 1

K (5, 6, 7) Carrying capacity of resource Variable parameter

m (5, 6, 7) Mortality due to causes other than fighting Variable parameter

C (5, 6) Cost of fighting between hawks 2

r (6, 7) Intrinsic growth rate of resource 1

R (6, 7) Resource density State variable

Hs (7) Hawk, searching for resources State variable

Hh (7) Hawk, handling resources State variable

H f (7) Hawk, fighting with a hawk State variable

Ds (7) Dove, searching for resources State variable

Dh (7) Dove, handling resources State variable

h (7) Handling time of resource 1

m f (7) Mortality due to fighting 0.2

τHH (7) Fighting time Variable parameter

The “Model” column indicates the corresponding dynamical system (5), (6), and (7). Numbers in the “Values”
column indicate the numerical values used in simulations

Following the classic HD model of contest competition, we assume that the resource
density is fixed and equal to the environmental carrying capacity K , and we assume that V is
directly proportional to the density of available resource, i.e., V = eλK . This is appropriate
when the resource is rapidly renewing.Here,λ is the search rate of a consumer for the resource,
and e is the efficiency with which a consumer transforms resource uptake to reproduction
(see Table 1 for reference). The parameter C measures a cost in terms of additional mortality
suffered by two Hawks fighting for the benefit. As in the Hawk–Dove game, V and C are
assumed to be constant. After substituting for V and C , model (4) becomes

dp

dt
= 1

2
(eλK − Cp)p(1 − p)

dN

dt
= 1

2
(eλK − Cp2 − 2m)N .

(5)

Equilibria of model (5) and conditions for their global stability are given in Table 2. The
dependence of the dynamics of model (5) in (m, K ) parameter space is shown in Fig. 1a. As
mentioned above when describing model (4), the population described by model (5) either
grows or decays exponentially to zero.2 Although a population that grows without bound
does not approach an equilibrium, we will label ∞ as an equilibrium value of N in Table 2
and Fig. 1 to facilitate comparisons of this model with the other models we consider below.

As seen in Table 2, there is a unique equilibrium of model (5) for each choice of model
parameters e, λ, K ,m, and C . First, we observe that the proportion of Hawks at the stable

2 In both cases, we also calculate the proportion of Hawks in the population as the population size approaches
its limit.
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Table 2 Equilibria of model (5) and conditions for their feasibility and global stability

Label Equilibrium (p∗, N∗) Conditions for global stability

E01 ( eλKC , 0) eλK < C and m >
eλK (C−eλK )

2C

E02 (1, 0) C < eλK < 2m + C

E1 ( eλKC , ∞) eλK < C and m <
eλK (C−eλK )

2C

E2 (1, ∞) eλK > 2m + C

Here, p∗ is the equilibrium proportion of Hawks in the population and N∗ the equilibrium population density

equilibrium p = V /C = eλK/C when V < C corresponds to the ESS of the Hawk–
Dove game [10, 22]. When V > C , the proportion of Hawks at equilibrium corresponds
to the ESS p = 1. Interpreted biologically, the population will contain both aggressive and
non-aggressive animals when the environmental carrying capacity is small relative to the
additional mortality cost suffered by two aggressive individuals. When the environment is
rich (i.e., eλK > C), all animals will be aggressive. This result is qualitatively similar to that
of Auger et al. [3].

3 The Hawk–DoveModel with Resource Dynamics

The Hawk–Dove game is a prototype of contest competition [21], where the winner monop-
olizes the contested resource. For example, this game can describe the situation where
individuals compete for a fixed number of breeding sites, or males compete for females.
However, to connect the Hawk–Dove game to dynamic consumer-resource models, we want
to consider both contest competition and scramble competition for a resource [21]. In this
section, we remove the assumption of the previous model that the benefit V is constant
by including resource dynamics. This is appropriate when the changes in the abundance of
resources and the population dynamics of consumers occur on similar time scales. In what
follows, we assume that, without consumers, the resource growth rate is logistic and that the
consumer growth rate due to resources is directly proportional to the abundance of resources,
i.e., V = eλR.

From (4), we obtain the following resource-consumer dynamics

dR

dt
= r R

(
1 − R

K

)
− λRN

dp

dt
= 1

2
(eλR − Cp)(1 − p)p

dN

dt
= 1

2
(eλR − Cp2 − 2m)N .

(6)

In model (6), unlike models (4) and (5), the equations are now coupled. This makes the
analysis more complicated and provides a richer dynamical system. Using Mathematica
(Appendix A), we calculated the equilibria of model (6) and their local stability. The results
are summarized in Table 3, and the stable equilibria in (m, K ) parameter space are shown in
the bifurcation diagram Fig. 1b. When the consumer mortality rate not due to competition is
high (specifically, m > C/8) or m < C/8 and resource carrying capacity is small (specifi-
cally K < (C + √

C(C − 8m))/2), there is a unique stable equilibrium. This locally stable
equilibrium is similar to the unique globally asymptotically stable equilibrium of Sect. 2 in
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a

b

c

Fig. 1 Bifurcation diagrams formodel (5) (Panel a), model (6) (Panelb), andmodel (7) (Panel c). For panels (a,
b), the stable equilibria showing the proportion of Hawks and overall consumer population density, for models
(5) and (6), respectively, are shown in each subset of (m, K ) parameter space. For Panel (a) (respectively, Panel
b), resources are fixed at K (respectively, resources are at a positive equilibrium given in Table 3). For Panel
(c), the global dynamical attractors of model (7) are shown. There are three regions in which the dynamical
attractors are equilibria (labeled (K , 0, 0) when both Hawks and Doves go extinct, (R, H , 0) where only
Doves go extinct, and (R, H , D) where both Hawks and Doves coexist) and two regions where the dynamical
attractors are limit cycles (labeled (R, H , D)osc where both Hawks and Doves coexist along a limit cycle and
* where resource and Hawks coexist along a limit cycle while Doves are extinct). Parameters used in these
simulations are given in Table 1. In panels (a, b), mortality due to fighting C = 2. In Panel (c), fighting time
τHH = 1
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these regions of parameter space (cf. Figure1a for fixed resource level K ) except that, when
the consumer population grows exponentially in Sect. 2, now this population size evolves to
a positive equilibrium value (either N1 or N2 as given in Table 3). The logistic growth of the
resource limited by consumers in model (6) restricts the consumer population size.

For the remainder of parameter space (i.e., m < C/8 and K > (C + √
C(C − 8m))/2),

there are two stable outcomes for model (6). That is, including resource dynamics as in
model (6) can lead to bistability when the mortality rate due to causes other than resource
competition is low enough. We did not observe any other dynamical attractors in our simu-
lations. We observe that this bistability occurs in two different ways. In the regions denoted
(1, 0), (p2, N2) and (p0, 0), (p2, N2), either the consumer population goes extinct or to a
mixed equilibrium of both Hawks and Doves. In the region denoted (1, N1), (p2, N2), the
consumer population does not go extinct but it may consist either entirely of Hawks or of
both Hawks and Doves. This bistability was also observed by Auger et al. [3]. This demon-
strates that when the resource carrying capacity and the cost of fighting are large enough, the
population may not go extinct. In the parameter regions where bistability exists, we notice
in general that a larger initial population and a larger initial proportion of Hawks leads to the
model converging to the Hawk-only equilibrium.

4 The Hawk–DoveModel Embedded in aMechanistic
Consumer-ResourceModel

The previous models followed the replicator dynamics framework. The benefit, V , and the
cost,C , accrues to the players at the same time. This is precisely why it is difficult to estimate
these parameters. For example, if the benefit is a food item, it may take an animal some time to
handle the food in order to consume it. Additionally, when animals confront each other over
resources, they use non-aggressive or aggressive tactics [8] whichmay take different amounts
of time, as in territorial disputes [12]. To ease parameter estimation while remaining faithful
to the core elements of the classical Hawk–Dove game, we create a mechanistic consumer-
resource model that includes the salient properties of the Hawk–Dove game, namely, when
players meet they may acquire a benefit through sharing or stealing resources from another
player, or they may pay a cost for fighting.

To account for the time to handle a food item and to resolve antagonistic encounters, we
separate Hawks into three distinct groups: searching for resources, handling resources, and
fighting over resources being handled by another Hawk. Similarly, we have two groups for
the Doves: searching for resources and handling resources [24]. Motivated by the classic
Hawk–Dove model, we assume that when a searching Hawk meets a handling Dove, the
Hawk steals the handled resource and immediately becomes a handling Hawk while the
handling Dove becomes a searching Dove. When a searching Hawk meets a handling Hawk,
a fight occurs. The cost of this fight can be measured temporally in two ways, time spent in an
activity that reduces the potential for resource gain and reduced lifespan due to the additional
mortality resulting from a fight [15]. We assume that a fight is time consuming and takes
time τHH . Fighting Hawks experience additional mortality at the rate m f , on average. Once
the fight concludes, the winning Hawk handles the resource and the losing Hawk returns to
searching for resources.
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The dynamical equations that reflect these processes are

Ṙ =
(
r(1 − R

K
) − λHs − λDs

)
R (7a)

Ḣs =
[

− λHs R − λHsDh − λHsHh + 1

h
Hh + H f

τHH

]
+ e

h
Hh − mHs (7b)

Ḣh =
[
λHs R + λHsDh + H f

τHH
− λHsHh − 1

h
Hh

]
− mHh (7c)

Ḣ f =
[
2λHsHh − 2

H f

τHH

]
− mH f − m f H f (7d)

Ḋs =
[

− λDs R + λDhHs + 1

h
Dh

]
+ e

h
Dh − mDs (7e)

Ḋh =
[
λDs R − λDhHs − 1

h
Dh

]
− mDh . (7f)

The bracketed terms account for the aforementioned distributional dynamics which
describe the rates at which Hawks and Doves transition from searching, handling, and,
for Hawks only, fighting. The terms outside the brackets describe demographic changes
described by resource consumption, natural mortality, and additional mortality due to fight-
ing, for Hawks only. Definitions of each variable and parameter are given in Table 1.

Using Mathematica command Solve, we solve for equilibria of model (7). We obtain
nine equilibria and, using command Reduce, we search for those that are positive (by
assuming that all parameters are positive), i.e., all variables are greater than zero. We obtain
that there is no more than one such interior positive equilibrium. Conditions on parameters
for this equilibrium to exist are given by quite complex formulas as are the expressions for
the equilibrium, so we do not give them here. We are unable to calculate analytically the
conditions for the linear stability of this equilibrium, so we analyze model (7) numerically. A
numerical bifurcation analysis (Fig. 1c) shows attractors in (m, K ) parameter space. Sincewe
are interested in learningmore about the stability of aggressive and non-aggressive strategies,
we sum across the three groups of Hawks to obtain Hawk abundances (H ) and similarly
across the two groups of Doves to obtain Dove abundances (D). First, we observe that
the two competitors, Hawks and Doves, can stably coexist at this equilibrium for certain
parameter values. Second, as the environmental carrying capacity, K , increases, there are
two or three thresholds, depending on the mortality rate, where resources may coexist with
Hawks at equilibrium or in oscillations, or resources, Hawks, and Doves coexist. Below the
lowest threshold (the bottom curve in Fig. 1c), no consumers exist. At low mortality rates
(e.g., m = 0.1), Hawks invade the resource-only equilibrium when the first threshold is met.
Hawks exist at an equilibrium with resources at this equilibrium. At the second threshold,
this equilibrium loses its stability and Hawks coexist with the resource along a stable limit
cycle (this region is denoted as “*”in Fig. 1c). At the highest threshold, Doves invade and
Hawks, Doves, and Resource coexist along a stable limit cycle. At higher mortality rates
(e.g., m = 0.4), Hawks and Doves invade simultaneously the resource-only equilibrium at
the first threshold. At the next threshold (not shown in Fig. 1c), the coexistence equilibrium
destabilizes and Hawks, Doves, and Resources stably coexist along a limit cycle.

To allow us to make comparisons of these models’ results with previous studies of the
Hawk–Dove game, we calculate numerically the average proportion of Hawks in the regions
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Fig. 2 Panel (a) shows average proportion of Hawks as a function of m and K when τHH = 1. Panel (b)
shows average proportion of Hawks as a function of m and τHH when K = 10. Other parameters as listed in
Table 1. The white region in Panel (a) corresponds to the extinction of both Hawks and Doves

in (m, K ) parameter space where Hawks and Doves coexist.3 We observe that, at low values
ofm (e.g.,m = 0.1, Fig. 2a), as the environmental carrying capacity K decreases, the average
proportion of Hawks increases. At higher mortality rate values (e.g., m = 0.7, Fig. 2a), the
dependence on K of this proportion is non-monotonous. In fact, as K decreases from 15, the
average proportion of Hawks decreases first. The white region of the figure corresponds to
parameter values at which the consumer population goes extinct, i.e., p is undefined.

Hawks pay two types of costs when they fight, represented by m f and τHH . Additional
mortality due to fighting,m f , is a direct cost. Time spent fighting, τHH , is an opportunity cost,
since neither Hawk gains any payoff during this fighting time. These combine to contribute
to the cost C paid by Hawks in the context of the Hawk–Dove game (1). When the time

3 Wenumerically solvedmodel (7) for 20,000 time steps. Then, using the final abundances as initial conditions,
we numerically solved the model for an additional 20,000 time steps. Using this solution, we integrated the
average proportion of Hawks over this time.
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Fig. 3 Bifurcation plot formodel (7) in (m, τHH ) parameter space. Equilibria where Hawks andDoves coexist
are denoted as (R, H , D), equilibria where only Hawks exist are (R, H , 0), and equilibria where both Hawks
and Doves are extinct are (R, 0, 0). In the region (R, H , D)osc , Hawks and Doves coexist along a limit cycle
while in the region (R, H , 0)osc only Hawks coexist along a limit cycle with resources. Other parameters as
listed in Table 1, and K = 10

that two Hawks fight over the resource is small, Doves go extinct and Hawks survive along
with the resource. For longer fighting times, Hawks and Doves coexist with the resource. We
discovered that the level of aggression depends on m. As seen in Fig. 2b, once the fighting
time exceeds a threshold that depends on m, the level of aggression decreases with increases
in fighting time. This is consistent with the Hawk–Dove game where increased costs tend to
lead to a lower proportion of Hawks.

It is well known [e.g., 14, 17] that the number and stability of equilibria can change when
the amount of time that individuals are paired while fighting differs from the amount of
time they are paired for other activities. Our numerical results can be seen in the bifurcation
diagram, Fig. 3. As before, we sum Hawk groups and Dove groups to obtain Hawk and Dove
abundances.

Contrary to the aforementioned results cited above as well as the results of Sect. 3, we did
not observe bistability for any of the m and τHH values we used. When mortality m is large,
Hawks and Doves go extinct. For smaller values ofm, we observe Hawks or both Hawks and
Doves surviving with the resource, either at an equilibrium or along a limit cycle.

In sum, as the mortality rate changes and as the amount of time that two Hawks fight
changes, the stable equilibriumcan change (see Fig. 3).We conjecture that themechanism that
causes each equilibrium to become unstable is similar to that of the Rosenzweig–MacArthur
model with Holling type II functional response.

5 Discussion

The Hawk–Dove game [22] predicts that the level of aggression (i.e., the proportion of
Hawks) in a population of individuals competing for some resource equals the ratio of the
resource value and the cost of a fight between two aggressive individuals who compete for the
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resource.4 This shows that as the value of the resource increases, the proportion of Hawks in
the population increases too. Thus, if the value of the resource is thought to be proportional to
the environmental carrying capacity, the level of aggression increases with the environmental
enrichment. Auger et al. [3] remarked “[t]his result is rather counter-intuitive as... we have
expected an increase of contest competition in low prey accessibility.” This game also serves
as a prototype model of contest competition. In this article, we show that combining contest
competitionwith scramble competition changes this “counterintuitive” trend as the proportion
of Hawks can increase as the environmental carrying capacity decreases.

The Hawk–Dove game is valuable in helping understand why animals may not use lethal
force against conspecifics; however, it is too general to serve as a predictive model because
the two parameters V and C are not defined well enough to be measured from biological
data. To resolve this, we recast the Hawk–Dove game as a model system of two types of
consumers competing for a single type of resource. This permits us to represent the benefit
V as a renewable food resource and the cost C as additional mortality due to fighting, as in
models (5) and (6) of Sects. 2 and 3, respectively. These models are closely related to the
models studied by Auger et al. [3] except that these authors (i) assumed that the proportion
of Hawks was at the ESS, and (ii) did not relate consumer per capita growth rate to the
resource level, i.e., they assumed that the consumer per capita growth rate was fixed and
equal to V . Assumption (i) is consistent with fast game dynamics relative to demographic
dynamics. Although the transient dynamics of their model should differ slightly from ours,
the equilibrium points and their stability (and bistability) are the same.

Indeed, when we focus on the regions in (m, K ) parameter space where Hawks or Hawks
andDoves are present, it appears in Fig. 1a, b that richer environments (i.e., thosewith a higher
carrying capacity) promote aggression. This is easy to see because when resource abundance
is low, the evolutionarily stable proportion of Hawks in the consumer population is directly
proportional to the amount of available resource, independent of whether or not the resources
are dynamic. This is evident for model (5) of Sect. 2, since in Table 2 the proportion of Hawks
at the equilibrium labeled E1 is eλK/C , which is directly proportional to K . Furthermore,
in our second model (i.e., (6) of Sect. 3) at the equilibrium labeled (p2, N2), the proportion
of Hawks, p, is again directly proportional to R, as seen in Table 3. Thus, we conclude
that the counterintuitive result about aggressivity obtained in Auger et al. [3] and replicated
here is not due to their time scale separation. Rather, this counterintuitive result derives from
representing the benefit as a quantity directly proportional to the abundance of resource.

When we remove the assumption that the value of the resource is directly proportional to
the amount of available resource, as in model (7) of Sect. 4, we obtain results about aggressiv-
ity that are more in line with our intuition. For instance, in the region where Hawks andDoves
coexist and the dynamics are oscillatory, the average proportion of Hawks decreases with
increases in K whenm is not too large (e.g.,m = 0.2 in Fig. 2a). Larger values of K increase
the abundance of available resources. Thus, searchers can more easily encounter resources
which appears to have a proportionally larger positive effect on Doves. For larger values of
m, the relationship between the average proportion of Hawks and K is more complicated.
When m = 0.5, for example, the proportion of Hawks tends to decrease until the carrying
capacity K exceeds 5.5, beyond which point this proportion increases and then decreases
slightly. In sum, we conclude that aggressivity can evolve in environments with low resource
carrying capacity, consistent with intuition about scramble competition.5

4 This prediction assumes that the value of the resource V is less than the cost of fighting C . Otherwise, the
Hawk–Dove game predicts all individuals will be aggressive.
5 A similar model was studied in Křivan et al. [17]. In Sect. 4 of their paper, they interpreted the Hawk–Dove
model as a model of contest competition. Resources were nesting sites, and the number of nesting sites was
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We expect aggressivity in model (7) to decrease with increases in fighting time between
Hawks since fighting time is a type of opportunity cost, where time spent fighting reduces
the amount of time available to forage for resources. It is less clear that aggressivity will
also decrease with increases in the natural mortality rate, m. As m increases, the consumer
population gets smaller, but this has a disproportionate impact on the abundances of Hawks,
thereby reducing aggressivity. Numerical explorations reveal that the proportion of searchers
decreases when m increases (the proportion of handlers increases and the proportion of
fighters increases then decreases). Since Hawk searchers benefit from encountering resources
and Dove handlers, fewer searchers leads to a lower effective growth rate that is not offset by
reduced fighting costs. In conclusion, aggressivity decreases with increases in both fighting
time, τHH , and natural mortality, m, as confirmed in Fig. 2b.

As we embed the Hawk–Dove model into progressively more sophisticated consumer-
resource model frameworks starting in Sect. 2 and ending in Sect. 4, we observe that the
regions of extinction of both Hawks and Doves shrink, the regions of exclusion of Doves and
coexistence of Doves are transformed, and new dynamics emerge. Model (5) has a unique
equilibrium whereby the consumer population either grows without bound or goes extinct,
depending on the parameter values used. When we include resource dynamics limited by an
environmental carrying capacity inmodels (6) and (7), the consumer abundance does not tend
to infinity, as seen in Fig. 1 panels b and c, respectively. The resource limitation predictably
limits the growthof the higher trophic level. Inmodel (6),weobserve only equilibriumdynam-
ics. Quite unexpectedly, including resource dynamics leads to bistability in three regions in
(m, K ) parameter space. Similar bistability is observed in intraguild predation models.6 In
the two sub-regions in Panel b where consumers go extinct in model (5) (for example, where
(m, K ) = (0.2, 1.75) and (m, K ) = (0.2, 2.25), c f .Panel a vs.Panel b),Hawks andDoves
can coexist or go extinct. In a third sub-region (for example, where (m, K ) = (0.2, 3.0)),
either Hawks and Doves coexist or Hawks survive alone. Within these sub-regions, the initial
proportion of Hawks and the initial number of consumers determine whether the consumer
population will go extinct.

In the consumer-resource model (7), we did not observe bistability, but Hawks or Hawks
and Doves may coexist with resources at an equilibrium or along a limit cycle. Figures1c and
3 display the regions of (m, K ) and (m, τHH ) parameter space where these behaviors were
observed numerically. These figures indicate that in general, a sufficient reduction inm tends
to cause dynamical instability as in the Rosenzweig–MacArthur resource-consumer model.
Stable equilibrium points become unstable and are replaced by stable oscillatory dynamics
when m is reduced. As K is reduced, this instability occurs at lower values of m. When
Hawks and Doves coexist with resource, this instability similarly occurs at lower values ofm

fixed. They showed that Hawks would outcompete Doves, thus occupying all of the available nesting sites.
This underscores a major difference between how aggression might evolve under scramble competition or
contest competition.
6 Bistability was also observed inAuger et al. [3] and can be related to similar dynamics inmodels of intraguild
predation [cf., 5, 13, 16, 23] if we conceive of Hawks as intraguild predators and Doves as intraguild “prey.”
This is because both Hawks and Doves compete for the common resource, but Hawks also obtain energy
from Doves through pair-wise interactions when they capture the resource that a Dove is handling. In both
situations, Hawks reduce the Doves’ net growth rate, albeit in our case Hawks do not kill Doves but they collect
the Doves’ resource. Holt et al. [11] showed that intraguild predators and intraguild prey can coexist only if
the resource environmental carrying capacity is intermediate and the intraguild predators are inferior to the
intraguild prey at exploiting a common resource. Otherwise, the intraguild prey is outcompeted. We observe
a similar pattern in our model too. First, Hawks are weaker competitors because of the additional cost C .
Second, Fig. 1b shows that when m is large enough (i.e., m > C/8), Doves are outcompeted from the system
at high environmental resource carrying capacity. At lower mortality rates we observe bistability at high values
of K where Doves are either outcompeted, or they coexist with Hawks at the equilibrium proportion p2.
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when τHH is smaller. In contrast, when only Hawks exist along with resource, this instability
occurs at higher values of m as τHH is reduced

Hawks and Doves coexist at equilibrium with finite population abundances in models (6)
and (7). At first glance, this appears to violate the competitive exclusion principlewhich states
that without sufficient heterogeneity, two consumers cannot co-exist with a single resource
at equilibrium. For example, the Rosenzweig–MacArthur model, when applied to a single
resource and two competing consumers, only admits coexistence of two consumers on a sin-
gle resource when there is variation in population densities [2]. According to Amarasekare
[1], competitive trade-offs may provide sufficient heterogeneity to allow two consumers
foraging on a single resource to co-exist at equilibrium. Specifically, “when interference
involves mechanisms that provide a benefit to the interacting species, coexistence is possible
provided competing species exhibit an interspecific trade-off between exploitation and inter-
ference”7[1]. Models (6) and (7) include both scramble competition and contest competition.
Scramble competition is modeled by Hawks and Doves consuming the same resource, and
contest competition is modeled by Hawks fighting over the resource and Hawks stealing the
resource fromDoves. Scramble competition exerts an equal effect on both Hawks and Doves.
The effects of contest competition differ for Hawks and Doves due to the differences between
Hawk–Hawk and Hawk–Dove interactions, as in the Hawk–Dove game (1). The parameters
m, K , and τHH affect the impact that contest competition has on the relative growth rates of
Hawks and Doves. When K is larger, searching Doves can more easily encounter resources,
and the proportion of Hawks that are searching is reduced. Taken together, Doves experience
less contest competition when K is larger. This reduction of competition pressure facilitates
coexistence. Within our consumer-resource framework, the different antagonistic interac-
tions among and between Hawks and Doves provides the necessary heterogeneity for Hawks
and Doves to co-exist at equilibrium.

Future work includes studying more closely the functional response that can be obtained
from the consumer-resource model of Sect. 4. It would also be interesting to explore an
analogous extension of the Hawk–Dove model for sexual selection where the resources are
not food items but mates.
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AModel (6) analysis

First, we reparametrize model (6). This reparametrization is important in stability analysis
given below because it allows us to derive in Mathematica conditions for local equilibria
stability analytically. This is not possible for the original parametrization of the model given
in the article.

Let R = α R̃, N = γ Ñ , t = δτ . Then,

d R̃

dτ
= δ

[
r R̃

(
1 − α

K
R̃
)

− λγ R̃ Ñ
]

dp

dτ
= δ

2
(eλα R̃ − Cp)(1 − p)p

dÑ

dτ
= δ

2
(eλα R̃ − Cp2 − 2m)Ñ .

(8)

Letting δ = 1
C , γ = C

λ
, and α = C

eλ , we obtain after simplification,

d R̃

dτ
= r

C
R̃

(
1 − C

eλK
R̃

)
− R̃ Ñ

dp

dτ
= 1

2
(R̃ − p)(1 − p)p

dÑ

dτ
= 1

2

(
R̃ − p2 − 2

C
m

)
Ñ .

(9)

Now we reparametrize with r̃ = r
C , K̃ = eλK

C , m̃ = 2
C m to yield

d R̃

dτ
= r̃ R̃

(
1 − R̃

K̃

)
− R̃ Ñ

dp

dτ
= 1

2
(R̃ − p)(1 − p)p

dÑ

dτ
= 1

2
(R̃ − p2 − m̃)Ñ .

(10)

Finally, we can drop the tildes to obtain the system

dR

dτ
= r R

(
1 − R

K

)
− RN

dp

dτ
= 1

2
(R − p)(1 − p)p

dN

dτ
= 1

2
(R − p2 − m)N .

(11)

The new state variables correspond to the old ones by R̃ = eλ
C R, Ñ = λ

C N .
The advantage ofmodel reparametrization is thatmodel (11) can be analyzed usingMathe-

matica. First, we calculated equilibria and then, using the Routh-Hurwitz criterion we derived
conditions for the theoretical local asymptotic stability using command Reduce of Mathe-
matica 12. The results are given in Table 4.
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13. Křivan V (2000) Optimal intraguild foraging and population stability. Theor Popul Biol 58:79–94
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