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Abstract

We develop a decision tree based game-theoretical approach for constructing functional responses in multi-prey/multi-
patch environments and for finding the corresponding optimal foraging strategies. Decision trees provide a way to describe
details of predator foraging behavior, based on the predator’s sequence of choices at different decision points, that
facilitates writing down the corresponding functional response. It is shown that the optimal foraging behavior that
maximizes predator energy intake per unit time is a Nash equilibrium of the underlying optimal foraging game. We apply
these game-theoretical methods to three scenarios: the classical diet choice model with two types of prey and sequential
prey encounters, the diet choice model with simultaneous prey encounters, and a model in which the predator requires a
positive recognition time to identify the type of prey encountered. For both diet choice models, it is shown that every Nash
equilibrium yields optimal foraging behavior. Although suboptimal Nash equilibrium outcomes may exist when prey
recognition time is included, only optimal foraging behavior is stable under evolutionary learning processes.
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Introduction

The functional response [1,2] considers the number of prey (or
resource items) consumed by a single predator (or forager) as
influenced by prey abundance. By dictating the mortality rate of
prey and the feeding rate of predators, it is central to
understanding consumer-resource dynamics [3,4]. Furthermore,
the functional response can be extended to consider a predator
seeking two prey types [1]. Besides being more realistic for many
predators, functional responses on two food types create indirect
effects between the prey via the shared predator. For instance, if
consuming a prey item takes time or reduces motivation, then the
presence of a second food type decreases the forager’s consump-
tion of the first food type. Via the functional response, such prey
become indirect mutualists [5]. Conversely, short-term apparent
competition [6,7] results if the presence of the second prey
encourages the predator to spend more time or effort searching for
and capturing prey. This happens when foragers bias their efforts
towards areas rich in resources. Regardless, the two-food
functional response is central to understanding diets, optimal
foraging for multiple resources, predator mediated indirect effects
between prey, and population dynamics within food webs.

Two modeling approaches have addressed the question of diet
choice for a forager that searches for and then handles
encountered prey items. The first is found in classic optimal
foraging models. The forager’s encounter probability or attack rate
[3] is viewed as a mass action phenomenon between the predator
and its prey. The forager’s overall encounter rate with prey is

simply the product of prey abundance and the predator’s
encounter probability on that prey. Upon encountering a prey,
the forager can elect to consume the prey at some handling time
cost, or reject the opportunity and continue the search for other
prey. Starting from Holling’s [1] two-food functional response this
approach has generated increasingly sophisticated predictions.

In Pulliam [8] (see also [9]), a ‘‘zero-one’’ or ‘‘bang-bang’’ rule
for diet choice was derived. A forager should either always accept
or always reject an encountered food item. When encountered, the
preferred food (based on a higher reward to handling time ratio)
should always be consumed. If searching for and handling the
preferred food type yields more (or less) reward than simply
handling the less preferred food, then the less preferred food
should always be rejected (or accepted) when encountered.
Empirical support was encouraging but equivocal [10]. Most
foragers show a partial selectivity, they are neither completely
opportunistic nor completely selective. A number of mechanisms
have been proposed and modeled for why foragers sometimes only
partially consume a less preferred food; including food depletion
[11], food bulk and digestion limitations [12], complementary
nutrients [13], local omniscience [14], incorrect prey classification
and sampling by predators [15,16], prey crypsis [17] etc.

A second approach to diet choice is emerging from spatially-
explicit models such as agent based models. A forager may move
through a lattice or some form of continuous space. Prey items
may occur at fixed locations or may also move through the defined
space. The forager possesses some detection radius. Upon
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detecting a prey, the forager can choose to ignore the prey or
attempt a capture. Such approaches lead to greater realism by
considering the roles of space and individual contingencies. While
they move through the same landscape, each individual forager
becomes more or less unique based on its own personal history of
movement, food encounters, and foraging decisions. Some
individuals may experience unusually high or low harvest rates
as a consequence of runs of good or bad luck, respectively. Like the
classical models of diet choice, the foragers can still make optimal
foraging decisions by deciding which encountered foods to handle
or reject. The simulations can be run with a myriad of decision
rules, and the performance of these rules can be compared. While
a best diet choice rule may emerge from a particular scenario, the
explicit nature of the agent based models may obscure the
elegance or simplicity of the decision rule. Such agent based
models may approximate more or less the optimal decision rules
from the first approach to diet choice [14].

Here we develop a decision theory approach to diet choice. We
use an explicit decision tree to evaluate the costs and benefits of
different choices. Such a decision tree has similarities to extensive
form games from game theory [18,19]. Our goals are threefold.
First, does an explicit consideration of decision making recover the
results from the classic ‘‘mass-action’’ models of diet choice.
Second, can these decision trees assist in uncovering the optimal
decision rules for agent-based foraging models. Third, what are
the similarities and differences between the decision tree of a
forager and evolutionary games in extensive form. To achieve
these goals we imagine a forager that searches for and handles
food items of two types.

We consider three different scenarios based on the nature of
searching for food and the ability to recognize a food’s type upon
encounter. In the first, search is undirected in terms of food type,
but upon encountering a food item the forager instantly recognizes
its type. This accords with the assumptions that generate Holling’s
two-food functional response and an ‘‘all or nothing’’ decision rule
of food type acceptability. In the second the forager may
encounter one prey of each type (called simultaneous encounter
[20]), but can only handle one of the items, the other being lost.
For instance, these two prey may be together at the same place
competing over a common resource. Alternatively, the predator
may search a small area completely for any prey before deciding
whether to attack. In the third, we consider recognition time where
the forager must expend additional time if it wants to know the
type of food that has been encountered prior to handling.

Methods

Decision trees and the functional response for two prey
types

In this section, we develop a decision tree method to derive the
predator’s functional response. The tree details the predator-prey
interactions under consideration. We envision several prey types
spatially distributed among many patches (that we will call
microhabitats). The encounter events are then partially deter-
mined by the prey through their spatial distribution before the
predator arrives. For instance, if prey are territorial, then the
predator can encounter at most one solitary prey in a given
microhabitat. At another extreme, if the different types of prey
aggregate, then the predator can encounter different prey types at
the same time. Thus, encounter events depend on the spatial
behavior of the prey.

We break the predation process into different stages. A typical
predation process has at least three stages that answer the
following questions: 1. What prey (or types of prey) does the

predator encounter? 2. What does the predator do in a given
encounter situation (e.g. does the predator attack a prey, what type
does it attack, etc.)? 3. Is the predator successful or not if it attacks?
Here, we construct functional responses from the underlying
decision trees based on three scenarios. This construction is,
however, quite general and described fully in section Decision
trees and the functional responses of Appendix S1. We start with a
well known example that leads to the Holling type II functional
response for two prey types.

Suppose that there are two types of prey A and B with fixed
densities x and y, respectively. We assume that these prey are
scattered randomly among N microhabitats where N is much
larger than the number of individuals (i.e., N&xzy). Thus, there
will be at most one prey in each microhabitat (i.e. the probability
that there are two or more in some microhabitat is negligible).
Thus, the probabilities that a given microhabitat has no prey is
p0~1{ x

N { y
N, exactly one prey A is pA~ x

N and exactly one prey

B is pB~ y
N. These probabilities are assumed not to change with

time, which is the usual assumption when deriving a functional
response.

Suppose the predator chooses a microhabitat to search at
random, that it always finds the prey in this microhabitat if there is
one, and that it takes a searching time ts for it to determine
whether a prey is there or not. There are then three possible
encounter events: the predator encounters a prey of type A, a prey
of type B, or no prey at all. These events occur with probabilities
pA, pB and p0 respectively (see Figure 1, Level 1).

For the first event when encountering prey A, the predator has
two possible actions: Either ‘‘attack prey A‘‘ and ‘‘do not attack
prey A.’’ These actions occur with probabilities qA and 1{qA,
respectively (see Figure 1, Level 2). Similarly, in the second event
when a predator encounters prey B, the two possible actions of the
predator are to ‘‘attack prey B‘‘ and ‘‘do not attack prey B‘‘ with
probabilities qB and 1{qB, respectively. For the third event, when
no prey are found, the only predator action is ‘‘do not attack’’ with
probability 1. Altogether, there are five possible predator activities,
and these correspond to the five edges at Level 2 in the decision
tree of Figure 1.

Figure 1. The decision tree for two prey types. The first level gives
the prey encounter distribution. The second level gives the predator
activity distribution. The final row of the diagram gives the probability
of each predator activity event and so sum to 1. Since each entry here is
simply the product of the probabilities along the path leading to this
endpoint, we do not provide them in the decision trees from now on.
With random prey distribution and N large, p0~1{ x

N { y
N ,pA~ x

N and
pB~ y

N. If prey A is the more profitable type, the edge in the decision
tree corresponding to not attacking this type of prey is never followed
at optimal foraging (indicated by the dotted edge in the tree). The
reduced tree is then the resulting diagram with this edge removed.
doi:10.1371/journal.pone.0088773.g001
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Let the predator’s handling times of prey A and B be tAh and
tBh, respectively. The five predator activity events are: encounter a
microhabitat with prey A and attack it; encounter a microhabitat
with prey A and do not attack it; encounter a microhabitat with
prey B and attack it; encounter a microhabitat with prey B and do
not attack it; encounter an empty habitat. The probability
distribution of these activities (i.e. the ‘‘activity distribution’’,

[21]) in this order is pAqA~
xqA

N
, pA(1{qA)~

x(1{qA)

N
,

pBqB~
yqB

N
, pB(1{qB)~

y(1{qB)

N
, p0~1{

x

N
{

y

N
with dura-

tion times tsztAh, ts, tsztBh, ts, ts, respectively. All this
information is included in the decision tree of Figure 1. Also
included in this tree are the energy consequences (p‘) to the
predator of each of the five activities.

Calculation of functional responses is based on renewal theory
(for details, see section Decision trees and the functional responses
of Appendix S1) which proves that the long term intake rate of a
given prey type can be calculated as the mean energy intake
during one renewal cycle divided by the mean duration of the
renewal cycle [20,22-24]. A single renewal cycle is given by a
predator passing through the decision tree in Figure 1. Since type
A prey are only killed when the path denoted by pA and then qA is
followed, the functional response to prey A, fA(qA,qB), is given
through Figure 1 by

fA(qA,qB)~

pAqA

p0tszpA½qA(tsztAh)z(1{qA)ts"zpB½qB(tsztBh)z(1{qB)ts"

~
pAqA

tszpAqAtAhzpBqBtBh
:

Similarly, the functional response for prey B is

fB(qA,qB)~
pBqB

tszpAqAtAhzpBqBtBh
:

These are the functional responses assumed in standard two
prey models (e.g., [9,20,25]) given in our notation. For instance, if
we normalize searching time so that Nts~1, fA(qA,qB) can be
rewritten in terms of prey density in the more familiar form

xqA

1zxqAtAhzyqBtBh
. As mentioned above, it is assumed that the

encounter rates, pA and pB, remain unchanged over the renewal
cycle in that predation has negligible effect on prey densities
during this time. This occurs if, for example, x and y are large or
N is quite large and so predation is rare. Our decision tree
approach provides a mechanistic foundation to typical functional
responses assumed in the literature. In particular, it is obvious that
the standard Holling II functional response [2] given by

f (x)~
x

1zxth
is the outcome for Figure 1 when there is only

one type of prey and the predator always pursues every prey it
encounters (take Nts~1,y~0 and qA~1).

The predator’s rate of energy gain, f , is given by (Figure 1)

f (qA,qB)~
pAqApAzpBqBpB

tszpAqAtAhzpBqBtBh
: ð1Þ

Like others [9,20,23,26], we assume that the forager aims to
maximize f . This theory predicts that if the two types of prey are
ranked according to their ‘‘profitabilities’’ (i.e. their respective
nutritional values per unit of handling time p=t), then the more
profitable prey type is always included in the diet. That is, if
pA=tAhwpB=tBh, then the optimal foraging strategy is to attack all
encountered prey A (i.e. qA~1). Furthermore, the decision to
attack the lower ranked prey (i.e. prey B) satisfies the zero-one rule.
Specifically, qB~1 (respectively, qB~0) if its profitability is greater
than (respectively, less than) the nutritional value of only attacking

prey of type A (i.e. qB~1 if and only if
pB

tBh
w pApA

tszpAtAh
). The

threshold value for including the less profitable prey in the
predator’s diet depends only on the chances of encountering the
more profitable prey (i.e. only on the density of prey A) since
qB~1 if and only if pAvp%A where

p%A~
pBts

pAtBh{pBtAh
, ð2Þ

[9,20,23,26].

Decision trees and extensive form games
The decision tree approach is reminiscent of games given in

extensive form [18,19]. Because of this relationship between
decision trees and extensive form games, game theory can then be
used to find the optimal foraging strategy. First, we use the
truncation method to eliminate those paths that always yield
suboptimal outcomes. When applied to Figure 1, truncation
removes the dotted path of rejecting the opportunity to capture
prey type A. It is never optimal to reject the prey that offers a
higher reward to handling time ratio. But what of node B? For
food B with a lower energy to handling time ratio, we can find the
optimal foraging strategy by analyzing the agent normal form
[19]. This method assigns a separate player (called an agent) to
each decision node. The possible decisions at this node become the
agent’s strategies and its payoff is given by the total energy intake
rate of the predator it represents. When game theory is used to
solve a single predator’s decision tree, all of the virtual agents have
the same common payoff, and in a sense, these agents engage in a
cooperative game. The optimal foraging strategy of the single
predator is then a solution to this game.

To illustrate the approach, we make the decision tree of Figure 1
into a two-player foraging game. Player 1 corresponds to decision
node A with strategy set S1~fqAD0ƒqAƒ1g and player 2 to node
B with strategy set S2~fqBD0ƒqBƒ1g. Their common payoff
f (qA,qB) is given by (1). In an extensive form game, the payoff
functions are linear in the behavioral strategy choices of all players.
For our optimal foraging games, these payoffs are nonlinear
functions and so are more similar to those found in population
games [27,28]. As a game, we seek the Nash equilibrium (NE).
This is a pair of behavioral strategies (qA,qB), one for each player,
such that neither player can gain by unilaterally changing its
strategy. That is,

f (q
0
A,qB)ƒf (qA,qB) and f (qA,q

0
B)ƒf (qA,qB) ð3Þ

for all q
0
A[S1 and q

0
B[S2. In game-theoretic terms, (qA,qB) is a NE

if qA is a best response of player 1 to qB and qB is a best response of
player 2 to qA.

Clearly, an optimal foraging behavior (qA,qB) (f (qA,qB)§
f (q

0

A,q
0

B) for all q
0

A[S1 and q
0

B[S2) corresponds to a NE since it
satisfies (3). Solving the game (i.e. finding the NE) for the classic
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foraging model of two types of prey is straightforward. Since
f (1,qB)wf (qA,qB) for all 0ƒqAv1 and 0ƒqBƒ1, the behavioral
strategy of player 1 to attack (i.e. qA~1) strictly dominates all its
other options (i.e. qA=1) and so, at any NE, player 1 must play
qA~1. The NE strategy of player 2 is then any best response to

qA~1 (i.e. any qB that satisfies f (1,q
0

B)ƒf (1,qB) for all 0ƒq
0

Bƒ1).
A short calculation yields

qB~

0 if pAwp%A
1 if pAvp%A

0,1" if pA~p%A,

8
><

>:
ð4Þ

where p%A is given by (2). These results are shown in Figure 2 where
NE are indicated by solid circles (panels (a) and (c)) and by the solid
line segment on the right edge of panel (b). In this latter case (i.e.
when pA~p%A), every point on this vertical edge qA~1 is a NE and
the entire edge forms a NE component (i.e. a maximal connected
set of NE, cf. [19]). Thus, at this critical encounter rate with the
more profitable prey type, the zero-one rule of optimal foraging
which states that a given resource type in a given patch is either
always consumed when encountered or never consumed, must be
modified because the optimally foraging predator preference for
the alternative prey type can be anywhere between 0 and 1.

Since Figure 1 is a two-level foraging game, Theorem 3 of
section Zero-one rule and the Nash equilibrium of Appendix S1
implies that the NE given by Figure 2 (i.e. by qA~1 and qB given
by (4)) completely characterize optimal predator foraging behav-
ior. Figure 2 also indicates the direction of increasing energy intake
per unit time at points in the unit square. This suggests yet another
connection to game theory; namely, how does the predator learn
its optimal behavior? This question is commonly studied in
evolutionary game theory [19,29] where individual behaviors
evolve in such a way that strategies with higher payoff become
used more frequently. By following the flow of increasing payoff in
the figure, it is clear from Figure 2 that such an evolutionary
process will automatically lead to optimal predator behavior. We
will return to this question in section Game theory and
evolutionary outcomes for the prey recognition game where the
evolutionary outcome is not so clear.

In these more general games where the decision tree has more
than 2 levels, there may be NE that do not correspond to optimal

foraging behavior. However, so long as the number of encounter
events at level 1 and predator activities remain finite, these
decision trees generate the predator’s energy intake rate and its
functional responses on each type of prey. Game-theoretic
equilibrium selection techniques [30] based on evolutionary
outcomes can then be used to discard suboptimal NE behaviors
and select only those NE corresponding to optimal foraging
behaviors as we will see in the final example that includes prey
recognition effects (see section Prey Recognition Effects).

Results

Foraging with simultaneous resource encounters
In this section, we again assume that there are two resource

types (denoted as A and B) but, unlike section Decision trees and
the functional response for two prey types, some microhabitats can
contain a mixture of both types (denoted as AB). In this case, we
assume that the consumer can forage for at most one resource type
in any encounter event. Other microhabitats can be resources free.
Furthermore, let pA, pB and pAB respectively be the proportions of
these microhabitats that contain only resource A, only resource B
prey and both resources AB respectively. Finally, let p0 be the
proportion of microhabitats that contain no resources. If the
consumer chooses a patch at random, the distribution of
encounter events is given by Level 1 of Figure 3.

Figure 3 also contains the distribution of consumer activity
events under the assumption that the consumer is always successful
when it decides to forage a resource that it encounters. In the
predator-prey interpretation, this means the predator kills its prey
whenever it attacks. As discussed in the final paragraph of section
Decision trees and the functional responses of Appendix S1, our
decision tree approach to optimal foraging is also applicable when
the attacking predator is only successful with a certain probability
that may depend on the type of prey. Here qA (respectively, qB) is
the probability the consumer forages for the resource when it
encounters only resource type A (respectively, type B). Also qAB

(respectively, qBA) is the probability the consumer forages type A
(respectively, type B) resource when it chooses a microhabitat that
contains both types of resources and so 1{qAB{qBA is the
probability the consumer decides not to forage for either resource
in this encounter event.

Figure 2. Qualitative outcomes of the optimal foraging strategy for the classical foraging model (1) with two prey types as a
function of the encounter probability with the most profitable prey (i.e. of pA). Panel (a) assumes that 1§pAwp%A~pBts=(pAtBh{pBtAh) in
which case the optimal strategy and NE is (qA,qB)~(1,0): In panel (c), pAvp%A and the optimal strategy (and NE) is (qA,qB)~(1,0): The arrows in each
panel indicate the direction of increasing energy intake per unit time at points in the unit square. For completeness, the figure also includes the
threshold case, panel (b), where pA~p%A (i.e. the density of A prey is at the switching threshold). Although this case is rarely considered by ecologists,
its inclusion here is important to understand the optimal outcomes in our more complicated models. In panel (b), the optimal strategy is
(qA,qB)~(1,v) where 0ƒvƒ1, corresponding to the solid right-hand edge of the unit square that forms a set of NE points.
doi:10.1371/journal.pone.0088773.g002
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The functional response can then be developed from the
decision tree in Figure 3 that includes the searching and handling
times as well as the energy intakes of the different activity events.
Proceeding as in section Decision trees and functional response for
two prey types, the functional responses to resource type A and B
are given by

fA(qA,qAB,qBA,qB) ~
pAqAzpABqAB

t

fB(qA,qAB,qBA,qB) ~
pABqBAzpBqB

t

ð5Þ

respectively, where t~tszpAqAtAhzpABqABtAhzpABqBAtBhz
pBqBtBh. Thus the total consumer energy intake per unit time is

f (qA,qAB,qBA,qB)~
pAqAzpABqABð ÞpAz pABqBAzpBqBð ÞpB

t
:ð6Þ

To find the optimal foraging strategy, we solve for the NE of the
three-player game that assigns one player to each of the consumer
decision nodes in Figure 3. As shown in section Foraging with
simultaneous resource encounters of Appendix S1, the behavior
strategy to consume resource A at node A strictly dominates all
other actions of this player (i.e., f (1,qAB,qBA,qB)w
f (qA,qAB,qBA,qB) for all 0ƒqAv1), as we assume that resource
A is more profitable to the predator than resource B (i.e. that
pA

tAh
w pB

tBh
). It is also shown there that any behavior strategy at

node AB whereby a resource is not always consumed (i.e.
qABzqBAv1) is strictly dominated. Thus qA~1 and
qABzqBA~1 at any NE.

From these two results, the decision tree in Figure 3 can be
truncated by deleting the two edges indicated by dotted lines. With
this change, the consumer energy intake rate f becomes

f (qAB,qB)~
pAzpABqABð ÞpAz pAB(1{qAB)zpBqBð ÞpB

t
ð7Þ

where now t~tszpAtAhzpABqABtAhzpAB(1{qAB)tBhz
pBqBtBh.

Thus, the optimal strategy is a NE of the two-player game
corresponding to the reduced tree of Figure 3. In this two-level
foraging game, player 1 corresponds to decision node AB with
strategy 0ƒqABƒ1 and player 2 at node B with strategy
0ƒqBƒ1. Their common payoff is given by (7). From section
Foraging with simultaneous resource encounters of Appendix S1

the best response for player 1 that encounters both prey types
simultaneously given the current strategy of player 2 is

qAB~

0 if qBvq%B
1 if qBwq%B

0,1" if qB~q%B

8
><

>:
ð8Þ

where

q%B~
(pB{pA)ts{(pAzpAB)(pAtBh{pBtAh)

pB(pAtBh{pBtAh)
: ð9Þ

Similarly, the best response of player 2 when encountering only
resource B is

qB~

1 if qABvq%AB

0 if qABwq%AB

0,1" if qAB~q%AB

8
><

>:
ð10Þ

where

q%AB~
pBts{pA(pAtBh{pBtAh)

pAB(pAtBh{pBtAh)
: ð11Þ

Then (qAB,qB) is a NE if and only if this strategy pair satisfies
equations (8) and (10). Thus, unlike section Decision trees and
functional response for two prey types, the NE behavior at one
consumer decision node depends on the behavior at the other.

By Theorem 3 in section Zero-one rule and the Nash
equilibrium of Appendix S1, NE correspond to optimal foraging
behavior. Thus, the optimal foraging behavior depends critically
on the values of q%AB and q%B. In particular, it is important to know
whether these values are between 0 and 1, less than 0 or greater
than 1. For instance, suppose that q%ABw1 and 0vq%Bv1. Then,
from (10), qB~1 (since qABvq%AB) and so qAB~1 by (8). In this
case, the only optimal foraging behavior is to consume A
whenever it is encountered and to consume B only when it is
not encountered simultaneously with A. In general, we observe
that (i) if q%ABv0, then q%Bv0, and (ii) if q%Bw0, then q%ABw1.
These inequalities constrain the number of possible optimal
strategies to (qAB,qB)[f(1,0),(1,1),(0,1)g. These are the possible
optimal strategies among the vertices of the unit square in Figure 4.
As we will see, at certain threshold parameter values, two of these

Figure 3. The decision tree for the simultaneous encounter game. At optimal foraging, two edges of this tree diagram are never followed.
These are indicated by dotted lines in the tree. The reduced tree is then the resulting diagram with these edges removed.
doi:10.1371/journal.pone.0088773.g003
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vertices can both correspond to optimal behavior. In this case, all
points on the edge between these vertices correspond to optimal
behavior as well. In particular, the case where qAB~qB~0 can
never occur because the two necessary conditions q%ABv0 and
q%Bw0 are excluded by (i) and (ii). This intuitive result predicts that
if the less profitable resource type B is consumed when
encountering both types (i.e., if qBA~1 which implies that
qAB~0), it will always be consumed when encountered alone.
Moreover, there is no interior optimal strategy (i.e. there is no NE
whereby the consumer exhibits partial diet choice when encoun-
tering both resource types simultaneously as well as partial diet
choice when encountering resource B on its own) since this
requires that both q%AB and q%B be strictly between 0 and 1, which
does not happen for any parameter choice.

It is interesting to analyze dependence of the optimal strategy
(qAB,qB) on the energetic value (pB) of the less profitability prey.
We consider only those energetic values for which B is the less

profitable prey type (i.e., 0vpBv pAtBh

tAh
). To this end, we need to

know the critical values of pB when either q%B or q%AB are equal to 0
or 1. Let

p%B1~
pA((pAzpABzpB)tBhzts)

(pAzpABzpB)tAhzts
, p%B2~

pA((pAzpAB)tBhzts)

(pAzpAB)tAhzts
,

p%B3~
(pAzpAB)pAtBh

(pAzpAB)tAhzts
, p%B4~

pApAtBh

pAtAhzts
:

Then q%B(p%B1)~q%AB(p%B3)~1 and q%B(p%B2)~q%AB(p%B4)~0. We

divide the analysis into two cases. For the first, assume that the
handling time of resource A is longer than or equal to that of
resource B (tAh§tBh). As we assume that resource A is more
profitable than B, it follows that the energy content in food items
must be larger in resource A (pAwpB) and so q%Bv0 by (9). Thus,
the optimal foraging strategy is to consume the A resource when
both are encountered (i.e. qAB~1). Furthermore, qB~0 if

0vpBvp%B3 and qB~1 if p%B3vpBv pAtBh

tAh
(i.e. the B resource

is consumed when encountered on its own only if its energy value
is sufficiently high). The dependence of the optimal strategy as a
function of prey B energetic value is shown in Figure 5A.

The more interesting case where prey A handling time is shorter
than prey B handling time (tAhvtBh; Figure 5B) is analyzed in

F i g u r e 4 . A l l q u a l i t a t i v e o ut c o me s o f t h e o p t i ma l f o r a g i ng s t r a t e g y ( 8 ) a n d ( 1 0 ) w i t h pa r a m e t e r s
ts~1,tAh~1,tBh~2,pA~2,pA~1=4,pAB~1=2,pB~1=4. In these plots, the energetic value pB of resource B varies in the interval from 0 to pAtBh

tAh

(i.e. 0ƒpBƒ4). The critical values of pB are p%B1~3; p%B2~
20
7 ; p%B3~

12
7 ; p%B4~

4
5. The arrows in each panel indicate the direction of increasing energy

intake per unit time at points in the unit square. In each case shown, these arrows lead to a single vertex indicated by the filled in circle which
corresponds to the optimal foraging behavior (and unique NE). (a) For pBv 4

5, q%ABv0 and q%Bv0. Thus qAB~1 and qB~0. (b) For 4
5 vpBv 12

7 ,
0vq%ABv1 and q%Bv0. Thus qAB~1 and qB~0. The dashed line denotes q%AB: As pB increases, q%AB moves to the right until it coincides with the
vertical line qAB~1 when pB~p%B3~

12
7 . At this critical value of pB (not shown), all points (1,qB) on this vertical line are optimal foraging strategies

(and NE). (c) For 12
7 vpBv 20

7 , q%ABw1 and q%Bv0. Thus qAB~1 and qB~1. (d) For 20
7 vpBv3, q%ABw1 and 0vq%Bv1: Thus qAB~1 and qB~1. The

dashed line denotes q%B: (e) For 3vpBv4, q%ABw1 and q%Bw1. Thus qAB~0 and qB~1.
doi:10.1371/journal.pone.0088773.g004
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section Foraging with simultaneous resource encounters of
Appendix S1. When energy content of prey B is smaller than
p%B3 the optimal strategy is (qAB,qB)~(1,0). For intermediate
energy content satisfying p%B3vpBvp%B2, the optimal strategy is
(qAB,qB)~(1,1): For relatively large energy content
p%B1vpBvpAtBh=tAh, the optimal strategy is (qAB,qB)~(0,1).

These results are also included in Figure 4 that in addition
provides the direction of increasing energy intake per unit time at
all points in the unit square. In all cases analyzed in the previous
two paragraphs, the outcome satisfies the zero-one rule (i.e. either
always consume a given resource type in a given patch or never
consume it) as suggested by [31].

It is particularly interesting to see what happens at the critical
values p%B3 where q%AB~1, and p%B1 where q%B~1: These values
correspond to transitions (b)-(c) and (d)-(e) respectively in Figure 4
because the dashed vertical (panel (b)) and horizontal (panel (d))
lines respectively are then on the boundary of the unit square.
Straightforward calculations show that

f (1,qB)~
(pAzpAB)pA

(pAzpAB)tAzts
,

when pB~p%B3. Thus f (1,qB) is independent of qB and the optimal

foraging behavior is any strategy pair of the form (qAB,qB)~(1,qB)
for 0ƒqBƒ1.

Similarly, when pB~p%B1,

f (qAB,1)~
(pAzpABzpB)pA

(pAzpABzpB)tAzts

and the optimal foraging behavior is any strategy pair of the form
(qAB,qB)~(qAB,1) for 0ƒqABƒ1. Once again, the zero-one rule
must be modified at these critical values. For instance, when
pB~p%B1, resource B is always consumed under optimal foraging

when encountered on its own. However, if both resources are
encountered simultaneously, optimal foraging occurs for any
preference for the less profitable prey type. In section Zero-one
rule and the Nash equilibrium of Appendix S1, the modified zero-
one rule states that there is at least one optimal foraging behavior
where the corresponding NE is a pure strategy, i.e., where the
predator preference for a prey is either 0 or 1. After such
modification the zero-one rule holds even at pB~p%B1 because the

(pure) strategy (qAB,qB)~(1,1) is optimal. This extension of the
zero-one rule applies to situations where optimal preferences for
prey types as a function of a parameter switch suddenly at some
critical values from 1 to 0 or vice versa.

These results can be partially explained through the patch
choice model of [31]. Specifically, since patches A and AB have

the same maximum profitabilities
pA

tAh
(which is higher than in

patch B), both are included in the consumer’s diet. However, as
shown by [31], this does not mean that the most profitable
resource is chosen in patch AB. From (9), we see whether qAB~0
or 1 depends both on the ranking of A and B profitabilities (the
denominator in (9)) as well as on the difference in energy gain
pB{pA per unit consumed. When resource type A is both more
profitable and also has a higher energetic value (pAwpB), or
search time is short, then q%Bv0 and, consequently, qAB~1, i.e,
only resource A will be consumed in patches containing both
resource types. Only when type B is energetically more valuable
than type A and either search time is long enough, or the
probability of encountering patch A and patch AB is low enough,
can resource type B be selected when both resources are
encountered simultaneously. In this case, resource B will also be
consumed when encountered on its own.

Prey recognition effects
The functional response developed in section Decision trees and

functional response for two prey types assumes the predator
immediately recognizes the type of prey found during its search
and then decides whether or not to attack it. In this section, we
model the situation where the predator cannot distinguish the type
of prey it encounters unless it is willing to spend extra
‘‘recognition’’ time tr beyond the time required to search the
microhabitat. That is, the predator has an option of paying this
extra cost to gain information on the prey type encountered before
it decides whether to attack. This information is said to be
gathered in the facultative sense [32]. Kotler and Mitchell [32]
point out instances of facultative information that occur in host-
parasite and in mate selection models. They also discuss optimal
foraging when information is gathered in the obligate sense (i.e.
the predator gathers this information on prey type in the process of
handling the prey and has the option of rejecting it at that point).
Although we do not consider the model for obligate information in
this paper, its decision tree (and analysis of optimal foraging) is
simpler than Figure 6 for facultative information.

Figure 5. Dependence of the optimal foraging strategy qAB ((8),
solid line) and qB ((10), dashed line) on the energy content of
the less profitable prey type B. Panel A assumes a larger handling
time of prey type A (tAh~2, tBh~1), while panel B assumes the
opposite case (tAh~1, tBh~2). Other parameters ts~1, pA~2,
pA~1=4, pAB~1=2, pB~1=4:
doi:10.1371/journal.pone.0088773.g005
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As in section Decision trees and functional response for two prey
types, we assume that the two prey types are distributed among N
micohabitats with at most one prey in each. To ease notational
difficulties, we now label these prey types as species 1 and 2 with
densities x1 and x2 respectively and nutritional values p1 and p2

respectively to the predator. If the predator chooses a microhabitat
at random, the encounter event distribution (see Figure 6) is the
same as in Figure 1 (with our change of notation). In particular,
p0~1{ x

N { y
N , p1~

x
N and p2~

y
N .

On finding a prey in a microhabitat, the predator decides
immediately whether to attack, move to another microhabitat to
begin a new search, or spend recognition time to determine the
type of prey encountered. Suppose these choices are taken with
probabilities qA, qM , qR respectively (where qAzqMzqR~1).
The horizontal dashed line in Figure 6 joining these two encounter
events indicates that this decision must be made without knowing
the type of prey. Thus, in the terminology of extensive form games
[19], the set of these two nodes forms an ‘‘information set’’ of the
predator and is represented by a single player in the three-player
game corresponding to Figure 6. We remark that the two nodes
that form this single information set require only one player
because, at both nodes, the information available is the same (the
information is that the searching predator encountered a prey).

If the predator decides to spend recognition time to determine
the encountered prey is of type i, then it must subsequently decide
whether to attack this prey or not with probabilities qAi and 1{qAi

respectively (see the third level of Figure 6). It is not necessary that
qA1~qA2. If we assume that the predator is always successful when
attacking a prey, the tree diagram is given in Figure 6 where t1h

and t2h are the handling times for prey of type 1 and 2
respectively. We also assume that the time needed to recognize
either type of prey is the same (i.e. t1r~t2r~tr). Proceeding as in
section Decision trees and functional response for two prey types,
the functional response to prey type i is given by

fi((qA,qR,qM ),qA1,qA2)~
pi(qAzqRqAi)

t

where t~tszp1qAt1hzp1qR(qA1t1hztr)zp2qAt2hzp2qR(qA2t2h

ztr): Thus the total predator nutritional value per unit time is

f ((qA,qR,qM ),qA1,qA2)~
p1p1(qAzqRqA1)zp2p2(qAzqRqA2)

t

for fixed prey distribution p1 and p2.
The optimal predator foraging behavior corresponds to the

maximum of f as a function of qA, qM , qR, qA1, qA2. This
maximum is considerably harder to determine than in section
Decision trees and functional response for two prey types.
However, game-theoretic methods to solve for NE are effective
at simplifying the analysis. Figure 6 is a three-player foraging game
with player 1 representing the predator decision at the two-node
information set at level 2 and players 2 and 3 assigned to the
respective decision nodes at level 3. From section The Nash
equilibria of the prey recognition game of Appendix S1, any
strategy (qA,qR,qM ) of player 1 with qMw0 is strictly dominated
and so any NE behavior of this player must satisfy qM~0. Thus,
at the optimal strategy, the predator should never move to another
microhabitat when it first finds a prey since, by abandoning this
prey, the predator wastes the time spent searching for it. In
contrast to section Decision trees and functional response for two
prey types where the predator could reject the prey type with low
profitability on first encounter, this is not possible here without
rejecting the better prey type as well (because upon an initial
encounter the predator does not know the prey type).

Since player 1 has strategy of the form (qA,qR,qM )~
(qA,1{qA,0) for some 0ƒqAƒ1, we will denote the NE behavior
of player 1 by qA and assume that qM~0 from now on. Section
The Nash equilibria of the prey recognition game of Appendix S1
also shows that, if prey type 1 is more profitable than type 2 (i.e. if
p1

t1h
w p2

t2h
as in section Decision trees and functional response for

two prey types, then the predator must attack any prey 1 that it
recognizes. We will assume this throughout this section. Thus, we
will also assume that qA1~1 in the decision tree of Figure 6 and
analyze the truncated foraging game that eliminates the three
edges indicated by dotted lines there.

The reduced tree corresponds to a two-player game with
strategy set 0ƒqAƒ1 for player 1 at level 2 and 0ƒqA2ƒ1 for
player 2 representing the predator decision whether to attack a
recognized prey 2 at level 3. The energy intake rate is then

Figure 6. Decision tree for prey recognition game. In the reduced tree, the dotted edges are deleted.
doi:10.1371/journal.pone.0088773.g006
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f (qA,qA2)~
p1p1zp2p2(qAz(1{qA)qA2)

t
ð12Þ

where
t~tszp1t1hzp2t2h(qAz(1{qA)qA2)z(p1zp2)tr(1{qA).

The NE of this truncated game is easy to determine when
p2

t2h
§ p1p1

tszp1t1h
. In this situation, the profitability of prey type 2 is at

least as high as the nutritional value of only attacking prey type 1
when there is no recognition time (i.e. tr~0). In section Decision
trees and the functional response for two prey types (cf. equation
(1)), the NE behavior of player 1 is then to attack any prey
encountered and this continues to be the NE strategy when
recognition time is non-zero. Thus qA~1 at any NE and, in fact,
all NE are of the form (qA,qA2)~(1,qA2) for some 0ƒqA2ƒ1 (see
section The Nash equilibria of the prey recognition game of
Appendix S1 for the formal derivation). This corresponds to the
predator being opportunistic (sensu [32]). Note that, if the
predator immediately attacks an observed prey, the decision
whether to attack after recognizing the type of prey is no longer
relevant since this choice is never needed.

For the remainder of this section, assume that the profitability of
resource 2 is lower than is the mean energy intake rate obtained
when feeding on the more profitable prey type only (i.e.,
p2

t2h
v p1p1

tszp1t1h
). In this case, the predator should consider

whether to determine the prey type it encountered, because
including the less profitable prey type in its diet may decrease the
mean energy intake rate.

To calculate the NE behavior, we proceed as in section
Foraging with simultaneous resource encounters. From section
The Nash equilibria of the prey recognition game of Appendix S1,
the best response of player 1 to a given strategy qA2 of player 2 is

qA~

0 if qA2vq%A2

1 if qA2wq%A2

0,1" if qA2~q%A2

8
><

>:
ð13Þ

where

Figure 7. Qualitative outcomes of the optimal foraging strategy (13) and (14) for increasing recognition time tr. Panel (a) assumes
0vtrv 1

6 for which 0vq%A2v1 and q%Av0. The optimal foraging strategy is at (qA,qA2)~(0,0) (i.e. always pay the cost of recognition and then never
attack the less profitable prey type) and the NE component (shown as the gray line segment) f(1,qA2)Dq%A2ƒqA2ƒ1g (corresponding to the NE
outcome of attacking immediately) is suboptimal. In each of the other three panels, the (union of the) thick edges forms a strict equilibrium set (SES,
for definition see section Zero-one rule and the Nash equilibrium of Appendix S1) that is the globally stable evolutionary outcome. Panel (b) assumes
tr~

1
6, q%A2~0 and q%Av0. The union of the two edges f(1,qA2)D0ƒqA2ƒ1g and f(qA,0)D0ƒq2ƒ1g forms one NE component corresponding to

optimal foraging behavior. Panel (c) assumes 1
6 vtrv 1

2, q%A2v0 and q%Av0. The edge f(1,qA2)D0ƒqA2ƒ1g forms a NE component corresponding to

optimal foraging behavior. Panel (d) assumes trw 1
2 for which q%A2v0 and 0vq%Av1: The edge f(1,qA2)D0ƒqA2ƒ1g forms a NE component

corresponding to optimal foraging behavior. The arrows in each panel indicate the direction of increasing energy intake per unit time at points in the
unit square. Other parameters ts~1, t1h~1, t2h~2, p1~2, p2~1 and p1~1=2~p2 .
doi:10.1371/journal.pone.0088773.g007
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q%A2~1{
(p1zp2)tr p1p1zp2p2ð Þ

p2 p1p1t2h{p2 tszp1t1hð Þ½ " :

Conversely, the best response of player 2 to a given strategy qA

of player 1 is

qA2~

1 if qAvq%A
0 if q%AvqAv1

0,1" if qA~1 or qA~q%A

8
><

>:
ð14Þ

where

q%A~1{
p1p1t2h{p2 tszp1t1hð Þ

p2(p1zp2)tr
:

That is (qA,qA2) is a NE foraging behavior if and only if it
satisfies (13) and (14). We remark that q%A and q%A2 are both less

than 1, and q%A2v0 when 0ƒq%Av1.

When recognition time, tr, is small (trvt%r1~
p2 p1 p1t2h{p2t1hð Þ{p2tsð Þ

p1zp2ð Þ p1p1zp2p2ð Þ ), q%A is negative and q%A2 is positive

(Figure 7(a)). There are then two possible NE outcomes; namely,
attack any encountered prey immediately corresponding to the NE
(qA,qA2)~(1,qA2) where qA2§q%A2 (shown as the gray segment of

the line in Figure 7(a)) or never attack immediately and then only
attack prey type 1 when recognized (with NE (qA,qA2)~(0,0), the
solid dot in Figure 7(a)). From section Zero-one rule and the Nash
equilibrium of Appendix S1, the optimal foraging behavior must
be a NE outcome but because our decision tree has three levels,
every NE may not be an optimal strategy. However, even in this
case finding all NE substantially simplifies the problem of finding
the optimal strategy, because it is now enough to evaluate function
f given by (12) only at these NE points. Moreover, if there is a NE
component (such as the gray segment in Figure 7(a)) the value of f
at any point in this segment must be the same. By evaluating

f (0,0)~
p1p1

tszp1t1hz(p1zp2)tr
and f (1,qA2)~

p1p1zp2p2

tszp1t1hzp2t2h
,

we find f (0,0)wf (1,qA2) and so the optimal behavior is to never
attack immediately and then only attack prey type 1 when
recognized. As recognition time increases, q%A increases and q%A2

decreases. However, the NE outcomes and optimal behavior
remain the same as long as q%A2w0. Optimal predator behavior is
then either described as being selective [32] or as being intentional
[33].

For recognition time satisfying tr~t%r1, q%A2~0 while q%A
remains negative and so all strategy pairs of the form
(1,qA2) and (qA,0) are NE (Figure 7(b)). Moreover, each
corresponds to an optimal foraging strategy since

f (qA,0)~
p1p1

tszp1t1hz(p1zp2)tr
~f (1,qA2) in this case.

For still larger recognition times, q%A2v0, thus qA~1 at any NE.

When t%r1vtrvt%r2~
p1 p1t2h{p2t1hð Þ{p2ts

p2 p1zp2ð Þ , q%Av0 and the

corresponding optimal foraging behavior is shown in Figure 7(c),
while for recognition time larger than t%r2, q%Aw0 (Figure 7(d)). In

both cases, the NE strategy pairs are of the form (1,qA2) and these
all yield optimal foraging behavior.

Game theory and evolutionary outcomes for the prey
recognition game

The existence of suboptimal NE in the prey recognition game
makes the interesting question considered briefly in section
Decision trees and extensive form games even more important
here; namely, how does the predator manage to learn its optimal
behavior and avoid suboptimal equilibrium behavior. This type of
question (on the so-called equilibrium selection problem [30]) is
commonly studied in evolutionary game theory where individual
behaviors evolve in such a way that strategies with higher payoff
become used more frequently. There are several standard models
that examine the evolutionary outcome of these behaviors
changing over time [29,34].

The evolutionary outcome is clear for all choices of parameters
in the two diet choice models of sections Decision trees and the
functional response for two prey types and Foraging with
simultaneous resource encounters (see arrows in Figures 2 and 5,
respectively). These arrows indicate the direction of increasing
energy intake rate (e.g. in Figure 4, this rate increases as qB is used
more frequently if and only if the vertical arrow is pointing
upward). In all cases, the predator learns to use the NE strategy
that corresponds to the optimal behavior for the foraging games of
Figures 1 and 3 respectively. (This is true for Figure 2b as well
since the arrows lead to some point on the vertical side of the unit
square with qA~1, all of which correspond to optimal behavior in
this threshold case when pA~p%A.)

The evolutionary outcome is also clear for the prey recognition
game of this section when recognition time is large from Figure 7.
Specifically, for tr§t%r1 (panels (b), (c) and (d)), the predator will
evolve to a strategy on an edge consisting of NE points which
correspond to optimal foraging. In the language of evolutionary
game theory, this set of NE forms a globally stable set that attracts
any initial predator behavioral choice as long as behaviors evolve
in the direction of increasing energy intake rate.

However, for short prey recognition time (i.e. tvt%r1 with
0vq%A2v1 in Figure 7(a)), the NE (0,0) (corresponding to the
optimal foraging behavior of always spending the time to
recognize the type of prey encountered and then only attacking
prey of type 1) may not be globally stable. If the predator initially
attacks recognized prey 2 with probability greater than q%A2,
behavior may evolve to a point in the suboptimal NE component
where (qA,qA2)~(1,qA2) with qA2§q%A2 (i.e. to a point on the gray
line segment in Figure 7(a)). That is, the predator may become
trapped at this suboptimal behavior, especially if evolution
increases the strategy of attacking immediately faster than it
decreases the strategy of attacking recognized prey 2 (i.e. if the
arrow to the right in the top half of Figure 7(a) is much bigger than
the one pointing down).

The situation depicted in Figure 7(a) is remarkably similar to
that of the two-player extensive form Chain store game [19,35]
(also known as the Ultimatum mini-game [36] or the Entry
deterrence game [37]). In the large literature on this game, it is
often argued that the evolutionary outcome will be the point (0,0))
since neutral drift near the suboptimal NE component will
inevitably lead at some time to the strategy choice shifting to
qA2vq%A2 after which selection will quickly lead to (0,0). To see
this, consider a point on this gray line segment. If the predator
decides once in a while to spend some time to recognize the type of
prey it encounters, its strategy will move to the left of the segment.
As strategies with higher payoff are then to the right and down in
the vicinity of the line segment, it is likely that qA2 will regularly
decrease until it reaches the lower end of the segment. Any further
strategy experimentation on the part of the predator will lead to
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qA2vq%A2, after which the only evolutionary outcome can be (0,0).
In terms of evolutionary game theory again, the suboptimal NE
component is not stable whereas the optimal NE is.

In summary, the optimal foraging behavior is selected in the
prey recognition game as the NE component that is the stable
outcome of the evolutionary learning process whether or not prey
recognition time is short (i.e. for arbitrary tr). The analysis of
optimal foraging theory for this example illustrates anew the
potential of game-theoretic methods to gain a better understand-
ing of issues that arise in behavioral ecology.

Discussion

In this article, we develop a game-theoretic approach for
constructing functional responses in multi-prey environments and
for finding optimal foraging strategies based on these functional
responses [9,20]. The approach here is based on methods from
extensive form games [18,19]. The importance of these game-
theoretic approaches for functional response is two-fold. First,
decision trees similar to those used in extensive form games are a
natural way to describe details of predator behavior based on the
sequence of choices the predator makes at different decision
points. This facilitates writing down the corresponding functional
response. Second, we show that optimal foraging behavior that
maximizes energy intake per unit time can be determined by
solving the underlying foraging game for its Nash equilibrium. We
documented these game theory methods through three examples:
the classical diet choice model, simultaneous encounter with prey,
and a model in which recognition time is considered. We remark
that, although the calculation of the optimal foraging behavior in
the first example is straightforward, it is not as easy in the last two
cases where our game theory methods lead readily to the solution.

Decision trees are often used in evolutionary ecology to describe
possible decision sequences of individuals in biological systems
[28], including models of kleptoparasitism [38] and of producers
and scroungers [39]. They have been used less often in connection
with functional responses, even though the predation process can
be conveniently described by such trees (e.g., [26,40,41]). Optimal
foraging behavior that maximizes animal fitness is then often
described as a sequence of single choices at each decision node
faced by the predator. Such outcomes are reminiscent of those
found by applying the backward induction technique to extensive
form games that also chooses one strategy at each decision node
[18,19]. However, there are essential differences. Specifically,
under backward induction, the optimal choice at such a node
depends only on the comparisons of payoffs along paths following
this node. Unfortunately, the time constraint in our foraging game
means that decisions at one node have payoff consequences as to
what is optimal at another node, a connection between these
decision nodes of the tree that has no counterpart in extensive
form games. That is, the payoff concept for ‘‘foraging games’’ such
as Figure 1 combines both the nutritional values and the duration
of each activity given at all the end nodes of the decision tree. On
the other hand, as shown in all three examples, the extensive form
technique connected to backward induction of forming the
reduced decision tree by truncating those paths corresponding to
dominated strategies remains an effective means of considerably
simplifying the NE analysis.

Dynamic programming (a form of backward induction) has also
been used to find optimal foraging behavior [23,42]. Specifically,
the approach developed by Houston and McNamara [23] shows
that the optimal foraging strategy must maximize the difference
between the expected energy intake during a single renewal cycle
and the product of the mean optimal energy intake rate and the

duration of the cycle. This approach specifies the optimal choice at
each decision node provided the energy intake rate under the
optimal strategy is known. Since the optimal choice in one part of
the decision tree then requires knowing the overall optimal
strategy, the solution is typically obtained by numerical iteration.

Instead, the approach we take in this article avoids such
numerical methods by solving the game analytically. In this game,
virtual players (also called agents) are associated with each decision
point. These players are virtual because their payoff is derived
from the functional response of a single individual only.
Nevertheless, these players play a game because their decisions
are linked, one player’s optimal strategy depends on the other
players’ decision. We showed that solving this game by finding all
the Nash equilibria will lead to the optimal foraging strategy. In
those cases where some NE are not optimal foraging strategies, we
showed it is easy to select the optimal ones among them by
calculating their mean energy intake rate. Even when the game
has infinitely many Nash equilibria that form a segment of a line
(such Nash equilibrium components often arise in extensive form
games), we showed that the energy intake rate at all these Nash
equilibria will be the same. This means that once there are a finite
number of isolated Nash equilibria points or Nash equilibrium
components, finding the optimal strategy corresponds to compar-
ing a finite number of values, which is trivial.

We documented these game-theoretic methods by applying
them to three examples. The classic diet choice model with two
prey types where predators encounter prey sequentially was
considered first since it has been historically analyzed without
game theory and yet provides an informative introduction to our
new approach. Then we moved to a more complicated situation
where a searching predator can simultaneously encounter both
prey types [31,43]. These authors showed that under simultaneous
encounter the predictions based on the prey profitabilities (i.e.,
energy content over handling time) are not sufficient to predict the
optimal foraging strategy. In fact, the optimal foraging strategies
can be quite complicated as they depend now also on the relation
between the energy content in different food types. In particular,
Figure 5A shows that when the less profitable prey type 2 contains
also less energy than the more profitable prey type 1, then the
more profitable prey type 1 will be selected when both prey types
are encountered. However, when the energy content of the less
profitable prey type is large (but still small enough that prey type 2
continues to be less profitable), it will be preferred when both prey
types are encountered (Figure 5B). The solid line in Figure 5B
shows the preference for prey type A when encountered with prey
type B. When this preference switches from 1 to 0 above pB~3,
predator preference for prey type B when encountered with prey
type A switches from 0 to 1. All possible optimal foraging strategies
as a function of the alternative prey type energy content are shown
in Figure 4. In particular, it cannot happen that the less profitable
prey type is included in the predator’s diet when encountered
simultaneously with the more profitable prey type but not taken
when encountered alone.

The last model discussed in this article examines whether a
predator should spend time to recognize which type of prey it
encountered before deciding whether to attack the prey or not
[32]. This example is more complex for several reasons, including
the fact that the corresponding decision tree now has three
different levels (whereas the previous two examples are described
by two-level trees). While the NE corresponds exactly to the
optimal strategy in two-level decision trees, this is not the case
here. When recognition time is small, we show that there are NE
of the optimal foraging game that lead to suboptimal foraging
(Figure 7(a)). However, these suboptimal NE are easy to exclude
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by equilibrium selection techniques borrowed from evolutionary
game theory [30]. Specifically, optimal foraging is always given by
the unique NE outcome that corresponds to the stable equilibrium
point (or set of equilibrium points) as the predator learns its
optimal strategy (i.e. as its strategy evolves in the direction of the
arrows in Figures 2, 4, 7).

This method taken from evolutionary game theory to determine
optimal foraging behavior differs from the more traditional
approach based on the (modified) zero-one rule. This latter
approach can be applied to the prey recognition game. Kotler and
Mitchell [32] show that the zero-one rule yields just two possible
optimal outcomes: either complete opportunism or completely
selective. Instead of analyzing for the effects of increasing
recognition time as we have done, they concentrate on what
happens when the abundance of the less profitable prey increases
(which, in our notation, means p2 increases). They emphasize the
somewhat counterintuitive result that, with low abundance, the
less profitable prey is excluded from the diet. At intermediate
abundances it is included, and then with high abundance it is
excluded again.

Game-theoretic methods play an important role in the
traditional approach as well. Specifically, because the energy
intake rate is the same at all points of the NE component, we need
to compare only two numbers; the energy intake rate at any point
of the NE component (the gray line segment in Figure 7(a)) and the
energy intake rate at the other NE point (0,0). Our analysis shows
that, when recognition time is small, the optimal foraging strategy
is to always pay the extra time to recognize the encountered prey
type (i.e., never attack the encountered prey item immediately
qA~0, Figure 7(a)) and to include it in the diet if it is the more
profitable prey type (i.e., not to include the alternative prey type 2,
qA2~0). As the recognition time increases, the optimal foraging
strategy is not to waste time recognizing the encountered prey type
(Figure 7c, d). In this case, all encountered prey types are included
in predator’s diet and so qA2 is not uniquely defined. That is, since
all encountered prey are immediately included in predator’s diet,
the question whether to include the recognized prey type in the

diet becomes irrelevant and so the preference for the alternative
prey type is any number between 0 and 1.

For the three optimal foraging games modeled in this paper, the
predator’s encounter probabilities with different prey types do not
change over the system’s renewal cycle. In particular, there are no
interactions among predators, such as competition for the same
prey, that may alter the length of this cycle as the predator’s
behavior in these interactions changes. On the other hand,
interactions among predators can be added to their decision trees.
Our analysis of optimal foraging behavior through extensive form
game-theoretic methods can then be generalized to the resultant
multi-level trees, an important area of future research.

Supporting Information

Appendix S1 The first section of the Appendix, Decision trees
and the functional responses, describes a general approach to
construct functional responses from decision trees. The second
section, Zero-one rule and the Nash equilibrium, generalizes the
classical zero-one rule of the optimal foraging theory derived for
the multi-prey Holling type II functional response to a more
general functional responses. This section also shows how the zero-
one rule relates to the Nash equilibrium of the underlying optimal
foraging game. Appendix Foraging with simultaneous resource
encounters derives the Nash equilibrium strategy (8), (10) and
Appendix The Nash equilibria of the prey recognition game
derives the Nash equilibrium (13), (14).
(PDF)
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Game-theoretic methods for functional response and optimal

foraging behavior

Ross Cressman1, Vlastimil Křivan2,∗, Joel Brown3 József Garay4

Appendix S1: Appendix

Decision trees and the functional responses

Decision trees for functional responses describe predator actions at each decision point. When applied to

functional responses, these trees must have at least two stages. The first stage describes the distribution

of encounter events between predator and prey, (cf. Level 1 in Figure 1). In general, let us denote the

different encounter events by Ei and the probability that Ei occurs by P (Ei). Since we also include

events when the predator does not encounter any prey,
∑

i P (Ei) = 1. Furthermore, let αk give the

predator’s possible actions (i.e. what the predator does) in encounter Ei and s(αk | Ei) be the predator’s

conditional strategy of using action αk when in encounter Ei. We stress here that actions αk are specific

for each encounter event Ei and so are more formally denoted as αki. To simplify notation, the second

index is omitted throughout the article. Then, for each i, P [s(αk | Ei)] ! 0 and
∑

k P [s(αk | Ei)] = 1

where P [s(αk | Ei)] is the probability of using conditional strategy s(αk | Ei) in event Ei. Finally, the

predator’s success at killing its prey may also depend on the encounter event Ei and on its action αk.

Let κ(αk | Ei) denote the probability the predator is successful, which is 0 if αk is an action that does

not attack a prey and is a number between 0 and 1 otherwise.

For the general modeling approach, we now introduce the “activity distribution” of the predator. An

activity event Aℓ is given by an encounter event Ei, an event specific action αk and whether or not the

predator kills its target (i.e., Aℓ = {Ei,αk,κ(αk | Ei)}). Taken together, all such events form a partition

of the total event set. That is, every activity event is included in the union of the Aℓ and two different

Aℓ and Aℓ′ are mutually exclusive. The activity distribution answers the three questions posed at each

stage of the predation process: encounter, predator’s decision, predator’s success.

The probability Pℓ of activity event Aℓ is given through the information above. For example, if Aℓ is

the encounter event E1 combined with action α1 and the predator kills the prey, then Pℓ = P (E1)P [s(α1 |

E1)]κ(α1 | E1). Since the functional response is based on the number of prey killed by the predator per

unit time, we must also consider the duration τℓ of each activity event Aℓ. The activity distribution
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together with the duration of these events define one renewal cycle. The result in the following paragraph

from renewal theory (e.g., [1–3]) is essential to calculate the multi-prey functional response in our model.

Suppose that the activity distribution is constant over a given time interval T . Then the average

number of Aℓ0 activity events per unit time, ϕℓ0 , is given by

ϕℓ0 :=
Pℓ0∑
τℓPℓ

. (S1)

Suppose that the predator chooses a habitat at random and let I be the set of all activity events when

the predator kills a particular prey type. Then, the expected number of this type of prey killed per unit

time (i.e. the functional response to this type of prey) is
∑

ℓ∈I ϕℓ.

Predator energy intake rate functions are often generated in optimal foraging theory [2, 3] using

renewal theory. The optimal predator strategy then maximizes the expected energy gain per renewal

cycle divided by the expected time of the renewal cycle. The approach taken above is closer to that

used by Charnov and Orians [4] who also consider the distribution of predator-prey encounter events and

introduce tree diagrams to describe the possible predator activities for each such event. This approach

provides a straightforward procedure to obtain predator functional responses as illustrated by examples

in this article. The renewal theorem used here assumes that the time horizon is infinite. When it is finite,

the precise statement from probability theory is that the expected number of Aℓ0 activity events observed

in a time interval of length T is somewhere between
TPℓ0∑
τℓPℓ

and
(T+τmax)Pℓ0∑

τℓPℓ
where τmax := max{τℓ}, as

proven by Garay and Mori [5] using Wald’s equation [6]. Thus, the average number of Aℓ0 activity events

per unit time is essentially given by 1
T

TPℓ0∑
τℓPℓ

(i.e. by ϕℓ0 in (S1) when T is sufficiently large relative to

τmax.

For both the simultaneous encounter and the classic (i.e. non-simultaneous) models of the main text,

the activity distribution is given at the second level terminal nodes of the two-level decision tree (Figures

1 and 3). The prey recognition game (Figure 6) requires a third level to describe the predator activity

distribution since the predator’s possible actions in a given encounter event depends on its own second

level decision of whether to spend time recognizing the type of prey it encountered before deciding whether

to attack. This decision tree also illustrates a situation where the predator must take the same action at

different encounter events (specifically at the level 2 information set of Figure 6). Both of these properties

of the prey recognition game fit the general framework developed in this Appendix (since the activity

distribution is still given by the terminal nodes of the decision tree) and so the functional response can

be calculated through (S1). Similarly, the decision trees of Figures 1 and 2 can be easily generalized to
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multi-prey models by adding more encounter and activity events at levels 1 and 2 respectively.

Although all three examples in the main text assume that the predator is always successful when it

decides to attack a prey in a given encounter event (i.e. κ(αk | Ei) = 1 if αk is the action to attack a

particular type of prey in encounter event Ei), the decision tree approach remains applicable when this

is not the case. For example, if the predator is not always successful when attacking a prey it encounters

of a given type (say, prey A) in Figure 1, another level can be included in the tree to account for this by

replacing the terminal node after qA by two branches with probabilities κ(α1 | E1) and 1 − κ(α1 | E1).

In the terminology of extensive form games, the node following qA is now a “move by nature” and, since

there are no predator choices following this node, the tree can be truncated by deleting these two branches

(i.e. by returning to the tree of Figure 1). However, the energy intake and duration time at this truncated

node are altered. For instance, if the predator energy intake corresponding to the two deleted branches

are πA and 0 respectively with duration times τs+τAh and τs, then the energy intake of attacking prey A

becomes πAκ(α1 | E1) and its duration time (τs+τAh)κ(α1 | E1)+τs(1−κ(α1 | E1)) = τs+τAhκ(α1 | E1).

Zero-one rule and the Nash equilibrium

The predator energy intake f per unit time corresponding to the decision tree approach developed in this

paper is a rational function of the form

f(q1, q2, · · · , qN ) =
P (q1, q2, · · · , qN )

Q(q1, q2, · · · , qN )

when there are N information sets in the tree. Here qi for fixed 1 ≤ i ≤ N is an element of the set

of mixed strategies ∆i (i.e. qi is a probability vector whose components are nonnegative and sum to

1) that correspond to the possible choices at information set i. For example, ∆1 ≡ {(x1, x2, · · · , xm) |
∑m

j=1 xj = 1, xj ≥ 0} is the m − 1 dimensional strategy simplex when information set 1 has m possible

choices. P and Q are polynomials that are linear in the components of each qi and Q is positive for all

(q1, q2, · · · , qN ) ∈ ∆ ≡ ∆1 ×∆2 × · · ·×∆N . To ease notational complexities, we will assume that N = 3

in all proofs in this Appendix and write f as f(x, y, z) where x ∈ ∆1, y ∈ ∆2 and z ∈ ∆3. Although the

proofs of the results in this Appendix are given for N = 3, they can all be extended to show the results

remain true for arbitrary N .

For all of the decision trees analyzed in the main text of this paper, N ≤ 3. In fact, each reduced tree

in the main text has N ≤ 2 with ∆1 and ∆2 one-dimensional (e.g. ∆1 ≡ {(x, 1−x) | 0 ≤ x ≤ 1}). In the

3



decision trees of Figure 1 and Figure 3, the consumer has complete information at each of its decisions

nodes (i.e. the information sets are singleton sets and so the number of information sets coincides with

the number of decision nodes). For example, in the reduced tree of Figure 3, there are two decision

nodes denoted as B and AB. Individuals at each of these two nodes have complete information about the

resources encountered and can make one of two choices based on this knowledge. The situation is different

in the prey recognition game shown in Figure 6. Here, upon encountering a prey, the predator does not

know the prey type. So, the nodes denoted as Prey 1 and Prey 2 combine to form one information set.

The other decision node denoted Recognized Prey 2 in the reduced tree is a singleton information set

with two choices (i.e. whether or not to attack prey type 2).

Theorem 1 Optimal foraging behavior occurs at one of the vertices of ∆1 × · · ·×∆N .

Proof. Assume that N = 3. We need to show that, for some choice of vertices x∗ ∈ ∆1, y∗ ∈ ∆2 and

z∗ ∈ ∆3, f(x∗, y∗, z∗) ≥ f(x, y, z) for all (x, y, z) ∈ ∆1 ×∆2 ×∆3.

Since f is a continuous function on a compact set, it attains its maximum value at some point

(x∗, y∗, z∗) ∈ ∆1 ×∆2 ×∆3. Suppose that x∗ is not a vertex of ∆1. Then x∗ = (x∗
1, · · · , x∗

m) where 0 <

x∗
j < 1 for at least two different values of j (say j = 1 and 2). Consider f((x∗

1+ε, x∗
2−ε, · · · , x∗

m), y∗, z∗) for

−x∗
1 ≤ ε ≤ x∗

2. Since (x∗
1 + ε, x∗

2 − ε, · · · , x∗
m) ∈ ∆1, f((x∗

1 + ε, x∗
2 − ε, · · · , x∗

m), y∗, z∗) ≤ f(x∗, y∗, z∗) and

so ∂f((x∗
1+ε,x∗

2−ε,··· ,x∗
m),y∗,z∗)

∂ε |ε=0= 0. But f((x∗
1 + ε, x∗

2 − ε, · · · , x∗
m), y∗, z∗) = P ((x∗

1+ε,x∗
2−ε,··· ,x∗

m),y∗,z∗)
Q((x∗

1+ε,x∗
2−ε,··· ,x∗

m),y∗,z∗)

where P and Q are polynomials that are linear in ε. That is f((x∗
1 + ε, x∗

2 − ε, · · · , x∗
m), y∗, z∗) = aε+b

cε+d

with cε + d > 0 and ∂f
∂ε = ad−bc

(cε+d)2
= 0 for all −x∗

1 ≤ ε ≤ x∗
2. Thus f is a constant function of ε and so

both f((x∗
1 + x∗

2, 0, x
∗
3 · · · , x∗

m), y∗, z∗) and f((0, x∗
1 + x∗

2, · · · , x∗
m), y∗, z∗) equals f(x∗, y∗, z∗) (i.e. f has

its maximum at both these points). Thus (x∗, y∗, z∗) can be replaced by either one of these points and

the process continued until one component of x∗ equals 1 and all the others are 0. That is, x∗ is a vertex

of ∆1. A similar process applied to ∆2 and ∆3 implies that y∗ and z∗ can be taken as vertices of ∆2 and

∆3 respectively.

!

By Theorem 1, to determine the optimal foraging outcome, we can evaluate f at all the vertices

of ∆1 × ∆2 × · · · × ∆N and take the largest of these values. In our models, the corresponding vertex

(or each of the vertices) satisfies the zero-one rule (i.e. either always consume the resource of a given

type in all encounters of this type or never consume it) and corresponds to a pure strategy choice for
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each agent in the N−player agent normal form game that assigns a separate player to each of the N

information sets of the decision tree. As we have seen in the main text, optimal foraging behavior

can also occur when agents use mixed strategies (q1, q2, · · · , qN ) ∈ ∆1 × ∆2 × · · · × ∆N . In sections

Decision trees and the functional response for two prey types and Foraging with simultaneous resource

encounters, only pure strategies can correspond to the optimal behavior for generic parameter values;

whereas section Prey recognition effects illustrates a generic game whose optimal behavior may occur

at mixed strategies. The following Theorem relates the optimal foraging behavior to the solution of

the N−player game. The second part of the theorem introduces the concept of a strict equilibrium

set (SES). By definition [7], E is a SES if it is a set of NE (x∗, y∗, z∗) ∈ ∆1 × ∆2 × ∆∗ such that, if

f(x, y∗, z∗) = f(x∗, y∗, z∗) (respectively, f(x∗, y, z∗) = f(x∗, y∗, z∗) or f(x∗, y∗, z) = f(x∗, y∗, z∗)) for

some (x∗, y∗, z∗) ∈ ∆1 × ∆2 × ∆3 with x ∈ ∆1, y ∈ ∆2 or z ∈ ∆3, then (x, y∗, z∗) ∈ E (respectively,

(x∗, y, z∗) ∈ E or (x∗, y∗, z) ∈ E). The concept of SES generalizes the idea of a strict NE. In fact, if a SES

is a singleton set (i.e. contains exactly one point), then this point is a strict NE. The general concept is

important for optimal foraging, because it includes the situation where, at a critical population density,

the optimal strategy is not uniquely defined. For example, in the case of the classic diet choice model

this happens when the encounter rate of a searching predator with the more profitable prey type is given

by (2).

Theorem 2 (a) If optimal foraging behavior occurs at (q1, · · · , qN ) ∈ ∆1 × · · ·×∆N , then (q1, · · · , qN )

is a Nash equilibrium of the N−player agent-normal form of the optimal foraging game.

(b) The set E of all strategies (q1, · · · , qN ) ∈ ∆1 × · · · ×∆N corresponding to optimal foraging behavior

is a SES of the N−player agent-normal form of the optimal foraging game.

Proof. (a) Assume thatN = 3 and optimal foraging occurs at (x∗, y∗, z∗) ∈ ∆1×∆2×∆3. Since the agent-

normal form has payoff f(x, y, z) for each player when the strategy used by players 1, 2 and 3 are x, y and

z respectively, (x∗, y∗, z∗) is a NE if and only if f(x, y∗, z∗) ≤ f(x∗, y∗, z∗), f(x∗, y, z∗) ≤ f(x∗, y∗, z∗)

and f(x∗, y∗, z) ≤ f(x∗, y∗, z∗) for all (x, y, z) ∈ ∆1 × ∆2 × ∆3. These inequalities are obvious from

f(x∗, y∗, z∗) ≥ f(x, y, z) for all (x, y, z) ∈ ∆1 ×∆2 ×∆3.

(b) It is obvious that E satisfies the conditions of a SES. For example, (x, y∗, z∗) ∈ E when f(x, y∗, z∗) =

f(x∗, y∗, z∗) since (x, y∗, z∗) is then an optimal foraging behavior and so in E by its definition.

!
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In all three foraging examples considered in the main text, there is a unique SES for every choice of

model parameters. In particular, the suboptimal NE component E′ in the prey recognition game when

recognition time is short is not a SES since all points on the vertical line with qA = 1 in Figure 7(a)

are best response to points in E′ but not all of them are in E′. Thus, optimal foraging behavior is

characterized either by solving for the SES or by finding the asymptotically stable set of NE under the

evolutionary dynamics. The equivalence between these two game-theoretic techniques is not surprising

here given the fact that they are also equivalent for the standard evolutionary dynamics (i.e. the replicator

equation) used in general multi-player extensive form games [7].

In the special case that all predator information sets are at level 2 in the decision tree (e.g. the two

optimal foraging game of section Decision trees and the functional response for two prey types and the

simultaneaous encounter game of section Foraging with simultaneous resource encounters), the following

theorem gives an even closer connection between optimal foraging behavior and Nash equilibrium.

Theorem 3 Suppose that there are no predator decision points that depend on the outcome of predator

choices at previous predator decision points. Then optimal foraging behavior occurs at (q1, · · · , qN ) ∈

∆1 × · · · ×∆N if and only if (q1, · · · , qN ) is a Nash equilibrium of the N−player agent-normal form of

the optimal foraging game. Furthermore, a set E is a SES if and only if it is the set of all strategies

(q1, · · · , qN ) ∈ ∆1 × · · ·×∆N corresponding to optimal foraging behavior.

Proof. These statements are straightforward consequences of the fact

f(q1, q2, · · · , qN ) =
P (q1, q2, · · · , qN )

Q(q1, q2, · · · , qN )

where P and Q are linear polynomials in the components of all the qi (e.g., when N = 2, P (x, y)

has no term of the form x1y1). We remark that this contrasts with the prey recognition game of

section Prey recognition effects where such non-linear terms appear (e.g. from (12), P (qA, qA2) =

p1π1 + p2π2qA + p2π2qA2 − p2π2qAqA2 has the nonlinear term p2π2qAqA2). Specifically, from Theo-

rem 2 above, if (q1, q2, · · · , qN ) is an optimal foraging behavior, it is a NE of the N−player agent-normal

form of the optimal foraging game.

For the converse, assume that (x, y, z) ∈ ∆1 ×∆2 ×∆3 is a NE of a three-player agent-normal form

of the optimal foraging game. Then

P (x′, y, z)

Q(x′, y, z)
≤ P (x, y, z)

Q(x, y, z)
,
P (x, y′, z)

Q(x, y′, z)
≤ P (x, y, z)

Q(x, y, z)
, and

P (x, y, z′)

Q(x, y, z′)
≤ P (x, y, z)

Q(x, y, z)
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for all (x′, y′, z′) ∈ ∆1 ×∆2 ×∆3. Thus

P (x′, y, z)Q(x, y, z) ≤ P (x, y, z)Q(x′, y, z),

P (x, y′, z)Q(x, y, z) ≤ P (x, y, z)Q(x, y′, z),

P (x, y, z′)Q(x, y, z) ≤ P (x, y, z)Q(x, y, z′).

Adding these three inequalities yields

(P (x′, y, z) + P (x, y′, z) + P (x, y, z′))Q(x, y, z)

≤ P (x, y, z) (Q(x′, y, z) +Q(x, y′, z) +Q(x, y, z′)) ,

Since P is linear, P (x′, y, z) + P (x, y′, z) + P (x, y, z′) = P (x′, y′, z′) + 2P (x, y, z). Similarly Q(x′, y, z) +

Q(x, y′, z) + Q(x, y, z′) = Q(x′, y′, z′) + 2Q(x, y, z). Thus, (1) implies that P (x′, y′, z′)Q(x, y, z) ≤

P (x, y, z)Q(x′, y′, z′). That is, P (x′,y′,z′)
Q(x′,y′,z′) ≤ P (x,y,z)

Q(x,y,z) for (x′, y′, z′) ∈ ∆1 × ∆2 × ∆3. That is, (x, y, z)

yields optimal foraging behavior.

The final statement of the theorem is obvious.

!

Foraging with simultaneous resource encounters.

Nash equilibrium strategy (qAB , qB).

The three-player agent normal form of Figure 3 has strategy set ∆1 × ∆2 × ∆3 where ∆1 = {(qA, 1 −

qA) | 0 ≤ qA ≤ 1}), ∆2 = {(qAB , qBA, 1 − qAB − qBA) | 0 ≤ qAB ≤ 1, 0 ≤ qBA ≤ 1 − qAB}) and

∆3 = {(qB , 1− qB) | 0 ≤ qB ≤ 1}).

From (6), τ2 ∂f
∂qA

and τ2 ∂f
∂qAB

are equal to

pAA [πAτs + (pABqBA + pBBqB) (πAτBh − πBτAh)] > 0.

and

pAB [πAτs + (pABqBA + pBBqB) (πAτBh − πBτAh)] > 0.

respectively. In particular, both of these partial derivatives are positive since prey A is the most profitable.

From the first displayed inequality, f(1, qAB , qBA, qB) > f(qA, qAB , qBA, qB) for all 0 ≤ qA < 1. That

is, qA = 1 strictly dominates all other actions of player 1 and so, at a NE, resource A must be consumed

whenever encountered on its own.
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From the second inequality, f(qA, 1− qBA, qBA, qB) > f(qA, qAB , qBA, qB) for all 0 ≤ qAB < 1− qBA.

Thus, a strategy of player 2 whereby a resource is not always consumed at its decision node AB (i.e.

qAB + qBA < 1) is strictly dominated by the strategy (1 − qBA, qBA, 0). It follows from this that

qAB + qBA = 1 at any NE.

That is, optimal foraging emerges from the reduced tree of Figure 3. This is the two-player agent

normal form game with strategy set {(qAB , 1 − qAB) | 0 ≤ qAB ≤ 1} × {(qB , 1 − qB) | 0 ≤ qB ≤ 1} and

common payoff function (7) given by

f(qAB , qB) =
(pA + pABqAB)πA + (pAB(1− qAB) + pBqB)πB

τ

where

τ = τs + pAτAh + pABqABτAh + pAB(1− qAB)τBh + pBqBτBh.

Thus, τ2 ∂f
∂qAB

is equal to

pAB [(πA − πB) τs + (pA + pAB + pBqB) (πAτBh − πBτAh)]

and this is positive if and only if

qB > q∗B =
(πB − πA)τs − (pA + pAB)(πAτBh − πBτAh)

pB(πAτBh − πBτAh)
.

That is, the best response to player 2 is given by (8). Similarly, τ2 ∂f
∂qB

is equal to

pB [πBτs + (pA − pABqAB) (πAτBh − πBτAh)]

and this is negative if and only if

qAB > q∗AB =
πBτs + pA(πAτBh − πBτAh)

pAB(πAτBh − πBτAh)
.

That is, the best response to player 1 is given by (10).

The optimal strategy (qAB , qB) as a function of energy value πB of the less profitable prey

type.

When prey A handling time is shorter than prey B handling time (i.e. τAh < τBh),
πAτBh
τAh

> π∗
B1 >

π∗
B2 > π∗

B3 > π∗
B4.

For 0 < πB < π∗
B4, q

∗
AB < 0 and q∗B < 0 and the optimal strategy is (qAB , qB) = (1, 0) (Figure 4a).

For π∗
B4 < πB < π∗

B3, 0 < q∗AB < 1 and q∗B < 0 and the optimal strategy is (qAB , qB) = (1, 0) (Figure 4b).
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For π∗
B3 < πB < π∗

B2, 1 < q∗AB and q∗B < 0 and the optimal strategy is (qAB , qB) = (1, 1) (Figure 4c). For

π∗
B2 < πB < π∗

B1, 1 < q∗AB and 0 < q∗B < 1 and the optimal strategy is (qAB , qB) = (1, 1) (Figure 4d).

For π∗
B1 < πB < πAτBh/τAh, 1 < q∗AB and 1 < q∗B and the optimal strategy is (qAB , qB) = (0, 1) (Figure

4e).

The Nash equilibria of the prey recognition game

From the main text, the energy intake rate in the prey recognition game of Figure 6 is

f((qA, qR, qM ), qA1, qA2) =
p1π1(qA + qRqA1) + p2π2(qA + qRqA2)

τ

where τ = τs + p1qAτ1h + p1qR(qA1τ1h + τr) + p2qAτ2h + p2qR(qA2τ2h + τr). It is straightforward to show

that f((λqA, 1 − λ,λqR), qA1, qA2) < f((qA, 0, qR), qA1, qA2) for 0 ≤ λ < 1 if qA + qR = 1. Thus, any

strategy (λqA, 1− λ,λqR) of player 1 with 0 ≤ λ < 1 is strictly dominated by (qA, 0, qR) and so qM = 0

at any NE.

Furthermore

τ2
∂f((qA, qM , qR), qA1, qA2)

∂qA1
= p1qR(π1(p1qRτr + τs + p1τs)+

p2(qA + qA2qR)(π1τ2h − π2τ1h) + p2qAπ1τs + p2qRπ1(τr + τs))

is positive if qR > 0 since π1
τ1h

> π2
τ2h

. That is, at a NE, the predator never moves immediately to another

patch if it encounters a prey (i.e. qM = 0) and, if the predator does spend some recognition time (i.e.

qR > 0), then it must attack any prey 1 that it recognizes (i.e. qA1 = 1).

As in the main text, we now look for the NE of the two-player game corresponding to the reduced

tree of Figure 6. Here,

f(qA, qA2) =
p1π1 + p2π2(qA + (1− qA)qA2)

τ

where τ = τs + p1τ1h + p2τ2h(qA + (1− qA)qA2) + (p1 + p2)τr(1− qA). For the best response of player 1

to strategy qA2 of player 2, we calculate the derivative of f with respect to qA as

p2(1− qA2)(p1π2τ1h − p1π1τ2h + π2τs) + τr(p1 + p2)(p1π1 + p2π2)

τ2
.

Since τr > 0, ∂f
∂qA

> 0 if π2/τ2h ≥ p1π1/(p1τ1h + τs) and so any NE then has qA = 1. Furthermore, in

this case, f(1, qA2) = (p1π1 + p2π2)/(p1τ1h + p2τ2h + τs) does not depend on qA2. Thus, every strategy

pair of the form (1, qA2) with 0 ≤ qA2 ≤ 1 is a NE.
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For the remainder of this Appendix, assume

π2/τ2h < p1π1/(p1τ1h + τs). (S2)

Then derivative of f with respect to qA is positive provided qA2 > q∗A2, as in (13). That is, the best

response of player 1 to the strategy qA2 of player 2 is given by (13).

Similarly, the derivative of f with respect to qA2 is

p2(qA − 1)(p2(qA − 1)π2τr + p1(π1τ2h − π2(τ1h + τr − qAτr))− π2τs)

τ2
.

This derivative equals 0 when either qA = 1, or

qA = q∗A = 1− p1π1τ2h − π2 (τs + p1τ1h)

π2(p1 + p2)τr
.

Under (S2), 1 > q∗A and for q∗A < qA < 1 (respectively, 0 ≤ qA < q∗A), the best response of player 2 is

qA2 = 0 (respectively, qA2 = 1) because the derivative is negative (respectively, positive). Finally, when

qA = 1 or qA = q∗A, the derivative of f equals zero and so qA2 can be any value between 0 and 1. This

gives (14).

Literature cited

1. Johns MV Jr, Miller RG Jr (1963) Average renewal loss rates. The Annals of Mathematical Statistics,

34,2: 396-401.

2. Stephens DW, Krebs JR (1986) Foraging theory. Princeton, NJ: Princeton University Press.

3. Houston AI, McNamara JM (1999) Models of adaptive behaviour. Cambridge, UK: Cambridge

University Press.

4. Charnov EL, Orians GH (1973) Optimal foraging: Some theoretical explorations.

http://hdl.handle.net/1928/1649.

5. Garay J, Mori TF (2010) When is the opportunism remunerative? Community Ecology 11: 160-170.

6. Wald A (1944) On cumulative sums of random variables. The Annals of Mathematical Statistics

15: 283-296.

7. Cressman R (2003) Evolutionary Dynamics and Extensive Form Games. Cambridge, MA: The MIT

Press.

10


