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Classic bimatrix games, that are based on pair-wise interactions between two opponents belonging to dif-
ferent populations, do not consider the cost of time. In this article, we build on an old idea that lost oppor-
tunity costs affect individual fitness. We calculate fitnesses of each strategy for a two-strategy bimatrix
game at the equilibrium distribution of the pair formation process that includes activity times. This gen-
eral approach is then applied to the Battle of the Sexes game where we analyze the evolutionary outcome
by finding the Nash equilibria (NE) of this time-constrained game when courtship and child rearing costs
are measured by time lost. While the classic Battle of the Sexes game has either a unique strict NE (specif-
ically, all males exhibit Philanderer behavior and either all females are Coy or all are Fast depending on
model parameters), or a unique interior NE where both sexes exhibit mixed behavior, including time
costs for courtship and child rearing changes this prediction. First, (Philanderer, Coy) is never a NE.
Second, if the benefit of having offspring is independent of parental strategies, (Philanderer, Fast) is
the unique strict NE but a second stable interior NE emerges when courtship time is sufficiently short.
In fact, as courtship time becomes shorter, this mixed NE (where most males are Faithful and the Coy
female population is increasing) attracts almost all initial population configurations. Third, this latter pro-
motion of marital bliss also occurs when parents who share in child rearing receive a higher benefit from
their offspring than those that don’t. Finally, for courtship time of moderate duration, the same phe-
nomenon occurs when the population size increases.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Classic evolutionary game theoretical models based on two-
player normal form games implicitly assume that all interactions
between pairs take the same time and individuals pair randomly
and instantaneously. As argued in a recent series of articles
(Garay et al., 2017; Křivan and Cressman, 2017; Garay et al.,
2018; Křivan et al., 2018; Cressman and Křivan, 2019), these
assumptions are suspect for many classic evolutionary games
(e.g., the Hawk–Dove game where interactions between two
Hawks involve fights that take a different amount of time than
other interactions where no fights arise and the repeated Prisoner’s
Dilemma game when each player can choose to opt out of the
interaction (Zhang et al., 2016)). The assumptions are patently
untrue for the classic Battle of the Sexes (BoS) game that models
parental care of offspring (Broom and Rychtář, 2013) introduced
by Dawkins (1976) who assumed, using his names for male/female
behavior, that philandering males when mated with fast females
immediately desert and look for a newmate while the female cares
for the offspring before mating again. Besides being crucial for
understanding evolution of parental care and sexual conflict (e.g.,
Tregenza et al., 2006), this game has been used to model particular
biological systems (e.g., Magurran and Nowak, 1991; Webster
et al., 2003).

None of the recent series of articles cited above, which show
that including different activity times qualitatively change the
game’s evolutionary outcome, apply directly to the BoS game.
The main purpose of this article is then to extend their methods
in order to develop a game-theoretic model of the BoS based on
lost opportunity cost and show how measuring costs in terms of
time affects the evolutionary outcome of Dawkins’ parental care
model.

For instance, in the BoS model of Dawkins (1976) (see also
Cressman, 1992), females always care for their offspring but can
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either be coy (insist on a long courtship before mating) or fast
(mate immediately) while males are either faithful (willing to
engage in long courtships and also care for offspring) or philander-
ing (will not engage in courtship nor care for offspring). When the
benefits of offspring and costs of having and caring for them are
given by the payoffs considered by Dawkins (1976), the classic
model predicts the population will consist of a mixture of these
behaviors for both sexes (see Section 2). The problem with this
classic model (as well as with many other behavioral models based
on (bi) matrix games) is how to use a single currency to measure
benefits and costs that define the payoff matrix (see also Mylius,
1999; Argasinski, 2006; Argasinski and Broom, 2013; Argasinski
and Broom, 2018). To address this problem, the article allows a sec-
ond currency besides payoff; namely, the time that interactions
and other activities take (see also Křivan et al., 2018).

In Section 3, we use this approach for a general two-player,
two-strategy game that includes the time that different activities
take. Here we consider three possible individual states: individuals
are either free to form pairs (e.g., to mate), they are paired, and
they are single but not yet ready to pair (e.g., gestation or lactation
period, time to care for offspring on their own). The time-
constrained game is then defined by a payoff bimatrix together
with a time-bimatrix, from which we are able to formulate the
individual fitness of each strategy as a function of the population
state.

We apply this general theory to the time-constrained Battle of
the Sexes game in Section 4. We consider two parametrizations
of the payoff matrix. First, in keeping with the original description
by Dawkins (1976), Section 4.1 assumes that all strategies that lead
to offspring production have the same benefit given by a payoff to
both parents. However, the cost is now measured by time spent in
courtship, rearing offspring, and searching for a new mate. When
couples that stay together spend less time caring for offspring than
females who provide this care on their own, this model makes a
strikingly different prediction when compared to the Dawkins
model. For instance, regardless of model parameters, the popula-
tion configuration where all females are fast and all males philan-
der, denoted by (Philanderer, Fast), is an evolutionary outcome
whereas in Dawkins’ model this requires the benefit from offspring
to be greater than the cost of rearing them. A second evolutionary
outcome consisting of a mixture of their two behaviors for both
sexes emerges whenever courtship time is short enough. More-
over, by reducing courtship time further, this mixed evolutionary
outcome promotes marital bliss1 in that almost all males are faith-
ful and the frequency of coy females increases. In fact, when court-
ship time is close to zero, almost all initial population
configurations evolve to the mixed evolutionary outcome.

For the second parametrization, Section 4.2 assumes the time
spent caring for offspring is the same for couples that stay together
as for females on their own but now the benefit to the couples is
greater. These assumptions are motivated by McNamara et al.
(2009) (see also Broom and Rychtář, 2013) ‘‘coyness game” that
models females who inspect the males they encounter as to
whether they are helpful or non–helpful. In our setting, couples
with Faithful males obtaining a higher payoff models situations
where females paired with Faithful males mate several times while
raising their offspring as they do not need to search for a new part-
ner, or where having both partners increases the probability of off-
spring survival. As we will see, reducing courtship time promotes
1 We call (Faithful, Coy) the marital bliss state in keeping with Dawkins (1976)
describing Coy as the domestic-bliss strategy whereby females encourage males to
invest in courtship and remain in the marriage. Dawkins goes on to state that the
domestic-bliss strategy works in the sense that, for his payoff choices, males
(respectively, females) are predominantly Faithful (respectively, Coy) at the mixed
(interior) Nash equilibrium (NE).
marital bliss in this model as well. Moreover, depending on how
much greater the benefit to couples is, this may be the only evolu-
tionary outcome. In particular, there may no longer be an evolu-
tionary outcome where all females are Fast.

2. The classic Battle of the Sexes game

The Battle of the Sexes (Dawkins, 1976; Maynard Smith, 1974;
Hofbauer and Sigmund, 1998; Broom and Rychtář, 2013; Broom
and Křivan, 2018) is a classical bimatrix game that aims to model
the conflict between males (the first population) and females
(the second population) over the care of their offspring. Here, we
briefly summarize the classic BoS game to provide the foundation
to include courtship time, time to rear offspring and time to find
mates in the time-constrained version analyzed in Section 4.

In the classic parameterization (Dawkins, 1976), males are
either faithful (m1) or philandering (m2) and females are either
coy (f 1) or fast (f 2). A coy female demands a period of courtship
before mating, whereas a fast female will mate with a male as soon
as they meet. Faithful males are willing to engage in long court-
ships and will help care for the offspring after mating while a phi-
landerer will not engage in courtship, and so cannot mate with a
coy female, and also leaves immediately without helping care for
offspring after mating with a fast female. The payoff bimatrix for
the Battle of the Sexes is

ð1Þ

where B > 0 is the fitness gained by having offspring, Cr > 0 is the
(potentially shared) cost of raising the offspring and Cc > 0 is the
cost of engaging in courtship. In (1), matrix entries are payoff pairs
where the first (respectively, second) payoff is that of the male (re-
spectively, female) when this pair plays their respective strategies.

In Dawkins (1976), these costs and benefits were based on the
numerical values (given in brackets) in the following assumptions:

1. the total cost of raising offspring (Cr ¼ 20)
2. the individual payoff gain from offspring (B ¼ 15)
3. the individual cost of courtship (Cc ¼ 3)
4. the payoff of not mating (0).

That is, the payoff bimatrix from Dawkins (1976) is then

ð2Þ

To see that an evolutionary outcome must involve a mixture of
behaviors for both sexes, notice that fast females would do better
than coy females when the population consists of faithful males
and coy females (i.e., fast females can invade this system). Similarly,
when the population has only fast females and faithful males, phi-
landering males can invade. Next, in a population of fast females
and philandering males, coy females can invade. Finally, when all
females are coy and males philandering, faithful males can invade.
That is, there is a cyclic pattern to how the mixture of behaviors is
expected to evolve as indicated by the arrows in (2) and reflected in
the trajectories of such evolutionary dynamics as the replicator
equation (see Fig. 1B and Appendix A). In this figure, there is a
unique rest point of the dynamics in the interior of the unit square
where 5

8 (respectively 5
6) of the males (respectively, females) are

faithful (respectively, coy). This corresponds to the game’s only
Nash equilibrium (i.e., a strategy pair where neither males nor
females can increase their payoff by unilaterally changing their
strategy).



Fig. 1. Phase portrait of the replicator equation for the classic bimatrix games related to BoS. Panels A–D are the classic BoS game with payoff matrix (1) where all payoffs,
except the benefit B for offspring, are taken from Dawkins (1976) (i.e., Cc ¼ 3; Cr ¼ 20). Panel A assumes that B ¼ 10 6 min Cc þ Cr

2 ;Cr
� �

, panel B assumes

min Cc þ Cr
2 ;Cr

� �
< B ¼ 15 < Cr , and panel C assumes Cr < B ¼ 30. Panel D is the threshold case where B ¼ Cc þ Cr

2 ¼ 13. Panel E corresponds to the payoff matrix given by
(14) with B ¼ 1 and no cost of courtship (Cc ¼ 0) or of raising offspring (Cr ¼ 0). Panel F corresponds to the payoff matrix given by (18) with B1 ¼ 1 and B2 ¼ 2. Nash equilibria
are indicated by black dots or line segments. In this and subsequent figures, NFaithful is the same as Nm1 and NCoy is Nf 1 used in the text. Values of other parameters:
Nm ¼ 100; Nf ¼ 100.

2 To see this, notice that when B ¼ Cc þ Cr=2 < Cr , payoff bimatrix (1) is

. Because Cc þ Cr=2 > Cc , philandering

males receive higher payoff than faithful males if the population contains any fast
females (implying all trajectories in Fig. 1D move to the left except those on the upper
boundary of the square). Moreover, if there are no faithful males, the payoff to coy
females is higher than to fast females (i.e., Cc � Cr=2 < 0), accounting for the upward
movement along the left-hand boundary of the square. Thus, all females must be Coy
at any NE. Finally, on the upper boundary where all females are Coy, the payoff to coy
(respectively, fast) females is 0 (respectively, Ccp1 þ Cc � Cr=2ð Þp2 ¼ Cc � Cr=2ð Þp2),
where pi is the proportion of males playing strategymi . Thus, a point on this boundary

2Cc
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For other payoff parameters (B;Cc;Cr), different Nash equilibria
(NE) arise. The complete characterization (Broom and Rychtář,
2013), except in the threshold cases considered at the end of this
section, shows that this NE is unique for each payoff parameter
set and given by:

(a) If B < min Cc þ Cr
2 ;Cr

� �
, strategy m2; f 1ð Þ ¼ Philanderer;Coyð Þ

is the NE (Fig. 1A).
(b) If B > Cr , strategy m2; f 2ð Þ ¼ Philanderer; Fastð Þ is the NE

(Fig. 1C).
(c) For intermediate benefits satisfying Cr

2 þ Cc < B < Cr , the
classic case has an interior mixed NE, where the proportion
of males that are faithful (respectively, females that are coy)
is Cr�B

CrþCc�B (respectively,
Cr

2 B�Ccð Þ), which is surrounded by a fam-

ily of closed curves for the replicator equation (Fig. 1B).

In cases (a) and (b), the unique NE is globally asymptotically stable
(i.e., the NE is locally asymptotically stable and all interior trajecto-
ries converge to it) under the replicator equation (as well as many
other evolutionary dynamics, e.g., Sandholm, 2010). This result can
also be deduced directly when considering payoffs in (1) since, in
case (a) for example, Philanderer strictly dominates Faithful for
males (since male payoff entries in (1) satisfy B� Cr

2 � Cc < 0 and

B� Cr
2 < B) and, once there are no faithful males in the population,

Coy strictly dominates Fast (i.e., B� Cr < 0). In game-theoretic
terms, the games in cases (a) and (b) are strictly dominance solv-
able to their unique NE. In this article, we consider such a NE as
the evolutionary outcome since it is globally asymptotically stable.

Interestingly, in Dawkins’ classic model, the marital-bliss state
(Faithful, Coy) is never the evolutionary outcome even though this
may be the socially preferred solution. From this perspective, the
institution of marriage combined with an initial courtship period
could be viewed as forming a binding agreement to enforce the
(Faithful, Coy) outcome which otherwise would not evolve in soci-
ety. On the other hand, that (Philanderer, Coy) societies evolve
when B < min Cc þ Cr
2 ;Cr

� �
is also a questionable consequence of

the classic model in that no offspring are produced (see also Sec-
tion 4) and such a society will disappear.

In the threshold cases where B ¼ Cr or B ¼ Cc þ Cr=2 < Cr , there
is a set of NE where one sex plays only one of its pure strategies
and the other sex may play different mixtures of its two strategies.
Moreover, each interior trajectory of the replicator equation con-
verges to a single point in this set that depends on the initial point
of the trajectory. For instance, when B ¼ Cc þ Cr=2 < Cr as in
Fig. 1D, the NE set has all females Coy and at most 2Cc

Cr
< 1 of the

males Faithful.2

3. The two-player, two-strategy time-constrained game

From a recent series of articles (Garay et al., 2017, 2018; Křivan
and Cressman, 2017; He et al., 2018; Křivan et al., 2018; Cressman
and Křivan, 2019), it is clear that including the time that activities
take into game-theoretic models alters the expected evolutionary
outcome. Since the theory developed in these articles does not
directly apply to the time-constrained BoS game of Section 4, we
first extend their methods to general bimatrix games that include
the BoS. To this end, consider the two-strategy, two-player, asym-
metric game given by the payoff bimatrix (Hofbauer and Sigmund,
1998; Cressman, 2003; Broom and Rychtář, 2013)
is a NE if and only if Cc � Cr=2ð Þp2 6 0 (i.e., p2 6 Cr
< 1).
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ð3Þ

where the (pure) strategies of player 1 (respectively, player 2) arem1

andm2 (respectively, f 1 and f 2) and pm
ij (respectivelyp

f
ij) is the payoff

tomi (respectively, f j) when paired with f j (respectively,mi). The NE
structure of these games without time constraints (i.e., of classic
two-strategy bimatrix games) is well-known (e.g., Hofbauer and
Sigmund, 1998; Cressman, 2003) as well as their stability properties
under such evolutionary dynamics as the replicator equation.

In the time-constrained game, individuals require some time to
form pairs when they are ready to do so (e.g., a time to encounter
an individual of the opposite sex who is ready to mate) as well as
time they spend when in pairs (e.g., time as a couple) or disbanded
from a pair but not yet ready to form new pairs (e.g., time to care
for offspring on their own). In this article, we assume that these lat-
ter times (i.e., couple and caring time) together are determined by
the pair formed and so can be modeled by the following ‘‘time-
bimatrix”

ð4Þ

Here, for example, sij is the time an mi strategist paired with an f j

strategist stays together and sf jmi
is the time an mi strategist that

was disbanded from a pair with an f j strategist needs before it is
ready to form a new pair.

The two-strategy, time-constrained bimatrix game is then given
by payoff bimatrix (3) and time-bimatrix (4). To solve this game,
we need to calculate individual fitness as a function of the number
of individuals using each strategy.

3.1. Fitnesses in the time-constrained game

Let nmi
be the number of individuals in the first population play-

ing strategy mi and nf j be the number of individuals of the second
population playing strategy f j that are ready to pair. We call these
individuals ‘‘searchers”. Also, by nmif j , we denote the number of

mi; f j
� �

pairs, and by n
f j
mi

the number ofmi strategists that were dis-
banded from a pair with an f j strategist, but are not yet ready to

pair again. Similarly, nmi
f j

denotes the number of f j strategists that

were disbanded from a pair with an mi strategist, but are not yet
ready to pair again.

Assuming that individuals who are ready to form pairs encoun-
ter each other randomly at a constant encounter rate k, then at the
distributional equilibrium

knmi
nf jsij ¼ nmif j

knmi
nf js

f j
mi

¼ n
f j
mi

knmi
nf js

mi
f j

¼ nmi
f j

ð5Þ

for i; j ¼ 1;2. The first equation in (5) says that the rate with which
new pairs are formed equals the rate with which existing pairs dis-
band,3 and the second and the third equations say that the rate with
which disbanded individuals become searchers must be the same as
is the rate with which new pairs are formed.

We follow the approach of Křivan and Cressman (2017) by
defining fitness as the expected payoff per unit time at the equi-
librium distribution (which is well-defined by Appendix B) of the
pair formation process. These fitnesses, which assume that pay-
3 That is, when sij > 0; knmi nf j ¼
nmi f j

sij
. When sij ¼ 0, there are no mi; f j

� �
pairs.
offs are obtained through interaction only (i.e., searchers and dis-
banded individuals do not gain any extra payoff), are given by
(see Appendix C)

Pm1 ¼
k nf 1pm

11 þ nf 2pm
12

� �
1þ knf 1 s11 þ sf 1m1

� �
þ knf 2 s12 þ sf 2m1

� �

Pm2 ¼
k nf 1p

m
21 þ nf 2p

m
22

� �
1þ knf 1 s21 þ sf 1m2

� �
þ knf 2 s22 þ sf 2m2

� �

Pf 1 ¼
k nm1p

f
11 þ nm2p

f
21

� �

1þ knm1 s11 þ sm1
f 1

þ knm2 s21 þ sm2
f 1

� ��

Pf 2 ¼
k nm1p

f
12 þ nm2p

f
22

� �

1þ knm1 s12 þ sm1
f 2

� �
þ knm2 s22 þ sm2

f 2

� � :

ð6Þ
4. The Battle of the Sexes game where cost is time

In this section, we model the Battle of the Sexes as a two-player,
two-strategy time-constrained game where costs are measured by
times taken for different activities. We start by defining time-
bimatrix (4). Based on the classic BoS story (Dawkins, 1976), let
s2r be the time spent caring for offspring by each member of a cou-
ple that stays together, s1r the time spent caring for offspring by a
female on her own, and sc the time spent in courtship (if there is
one). We assume that s1r P s2r (i.e., females on their own spend
at least as much time caring for their offspring as males or females
do when they stay together). Since faithful males stay together
with their mate during both courtship (when applicable) and car-
ing of offspring, s11 ¼ s2r þ sc and s12 ¼ s2r in (4). On the other
hand, philandering males spend no time in courtship or child rear-
ing and so s21 ¼ s22 ¼ 0. Furthermore, all individuals from dis-
banded pairs are immediately ready to form new pairs except for
fast females paired with philanderers. That is, sm2

f 2
¼ s1r and all

other sf jmi
¼ smi

f j
¼ 0 in (4). This leads to the following time-bimatrix

ð7Þ

Furthermore, benefits of having offspring continue to be mea-
sured in terms of payoffs. Let B1 (respectively, B2) be the benefit
to each member of a couple of having offspring if the male deserts
(respectively, is faithful). We assume B1 6 B2 to reflect that individ-
ual benefits are at least as high when both parents care for off-
spring compared to when only a single parent (i.e., the mother)
does. Thus, the payoff bimatrix is

ð8Þ

The time-constrained BoS is then the game based on payoff bima-
trix (8) and time-bimatrix (7).4

The evolutionary outcomes for these games are determined
through their fitness functions which, from (6), are

Pm1 ¼
kB2 nf 1 þ nf 2

� �
1þ knf 1 sc þ s2rð Þ þ knf 2s2r

Pm2 ¼ kB1nf 2

Pf 1 ¼ kB2nm1

1þ knm1 sc þ s2rð Þ
Pf 2 ¼ k B2nm1 þ B1nm2

� �
1þ k nm1s2r þ nm2s1r

� � ;

ð9Þ
4 We assume all model parameters (B1;B2; s1r ; s2r ; sc ; k) are positive.
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where the population state given by Nmi
and Nf j determines

uniquely the numbers of searchers nmi
and nf j .

One immediate result is that (Philanderer, Coy) is never the evo-
lutionary outcome when cost is measured as time. To see this,
when all males are Philanderers, nm1 ¼ 0 and so Pf 1 ¼ 0 and

Pf 2 ¼ kBnm2
knm2 s1rþ1 > 0. Thus, Fast females can invade and so (Philan-

derer, Coy) is not an evolutionary outcome.5 In particular, the
time-constrained game avoids the unrealistic scenario pointed out
by (Broom and Rychtář (2013), page 325) that the evolutionary out-
come can be that no mating (and so no offspring) occur for the clas-
sic BoS game (1) when B is sufficiently low (Fig. 1A).

An important technique to determine evolutionary outcomes in
general is to examine dominance relationships among the strate-
gies. However, since fitness functions for time-constrained games
are no longer linear in the population state, dominance cannot be
determined by only comparing entries in a payoff matrix as is done
for classic bimatrix games (e.g., Section 2). Instead, fitness compar-
isons are needed at all population states.6 For instance, from (9), it
is straightforward to show that in general

Pf 2 �Pf 1 ¼
k kn2

m1
B2sc þ knm1nm2 B1 sc þ s2rð Þ � B2s1rð Þ þ B1nm2

� �
1þ knm1 sc þ s2rð Þ� �

1þ k nm1s2r þ nm2s1r
� �� � :

ð10Þ
Thus, if

B1

s1r
P

B2

sc þ s2r
; ð11Þ

then Fast strictly dominates Coy in the female population since
Pf 2 �Pf 1 > 0 at all population states (i.e., for all possible nmi

).7 That
is, under (11), all females are Fast at any evolutionary outcome. Fur-
thermore, when all females are Fast (i.e., Nf 1 ¼ nf 1 ¼ 0),

Pm2 �Pm1 ¼ knf 2 kB1nf 2s2r þ B1 � B2
� �

1þ knf 2s2r
: ð12Þ

Notice that, if B1 ¼ B2, thenPm2 �Pm1 > 0 when all females are Fast
and so the male population evolves to Philanderer. In particular, if
Coy females have no advantage over Fast females either in terms
of benefits (i.e., B1 ¼ B2) or in terms of time costs (i.e., s1r ¼ s2r),
then (Philanderer, Fast) is the only evolutionary outcome of the
time-constrained BoS game and trajectories of the replicator
dynamics are qualitatively the same as those shown in Fig. 2E.8

In general, from (10), Pf 2 �Pf 1 > 0 if the male population con-
sists of all Philanderer (i.e., nm1 ¼ 0) or all Faithful (i.e., nm2 ¼ 0).
5 Alternatively, when all females are Coy, nf 2 ¼ 0 and so Pm2 ¼ 0 and
Pm1 ¼ kB2nf1

knf1
scþs2rð Þþ1 > 0 and so Faithful males can invade the (Philanderer, Coy)

population. In fact, since both Faithful males and Fast females can invade the
(Philanderer, Coy) population, NE near this population configuration as well as cycling
behavior similar to Fig. 1B are both excluded.

6 However, fitness of a focal individual using a mixed strategy remains linear in the
components of this strategy. For example, if the focal female plays Coy with
probability q1 and Fast with probability q2 ¼ 1� q1 then her fitness is q1Pf 1 þ q2Pf 2 .
Thus, if fast females strictly dominate Coy, then Fast also strictly dominates any
mixed female strategy with a positive probability of playing Coy.

7 Cressman and Křivan (2019) define B1
s1r (respectively, B2

scþs2r) in (11) as the time-
adjusted payoff to Fast (respectively, Coy) females when interacting with Philanderer
(respectively, Faithful) males for the bimatrix game based on payoff matrix (8) and
time-bimatrix (7). It was shown there that comparisons of time-adjusted payoffs is
closely connected to the game’s evolutionary outcome when pairs are formed
instantaneously.

8 In game-theoretic terminology, this game is strictly dominance solvable to the
strategy pair (Philanderer, Fast). It is well-known (Sandholm, 2010) that such a pair is
then globally asymptotically stable for standard evolutionary dynamics such as the
replicator equation. This also occurs in Fig. 2E since the number of Coy females is
always decreasing and, when all females are Fast, the number of Faithful males
always decreases. There are other choices of model parameters for which the time-
constrained game is strictly dominance solvable to (Philanderer, Fast).
That is, Fast females dominate Coy on both the left and right edges
of the square as depicted by downward arrows in the phase por-
traits of Figs. 2 and 3. Furthermore, if all females are Coy (i.e.,
nf 2 ¼ 0), then

Pm2 �Pm1 ¼ � kB2nf 1

1þ knf 1 sc þ s2rð Þ ð13Þ

and so Faithful males dominate Philanderer on the top edge of the
square (i.e., arrows are to the right along this edge). Thus, all evolu-
tionary outcomes where either females or males exhibit a single
strategy must have all females Fast (i.e., the only NE on the bound-
ary of the square are on the bottom edge).

In the remainder of Section 4, we use these facts to analyze the
evolutionary outcome of the time-constrained BoS game in the fol-
lowing two situations. First, Section 4.1 assumes any advantage for
Coy females is based on time costs (i.e., s2r < s1r) and so the payoff
gain from offspring (i.e., the benefit in bimatrix (8)) is strategy
independent (i.e., B1 ¼ B2 � B). This model may describe the case
where all male–female pairs that have offspring, produce the same
number and only the time taken in this endeavor depends on the
strategies used. Second, in Section 4.2, all individuals who engage
in child rearing spend the same amount of time on this activity
(i.e., s1r ¼ s2r) but the benefits are strategy dependent (e.g., pairs
involving faithful males produce more offspring) and so B2 > B1.

4.1. Cost is time and the benefits of offspring are strategy independent

When benefits of offspring are strategy independent, the payoff
bimatrix (8) is

ð14Þ

where B is the payoff of having offspring. We recall that Philanderer
males do not mate with Coy females so there are no offspring and
the corresponding payoff entry is 0;0ð Þ. Without time constraints,
this game corresponds to the classic BoS payoff matrix (1) where
we set Cr ¼ Cc ¼ 0. Due to the ties in bimatrix payoffs, the classic
BoS game (i.e., the game where interaction times are independent
of strategies) based on (14) now has infinitely many NE that are
formed by the bottom and the right-hand edges of the square in
Fig. 1E. That is, the evolutionary outcome is either that all males
are Faithful (right edge) or all females are Fast (bottom edge). As
we will see, adding costs as time lost in (7) has a drastic effect on
the evolutionary outcome in the time-constrained game.

First, from Appendix D, (Philanderer, Fast) is a strict NE and the
only NE on the boundary of the unit square.9 In fact, for long court-
ship time, (Philanderer, Fast) is the only NE (e.g., if sc P s1r � s2r ,
then the game is dominance solvable to (Philanderer, Fast) by (11)
and (12)). However, as shown in the following section, when court-
ship time is short and s2r < s1r , there may be other evolutionary out-
comes where both sexes exhibit a mixture of their strategies
(corresponding to a NE in the interior of the square).
4.1.1. Mixed (interior) evolutionary outcomes
At an interior evolutionary outcome (Nmi

;Nf j ), both sexes are
polymorphic with some males (respectively, females) Faithful
and others Philanderer (respectively, Coy and others Fast) as seen
in Fig. 2. Such an outcome must satisfy the NE conditions; namely,
Pm1 ¼ Pm2 ;Pf 1 ¼ Pf 2 . Unfortunately, unlike classic bimatrix
9 For two-strategy bimatrix games without time constraints, this behavior on the
boundary guarantees that the only evolutionary outcome is (Philanderer, Fast) (in
particular, there are no interior NE). However, the nonlinearity of the fitness functions
leaves open the possibility that interior NE exist for the time-constrained game.



Fig. 2. The time-constrained BoS game with payoff bimatrix (14) and time-bimatrix (17). Panels A and B show the dependence of NE on courtship time sc for Nm ¼ Nf ¼ 100,
displayed in terms of NFaithful � Nm1 (panel A) and NCoy � Nf 1 (panel B). Panels C and D show the dependence of NE on population size N for sc ¼ 3 displayed in terms of
frequencies f Faithful � Nm1 =N (panel C) and f Coy � Nf 1 =N (panel D). Thick solid curves show stable NE while thick dashed curves show the unstable interior NE of the replicator
equation. Panels E and F show corresponding phase portraits of the replicator equation for sc ¼ 4 (Panel E) and sc ¼ 3 (Panel F). Solid black (respectively, grey) dots indicate
stable (respectively, unstable) NE. Other parameters used in simulations: B ¼ 1; s1r ¼ 10; s2r ¼ 5; k ¼ 0:1; Nm ¼ Nf ¼ 100.
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games without time-constraints, interior NE cannot be calculated
analytically for a general time interaction bimatrix of the form (4).

Instead of calculating mixed NE directly, we consider numerical
analysis of the replicator equation (Appendix A)

dNm1

dt
¼ Nm1 Nm � Nm2

� �
Nm

Pm1 Nm1 ;Nm2 ;Nf 1 ;Nf 2

� ��
�Pm2 Nm1 ;Nm2 ;Nf 1 ;Nf 2

� ��
dNf 1

dt
¼ Nf 1 Nf � Nf 2

� �
Nf

Pf 1 Nm1 ;Nm2 ;Nf 1 ;Nf 2

� ��

�Pf 2 Nm1 ;Nm2 ;Nf 1 ;Nf 2

� ��
ð15Þ

where Pmi
and Pf i are fitnesses (6) evaluated at the unique equilib-

rium distribution of (5) for strategy numbers Nm1 ;Nm2 ;Nf 1 ;Nf 2

� �
.

As we cannot express this equilibrium distribution analytically,
we have to solve, together with (15), a system of algebraic
equations
Nmi
¼ nmi

þ nmif 1 þ nmif 2 þ nf 1
mi

þ nf 2
mi

Nf j ¼ nf j þ nf jm1 þ nf jm2 þ nm1
f j

þ nm2
f j

for i; j ¼ 1;2. At the equilibrium distribution (5), we can express
these total numbers in terms of nmi

and nf j as

Nmi
¼ nmi

1þ knf 1 si1 þ sf 1mi

� �
þ knf 2 si2 þ sf 2mi

� �� �

Nf j ¼ nf j 1þ knm1 s1j þ sm1
f j

� �
þ knm2 s2j þ sm2

f j

� �� �
:

ð16Þ

System (15) and (16) is a differential–algebraic equation (DAE)
that can be solved numerically in Mathematica, or XPPAUT bifurca-
tion software (Ermentrout, 2002). Mixed NE that correspond to
stable rest points of the replicator equation are considered to be
evolutionary outcomes of the time-constrained BoS game.

To illustrate this approach, we apply it to the special case where
s1r ¼ 2s2r in keeping with the story behind the original BoS model.



Fig. 3. Phase portraits of the replicator equation for the BoS game given by payoff matrix (18) and time-bimatrix (19). The first four panels (A,B,C,D) assume B2 ¼ 1:8 < 2B1

(cf., Figs. 4A, B and 5A, B). Population size is N ¼ 10 < N1 (panel A), N1 < N ¼ 20 < N2 (panel B), N ¼ 60 > N2 (panel C) and N ¼ 100 > N2 (panel D). Panel E assumes the
threshold value for benefit B2 ¼ 2 ¼ 2B1 and N ¼ 50 > N1 (cf., Figs. 4C, D and 5C, D). Panel F assumes B2 ¼ 2:3 > 2B1 and N ¼ 100 > N3 (cf., Figs. 4E, F and 5E, F) where the
unstable rest point on the bottom edge is not a NE since this population configuration can be invaded by Coy females. Solid black (respectively, grey) dots are stable
(respectively, unstable) rest points of the replicator Eq. (15). Other parameters used in simulations: B1 ¼ 1; k ¼ 0:1; sc ¼ 0:1; sr ¼ 1.
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That is, a couple that stays together splits the cost of rearing off-
spring (an assumption underlying the classic payoff bimatrix (1)).
The time-bimatrix (7) is then
ð17Þ
When sc P s1r � s2r ¼ s2r , the game is strictly dominance solvable
to (Philanderer, Fast). However, for short courtship time, there are
other possibilities (Fig. 2). There may be no mixed NE, or two in
which case one is stable (solid lines in Fig. 2A,B and black interior
dot in Fig. 2F) and the other unstable (dashed lines in Fig. 2A,B
and grey dot in Fig. 2F). Numerical simulations given in these fig-
ures show mixed NE do coexist together with the strict NE (Philan-
derer, Fast) equilibrium.10

It is interesting to observe in Fig. 2A,B that, as courtship time
(sc) decreases, the frequencies of strategies Faithful and Coy
increase in the population at the stable interior equilibrium and
the domain of attraction of this evolutionary outcome increases
too. In fact, when sc is short enough, almost all males will eventu-
ally be Faithful and the large majority of females Coy for most ini-
tial population configurations (Fig. 2F). That is, to increase the level
of marital bliss in the population, the institution of courtship is
required but the courtship period should be kept as short as possi-
ble. This result is reflected in the article title. Moreover, while most
couples go through a courtship period at this evolutionary out-
come, some females are willing to have offspring immediately on
encountering a mate, secure in the knowledge that almost all
males will do their share of rearing the offspring.
10 These simulations assume the male and female populations are of equal size.
Qualitatively similar results emerge from other simulations (not shown) where
Nm – Nf .
In the classic BoS game with bimatrix (1), the proportion of
Faithful males at an interior NE (if it exists) also increases to 1 as
the courtship costs (Cc) decreases to 0. However, the proportion
of Coy females actually decreases to Cr

2B.
11 So reducing courtship cost

again promotes marital-bliss behavior in the male population but it
is not as clear in the female population. Moreover, the stability of the
interior evolutionary outcome in the time-constrained game is
unlike that of the interior NE of the classic BoS model with Dawkins’
payoffs. Although this latter NE may be close to the (Faithful, Coy)
population, evolutionary cycles around it takes the population far
away from marital bliss. This contrasts with stability in the time-
constrained game where the population evolves to the interior NE
near the marital-bliss population configuration.
4.2. Benefits of offspring are strategy dependent but offspring rearing
time is not

In this section, the time-constrained BoS game with equal times
for rearing offspring (i.e., s2r ¼ s1r � sr) is investigated. If there is
no benefit advantage for couples to stay together, we already know
that the game is strictly dominance solvable to the unique evolu-
tionary outcome (Philanderer, Fast). Thus, here we will assume
that payoffs for couples that stay together (i.e., when females mate
with Faithful males) have a higher fitness compared to the case
where a Fast female mates with a Philanderer male (i.e., B2 > B1).
For example, females paired with Faithful males can mate several
times while raising their offspring as they do not need to search
for a new partner whereas females paired with Philanderer males
do not have a partner to mate with while caring for offspring, or
have less opportunities to mate. This leads to an alternative param-
eterization of the time-constraned Battle of the Sexes game with
payoff bimatrix
11 Here we assume that Cr
2 < B < Cr so that the interior NE exists for all Cc .



13 Thus, if B2 < 2B1, exactly one boundary NE exists for a given population size;
namely, (Faithful, Fast) for small populations (N < N1), (Philanderer, Fast) for large
populations (N > N2) and mixed male behavior for intermediate population size
(N1 < N < N2). Here, and throughout Section 4, we have ignored threshold values of
parameters such as N ¼ N1 and sc ¼ B1sr

B2�B1
.

14
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ð18Þ

and time-bimatrix

ð19Þ

Payoff bimatrix (18) was considered by McNamara et al. (2009)
(see also Broom and Rychtář, 2013) in their ‘‘coyness game” that
models females who inspect the males they encounter as to
whether they are helpful or non–helpful. When time constraints
are not considered, the arrows in (18) show that Faithful strictly
dominates Philanderer in the male population and so, at any evo-
lutionary outcome all males must be Faithful. In fact, there are infi-
nitely many NE with all males Faithful and any mix of Coy and Fast
females (Fig. 1F).

For the time-constrained game, it is shown at the beginning of
Section 4 that all females cannot be Coy at an evolutionary out-
come (i.e., there must be some Fast females) since there are no
NE on the upper edge of the square in Fig. 3. Of particular interest
is whether there are interior evolutionary outcomes similar to Sec-
tion 4.1 with short courtship time that are close to the marital-bliss
state for some choices of model parameters. Before addressing this
question in Section 4.2.1, we first consider the existence of evolu-
tionary outcomes on the boundary of the square. As we will see,
the analysis of these evolutionary outcomes for the time-
constrained game (which must be NE on the bottom edge) with
payoff bimatrix (18) and time-bimatrix (19) becomes quite compli-
cated. In order to simplify the discussion in the main text, we will
assume for the remainder of this section that the male and female
populations have the same size (i.e., Nm ¼ Nf � N).12 The results are
summarized in Table 1 which shows that there can be at most one
NE on the boundary.

First, we observe that (Faithful, Fast), which was not a NE when
payoffs were strategy independent and given by (14), can be a NE
provided the population size is not too large (Fig. 3A). Indeed,

because B2 > B1 then for small nf 2 ;Pm1 ¼ kB2nf2
1þksrnf2

> kB1nf 2 ¼ Pm2

when nf 1 ¼ 0 and so Philanderer males cannot invade a small pop-
ulation configured at (Faithful, Fast). Furthermore, Fast females
always dominate Coy when all males are Faithful. Thus, (Faithful,
Fast) is a strict NE at low population densities (specifically
N < N1 where N1 is given in the legend of Table 1).

Second, (Philanderer, Fast) can also be a strict NE (Fig. 3C, D), as
it is for the time-constrained game with payoff bimatrix (14). It is
now enough to determine when Faithful males cannot invade since
Fast females strictly dominate Coy when all males are Philanderer.
In order to prevent invasion, a Philanderer male must use the
opportunity to produce more offspring than a Faithful male per
unit time by not ‘‘wasting” time caring for these offspring. At low
population size, the payoff from these extra offspring is not enough
to compensate for the lower payoff per offspring since Faithful
males can invade exactly as in the previous paragraph. Moreover,
for higher population size, Appendix D.2 (see also Table 1) shows
this extra opportunity for Philanderer males can only compensate
if the benefit to Faithful males is less than twice that of Philanderer
males (i.e., B2 < 2B1) and population size is large enough (specifi-
cally, N > N2 where N2 is given in the legend of Table 1).

Finally, depending on courtship time and population size as
well as on these benefits (see Table 1), a boundary NE may occur
in the interior of the bottom edge where the male population is a
12 The general case where the sex-ratio is not even (and s1r P s2r) is analyzed in
Appendix D.
mixture of Faithful and Philanderer behaviors (Fig. 3B, E). In fact,
if B2 < 2B1, then such a boundary NE exists for all intermediate
population sizes, N1 < N < N2.13 On the other hand, if B2 > 2B1,
these boundary NE exist for all population sizes N > N1 if courtship
time is long enough (specifically, sc > B1sr

B2�B1
) but only for intermediate

population size when courtship time is shorter. In this latter case,
there is no boundary NE for large population size as shown in
Fig. 3F where a mixed NE in the interior of the square emerges
(see the following section).

Our analyses clearly show that population size has a strong
effect on evolutionary outcomes when time constraints are consid-
ered. This is to say that, contrary to the classic BoS game (or any
other bimatrix game) whose evolutionary outcomes are indepen-
dent of the population size (i.e., classic games are only frequency
dependent), the time constrained BoS game is density dependent.
4.2.1. Mixed (interior) evolutionary outcomes
From the above analytic results on boundary NE for the BoS

game based on payoff bimatrix (18) and time-bimatrix (19), there
must be interior NE when B2 > 2B1 and sc < B1sr

B2�B1
.14 In fact, by fol-

lowing the same numerical methods as in Section 4.1, simulations
suggest this interior NE is then globally asymptotically stable and
so the only evolutionary outcome as in Fig. 3F.

Furthermore, as illustrated by the simulations in Fig. 4, interior
NE exist for all BoS games based on (18) and (19) when courtship
time is short enough. At least one such NE is then a stable evolu-
tionary outcome although another evolutionary outcome may co-
exist on the boundary where all females are Fast. Also, as in Sec-
tion 4.1, as sc decreases to 0, almost all males are Faithful at the
stable interior NE, the fequency of Coy females is increasing, and
this evolutionary outcome attracts most initial population configu-
rations. That is, reducing courtship time continues to promote
marital bliss in these time-constrained BoS games.

From Table 1, it is also apparent that population size has an
important effect on the evolutionary outcomes of these games. These
effects are especially interesting when courtship time is short enough
(as in Fig. 5) so that Fast female behavior does not strictly dominate
Coy behavior in the female population. By Fig. 5, we see that (Faithful,
Fast) is the unique evolutionary outcome for small population size.
As population size increases, this boundary evolutionary outcome
first moves along the bottom edge of the square and then either con-
tinues to (Philanderer, Fast) (Fig. 5A–D) or disappears (Fig. 5E,F).
Moreover, an interior evolutionary outcome emerges that attracts
most initial population configurations as population size increases.
In fact, almost all males are Faithful (Fig. 5A,C,E) and the frequency
of Coy females is increasing (Fig. 5B,D,F) when population size is
large. That is, population size also promotes marital bliss.

Increasing population size also promotes marital bliss for short
courtship times when benefits from offspring are strategy indepen-
dent as in Section 4.1 (see Fig. 2C, D). On the other hand, the depen-
dence of boundary evolutionary outcomes on population size is
much simpler for this model in that (Philanderer, Fast) is always
a strict NE and the only NE on the boundary. Of course, the advan-
tages to couples where the male is Faithful considered separately
in Section 4.1 (s2r < s1r) and Section 4.2 (B2 > B1) can be assumed
to hold simultaneously. Combining both these assumptions lead to
This follows from the fact that all our population games, which have continuous
payoff functions, must have at least one NE (Nash, 1951). Notice that the boundary
rest point (grey dot) in Fig. 3F is not a NE since this population configuration can be
invaded by Coy females. That is, the only NE is interior (black dot) for this game.



Fig. 4. The dependence of evolutionary outcomes and other rest points of the replicator equation/evolutionary dynamics on sc displayed in terms of NFaithful � Nm1 (panel A, C,
E) and NCoy � Nf 1 (panel B, D, F), for the time-constrained BoS game with payoff bimatrix (18) and time-bimatrix (19). Evolutionary outcomes correspond to stable (with
respect to replicator dynamics) NE and are indicated by solid curves. Other rest points are unstable (indicated by dashed curves) and may be NE (e.g., those in the interior) or
not (e.g., those on the boundary)a. Panels A, B assume B2 ¼ 1:8, panels C, D consider the threshold case where B2 ¼ 2, and panels E, F assume B2 ¼ 2:3. Other parameters used
in simulations: Nm ¼ Nf ¼ 100; B1 ¼ 1; sr ¼ 1; k ¼ 0:1 a Unstable rest points at the vertices are not included in the figure.

Table 1
Evolutionary outcomes for the classic and time-constrained Battle of the Sexes game. Asterisks indicate evolutionary outcomes that correspond to strict NE. For the game without
time constraints as well as for sc large enough in the time-constrained game (e.g., those for which inequality (11) holds), the game is strictly dominance solvable to these strict NE.

For the time-constrained games, the sex-ratio is assumed to be equal, Nm ¼ Nf ¼ N. For the time-constrained games based on (18) and (19), N1 ¼ B2 B2�B1ð Þ
kB21sr

, N2 ¼ B2�B1
k 2B1�B2ð Þsr , and

N3 ¼ B2�B1ð Þ B21scþB1B2 2sr�scð Þ�B22srð Þ
kB1 2B1�B2ð Þ B1 srþscð Þ�B2scð Þsr are the threshold population densities taken from D.3. Cases (i)-(iii) have qualitatively the same phase portraits as in Fig. 3B in a vicinity of the

boundary equilibrium.

Model Nash Equilibria Conditions on Model Parameters Figure

Classic BoS game (1) without time constraints (Philander, Coy)⁄ B < min Cc þ Cr
2 ;Cr

� �
Fig. 1A

(Philander, Fast)⁄ B > Cr Fig. 1C
Interior NE Cr

2 þ Cc < B < Cr Fig. 1B

Time constrained BoS game with payoff
bimatrix (14) and time-bimatrix (7)

(Philanderer, Fast)⁄ always Fig. 2E,F
Stable interior NE when sc is not too long and s2r < s1r Fig. 2F

Time constrained BoS game with payoff
bimatrix (18) and time-bimatrix (19)

(Faithful, Fast)⁄ N < N1 Fig. 3A
(Philanderer, Fast)⁄ B2 < 2B1;N > N2 Fig. 3C,D
NE on boundary with any of the following three conditions
all females Fast and (i) B2 < 2B1 and N1 < N < N2 Fig. 3B

Nm1 ¼ B2 kN B2�2B1ð Þsr�B1þB2ð Þ
k B1�B2ð Þ2sr

(ii) 2B1 < B2, sc > srB1
B2�B1

;N > N1

(iii) 2B1 < B2; sc < sr B1
B2�B1

;N1 < N < N3

Stable interior NE when sc is not too long Fig. 3D,E,F
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Fig. 5. The dependence of evolutionary outcomes and other rest points of the replicator equation/evolutionary dynamics on population size N displayed in terms of
frequencies f Faithful � Nm1 =N (panel A, C, E) and f Coy � Nf 1 =N (panel B, D, F), for the time-constrained BoS game with payoff bimatrix (18) and time-bimatrix (19). Solid and
dashed curves have the same meaning as in Fig. 4 and panel parameter values correspond as well except now sc ¼ 0:1 is fixed and Nm ¼ Nf ¼ N is variable.
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evolutionary outcomes similar to those in Section 4.2. This is
apparent from the analytic results of Appendix D (which are based
on these two assumptions) as well as simulations (not shown) to
determine interior evolutionary outcomes numerically.
15 This assumes the birth rate of pairs that produce offspring is at least as high as the
death rate in the population.
16 We again emphasize that our model is based solely on the Dawkins BoS game
with costs measured in time lost. We do not claim that it reflects all the behavioral
complexities inherent in conflicts between the sexes over parental care (e.g., Trivers,
1972; Maynard Smith, 1977; Webb, 1999; Fromhage et al., 2007).
5. Discussion

We develop a new approach to the Battle of the Sexes game
where benefits are measured by offspring produced and costs are
measured by time lost. In the classic Battle of the Sexes model (Sec-
tion 2) introduced by Dawkins (1976), where it is unclear how to
measure costs and benefits since they are evaluated in a single cur-
rency (namely, payoff), there are three possible evolutionary out-
comes depending on payoff parameters as summarized in the
first three rows of Table 1. When the benefit is small compared
to costs, all males philander and all females are coy (i.e., strategy
(Philanderer, Coy) is the evolutionary outcome) and, since coy
females do not mate with philanderer males, the population goes
extinct. When the benefit is large, the evolutionary outcome is
(Philanderer, Fast). For intermediate benefits, the male population
includes both Faithful and Philanderer individuals and the females
both Coy and Fast under some payoff choices, including the payoffs
considered by Dawkins (1976).

In our time-constrained model (Section 4), we use a different
currency for benefits (measured by number of offspring) than for
costs (measured by time lost). Then (Philanderer, Coy) is never
an evolutionary outcome, i.e., offspring are always produced at
all evolutionary outcomes and so the population never goes
extinct.15 In fact, if courtship time is long enough (cf., inequality
(11)), then females will decide against courtship and the only evolu-
tionary outcome will be a population where all females are Fast and
all males adopt one of their two behaviors or else the male popula-
tion exhibits a mixture of them. In particular, the (Faithful, Coy) state
of marital bliss mentioned by Dawkins (1976) is never the evolution-
ary outcome in this case.

In order to encourage male–female behavior that is closer to
marital bliss, courtship time must be short.16 In this case, marital
bliss behavior becomes more prevalent by reducing courtship time
further. The short courtship time reduces the time cost for courtship,
leading to more males and females who are willing to spend this
short time as a means to better ensure they obtain the advantage
of higher benefits (Section 4.2) or lower rearing cost (Section 4.1).
A similar phenomenon of increased marital bliss arises by increasing
the underlying population size N of the model (Fig. 5). When the
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fixed courtship time is short, the proportion of males (respectively,
females) who are Faithful (respectively, Coy) increases at the interior
evolutionary outcome as N increases. In fact, as N becomes arbitrar-
ily large (not shown in Fig. 5), the evolutionary dynamics approaches
the marital bliss state (Faithful, Coy) from almost all initial popula-
tion configurations.

The analysis in this article shows clearly that including time
constraints changes the evolutionary outcome of the BoS game. It
is then a combination of the payoffs for producing offspring
together with the activity times that results in the game’s evolu-
tionary outcome. Qualitatively similar results emerge (Mylius,
1999) when these activity times are incorporated into the BoS
model as time delays, producing a system of delayed differential
equations. Both approaches show the assumption often made in
game-theoretical models, that costs and benefits can be expressed
in a single currency, is questionable.
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Appendix A. The replicator equation for two-strategy bimatrix
games with and without time constraints

In Fig. 1, we use the standard replicator equation for bimatrix
games to investigate the evolutionary outcome of the classic BoS
game. For the general two-strategy bimatrix game with payoff
bimatrix (3), the replicator equation is of the form (Hofbauer and
Sigmund, 1998)

dpm1

dt
¼ pm1

1� pm1

� �
Pm1 �Pm2

� �
dpf 1

dt
¼ pf 1

1� pf 1

� �
Pf 1 �Pf 2

� � ðA:1Þ

where pm1
(respectively, pf 1

) is the frequency of strategym1 (respec-
tively, f 1) in the first (respectively, second) population and Pmi

(re-
spectivelyPf j ) is the expected payoff of an individual using strategy
mi (respectively, f j) in a random interaction with the other popula-
tion (e.g., Pm1 ¼ pm

11pf 1
þ pm

12pf 2
where pf 2

¼ 1� pf 1
). The replicator

Eq. (A.1) for these games without time constraints is a dynamics on
the unit square. In order to generalize the dynamics to the time-
constrained games in this article, it is better to rewrite (A.1) in
terms of strategy numbers rather than frequencies, That is, for fixed
Nm and Nf ,

dNm1

dt
¼ Nm1 Nm � Nm1

� �
Nm

Pm1 �Pm2

� �
dNf 1

dt
¼ Nf 1 Nf � Nf 1

� �
Nf

Pf 1 �Pf 2

� � ðA:2Þ

where, for example, Nm1 ¼ Nmpm1
and Pm1 ¼

Nf1
Nf
pm

11 þ
Nf2
Nf
pm

12. When

Nm ¼ Nf the trajectories of (A.2) are identical to those of (A.1) with
the unit square scaled by a factor of Nm.

Figs. 2E, F and 3 use (A.2) where Pmi
and Pf j are now (nonlin-

ear) functions of Nmi
and Nf j as in (15).

Appendix B. Uniqueness of distributional equilibrium of (5)

Fix Nm1 ;Nm2 ;Nf 1 and Nf 2 and define qm1
� nmi

Nmi
; qf j

� nf j
Nf j
, as the

proportion of searchers among those individuals in the population
using a particular strategy. Then, at a distributional equilibrium of
(5), from (16) we get
qmi
¼ 1

1þkqf1Nf1
si1þs

f1
mi

� �
þkqf2Nf2

si2þs
f2
mi

� � ; i ¼ 1;2

qf j
¼ 1

1þkqm1
Nm1 s1jþs

m1
f j

� �
þkqm2

Nm2 s2jþs
m2
f j

� � ; j ¼ 1;2:
ðB:1Þ

By Lemma 2 in Garay et al. (2017), there is a unique solution of
(B.1) with qm1

; qm2
; qf 1

and qf 2
between 0 and 1. The equilibrium

solution of (5) is then obtained from (16).

Appendix C. Fitnesses at the distributional equilibrium

Appendix B shows that the distributional equilibrium given in
(5) is unique as a function of the total numbers (Nmi

and Nf j ) of
individuals playing the different strategies. At the equilibrium dis-
tribution (5), we can express these total numbers in terms of nmi

and nf j as given in (16).
Now we determine fitnesses (i.e., payoffs per unit time) for indi-

viduals using one of the four strategies. These fitnesses assume
that payoffs are obtained through interaction only, i.e., searchers
and disbanded individuals do not gain any additional payoff. When
all four strategies are in use (i.e., Nmi

– 0 – Nf j for i; j ¼ 1;2) and all
interaction times are positive, the fitness functions are then

Pm1 ¼
nm1 f 1 þ nf 1

m1

Nm1

pm
11

s11 þ sf 1m1

þ nm1 f 2 þ nf 2
m1

Nm1

pm
12

s12 þ sf 2m1

Pm2 ¼
nm2 f 1 þ nf 1

m2

Nm2

pm
21

þsf 1m2

þ nm2f 2 þ nf 2
m2

Nm2

pm
22

s22 þ sf 2m2

Pf 1 ¼
nm1 f 1 þ nm1

f 1

Nf 1

pf
11

s11 þ sm1
f 1

þ nm2 f 1 þ nf 1
m2

Nf 1

pf
21

s21 þ sm2
f 1

Pf 2 ¼
nm1 f 2 þ nm1

f 2

Nf 2

pf
12

s12 þ sm1
f 2

þ
nm2 f 2 þ nm2

f 2

Nf 2

pf
22

s22 þ sm2
f 2

:

ðC:1Þ

For instance, the fitness of a faithful male, Pm1 , is the probability
nm1 f1

þn
f1
m1

Nm1
that this male disbands from a pair with a coy female times

the payoff per unit time pm
11

s11þs
f1
m1

it receives from this interaction plus

a similar product
nm1 f2

þn
f2
m1

Nm1

pm
12

s12þs
f2
m1

from pairs it forms with fast

females.
These fitnesses, evaluated at the distributional equilibrium, are

then well-defined functions of Nmi
and Nf j (i; j ¼ 1;2) when all

denominators are different from zero and so completely specify
the time-constrained game when the sizes of the two populations
are fixed at Nm � Nm1 þ Nm2 and Nf � Nf 1 þ Nf 2 , respectively, and
individual fitness is interpreted as its payoff in the time-
constrained game.

From (5) and (16), fitness functions (C.1) simplify to

Pm1 ¼
k nf 1p

m
11 þ nf 2p

m
12

� �
1þ knf 1 s11 þ sf 1m1

� �
þ knf 2 s12 þ sf 2m1

� �

Pm2 ¼
k nf 1p

m
21 þ nf 2p

m
22

� �
1þ knf 1 s21 þ sf 1m2

� �
þ knf 2 s22 þ sf 2m2

� �

Pf 1 ¼
k nm1p

f
11 þ nm2p

f
21

� �

1þ knm1 s11 þ sm1
f 1

� �
þ knm2 s21 þ sm2

f 1

� �

Pf 2 ¼
k nm1p

f
12 þ nm2p

f
22

� �

1þ knm1 s12 þ sm1
f 2

� �
þ knm2 s22 þ sm2

f 2

� � :

ðC:2Þ
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In this form, individual fitness is defined when the formulas in
(C.1) are indeterminate due to division by 0. For instance, if
Nm1 ¼ 0; Pm1 is well-defined in (C.2) and equals the invasion fit-
ness of strategy m1 in a system where all individuals in population
one use strategy m2. Moreover, fitnesses are defined as well when

some of the entries (i.e., sij; s
f j
mi
; smi

f j
Þ in the time-bimatrix (4) are

zero. As we will see in the following section, this last observation
is quite important for us since our primary interest is to apply
these methods to the time-constrained BoS game where some
entries of the time-bimatrix are assumed to be zero. In particular,
payoffs may then accrue when they are in a searching or disbanded
state to individuals that have encountered each other. For a differ-
ent method based on renewal theory to calculate fitness that
avoids the issue of devision by zero, see, e.g., Houston and
McNamara (1999) or Broom et al. (2019).

Appendix D. Analysis of evolutionary outcomes for Section 4.2

Here, we assume B1 < B2 in payoff bimatrix (18) and s1r P s2r in
time-bimatrix (7). In Section 4.2, we then apply the results with
s1r ¼ s2r � sr (as in time-bimatrix (19)) and Nm ¼ Nf � N.

From the main text, we know that all boundary evolutionary out-
comes for this time-constrained BoS game must occur on the edge
where all females are Fast. We will first examine when the vertices
(Philanderer, Fast) and (Faithful, Fast) are strict NE and so evolution-
ary outcomes.17 In fact, we initially consider the time-constrained
game with general time-bimatrix (4) since the equilibrium distribution
of (5) can be solved analytically as a function of Nm and Nf (see (D.2)
and (D.3) below) when individuals in each population all use the same
strategy. We then use this result to determine exact conditions when a
vertex is a strict NE for the time-constrained BoS game with payoff
bimatrix (8) and time-bimatrix (7). In particular, D.1 (respectively
D.2) determines when (Faithful, Fast) (respectively, (Philanderer, Fast))
is a strict NE. In each of these two situations, we study the general case
that does not assume even sex ratio (or that s1r ¼ s2r) as well as strict
NE conditions when the sex ratio is even.

Suppose all individuals in populations one and two use strategy
mi and f j (i; j ¼ 1;2) respectively. Then Nmi

¼ Nm;Nf j ¼ Nf and, from
(5) and (16),

Nm ¼ nmi
þ knf jnmi

smij
Nf ¼ nf j þ knf jnmi

sfij:
ðD:1Þ

Eliminating nf j yields

ksfijn
2
mi

þ nmi
1þ k Nfsmij � Nmsfij

� �� �
� Nm ¼ 0;

a polynomial in nmi
of degree at most 2. Solving for nmi

> 0,18

nmi
¼

k Nmsfij�Nf smij

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Nmsfij�Nf smij

� �
�1

� �2

þ4kNmsfij

r

2ksf
ij

if sfij – 0

Nm
1þkNf smij

if sfij ¼ 0:

8>>>><
>>>>:

ðD:2Þ
Similarly,

nf j ¼
k Nf smij �Nmsfij

� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Nf smij �Nmsfij

� �
�1

� �2

þ4kNf smij

r

2ksm
ij

if smij –0

Nf

1þkNmsfij
if smij ¼0:

8>>>><
>>>>:

ðD:3Þ
17 See Section D.3 for analyzing non-vertex evolutionary outcomes on this edge
where all females are Fast.
18 It should be noted that nmi ¼ Nm if smij ¼ 0 from (D.2) as is also clear from (D.1).
The monomorphic system mi; f j
� �

corresponds to a strict NE if
Pmi

> Pm�i

19 and Pf j > Pf
j
when nmi

and nf j in (D.2) and (D.3) (along

with nm�i
¼ 0 and nf�j

¼ 0) are substituted into (6). Since this involves

many cases depending on whether smij and sfij are positive, we will
restrict attention to the time-constrained BoS game of Section 4.2
for the remainder of Appendix D where individual fitnesses (6) are
given by (9).

D.1. When is strategy (Faithful, Fast) a strict NE?

Here we analyze when strategy (Faithful, Fast), denoted as
m1; f 2ð Þ where all males are Faithful and all females are Fast (i.e.,
Nm1 ¼ Nm and Nf 2 ¼ Nf ), is a strict NE. From (D.2) and (D.3) applied
to m1; f 2ð Þ, the distributional equilibrium of searchers is

nm1 ¼
ksr Nm � Nf

� �� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kNms2r þ ks2r Nf � Nm

� �þ 1
� �2q

2ks2r
;

nm2 ¼ 0;
nf 1 ¼ 0;

nf 2 ¼
ksr Nf � Nm

� �� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kNms2r þ ks2r Nf � Nm

� �þ 1
� �2q

2ksr
ðD:4Þ

and individual fitnesses (9) evaluated at this equilibrium simplify to

Pm1 ¼ kB2nf2
1þknf2 s2r

Pm2 ¼ kB1nf 2

Pf 1 ¼ kB2nm1
1þknm1 scþs2rð Þ

Pf 2 ¼ kB2nm1
1þknm1 s2r

:

Since sc > 0;Pf 2 > Pf 1 , and so strategy (Faithful, Fast) is a strict NE
if and only if Pm1 > Pm2 , i.e,

Nf <
B2 � B1ð Þ B1 þ kB2Nms2rð Þ

kB1B2s2r
: ðD:5Þ

We observe that strategy (Faithful, Fast) is a strict NE only if the
female population is not too large when compared to the male pop-
ulation. This makes sense because when females are rare, it is better
for males to be Faithful, while females can easily find a mate so it is
better to be Fast.

Under even sex ratio (Nm ¼ Nf ¼ N), the distributional equilib-
rium (D.4) simplifies to

nm1 ¼ nf 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kNs2r þ 1

p � 1
2 ks2r

;nm2 ¼ nf 1 ¼ 0

and inequality (D.5) for the strict NE becomes

N <
B2 B2 � B1ð Þ

kB2
1s2r

:

We observe that strategy (Faithful, Fast) is a strict NE only if the
population size is not too large.

D.2. When is strategy (Philanderer, Fast) a strict NE?

Next, we analyze when strategy (Philanderer, Fast), denoted as
m2; f 2ð Þ where all males are Philanderer and all females are Fast,
i.e., Nm2 ¼ Nm and Nf 2 ¼ Nf , is a strict NE. The distributional equi-
librium of searchers is
19 Here �i ¼ 1 2ð Þ when i ¼ 2 1ð Þ and similar notation is used for �j.



Fig. D.1. Thresholds N1 (solid line), N2 (dashed line), and N3 (dotted curve) as functions of sc . Panel A assumes B1 ¼ 1 and B2 ¼ 3 so that inequality 1þ s2r
s1r

< B2
B1

holds. Panel B
assumes B1 ¼ 1 and B2 ¼ 1:5 so that the opposite inequality holds. The shaded area shows the range of parameters in sc–N parameter space where the boundary equilibrium
(D.11) with all females Fast is a NE. Other parameters: s1r ¼ 1; s2r ¼ 1; k ¼ 1.

20 These thresholds are also important in D.1 and D.2 respectively where strict NE
are determined.
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nm1 ;nf 1 ;nm2 ;nf 2

� � ¼ 0; 0;Nm;
Nf

1þ kNms1r

	 

ðD:6Þ

from (D.2) and (D.3) applied to m2; f 2ð Þ. Individual fitnesses (9) eval-
uated at this equilibrium are

Pm1 ¼
kB2nf 2

1þ knf 2s2r
Pm2 ¼ kB1nf 2

Pf 1 ¼ 0

Pf 2 ¼ kB1nm2

1þ knm2s1r
:

ðD:7Þ

Since Pf 2 > Pf 1 , (Philanderer, Fast) is a strict NE if and only if

Pm2 > Pm1 , i.e., if and only if nf 2 > B2�B1
kB1s2r

. That is, the number of

female searchers must be sufficiently high. Substituting distribution
of searcher (D.6)–(D.7) yields the following condition for the NE

Nf >
B2 � B1ð Þ kNms1r þ 1ð Þ

kB1s2r
:

It is then straightforward to confirm that (Philanderer, Fast) is a
strict NE for even sex ratio (Nm ¼ Nf ¼ N) if and only if

B2

B1
< 1þ s2r

s1r
and N >

B2 � B1

k B1 s1r þ s2rð Þ � B2s1rð Þ :

As we assume that s1r > s2r , inequality B2
B1
< 1þ s2r

s1r
implies that

B2 < 2B1.

D.3. When is there an evolutionary outcome with all females Fast and
the male population exhibits a mixture of behaviors

Suppose Nmi
;Nf j

� �
is such an evolutionary outcome. Then it is a

NE for which Nf 1 ¼ nf 1 ¼ 0 and Nf 2 ¼ Nf . Since the male population
exhibits a mixture of its two behaviors at this NE, it is a rest point
of the replicator equation on the bottom edge of the square. That is,
it satisfies

Pm1 ¼
B2knf 2

1þ knf 2s2r
¼ kB1nf 2 ¼ Pm2 : ðD:8Þ

At the distributional equilibrium (5), we also have (cf., (16))

Nm1 ¼ nm1 1þ knf 2s2r
� �

Nm � Nm1 ¼ nm2

Nf ¼ nf 2 1þ knm1s2r þ knm2s1r
� �

:

ðD:9Þ

Under our assumptions that B2 > B1 and s1r P s2r > 0, there exists a
unique solution of (D.8) and (D.9); namely,
nm1 ¼
B1 B2 1þ kNms1rð Þ � B1 1þ kNms1r þ kNfs2r

� �� �
k B2 � B1ð Þ B2s1r � B1s2rð Þ

nm2 ¼
kB1s2r B1Nm þ B2 Nf � Nm

� �� �þ B2 B1 � B2ð Þ
k B2 � B1ð Þ B2s1r � B1s2rð Þ

nf 2 ¼ B2 � B1

kB1s2r

Nm1 ¼
B2 B2 kNms1r þ 1ð Þ � B1 kNms1r þ kNfs2r þ 1

� �� �
k B2 � B1ð Þ B2s1r � B1s2rð Þ :

ðD:10Þ

In what follows, we assume that the sex-ratio is even, i.e.,
Nm ¼ Nf ¼ N in (D.10), which leads to a simpler analysis. In partic-
ular, the rest point of the replicator Eq. (D.10) simplifies to

nm1 ¼
B1kN B2s1r � B1 s1r þ s2rð Þð Þ þ B1 B2 � B1ð Þ

k B2 � B1ð Þ B2s1r � B1s2rð Þ

nm2 ¼
kB2

1Ns2r � B2 B2 � B1ð Þ
k B2 � B1ð Þ B2s1r � B1s2rð Þ

nf 2 ¼ B2 � B1

kB1s2r

Nm1 ¼
kB2N B2s1r � B1 s1r þ s2rð Þð Þ þ B2 B2 � B1ð Þ

k B2 � B1ð Þ B2s1r � B1s2rð Þ :

ðD:11Þ

Further analysis shows that the rest point (D.11) exists (i.e.,
nm1 > 0;nm2 > 0;nf 2 > 0;Nm > Nm1 > 0) under either of the follow-
ing two conditions.

1. 1þ s2r 6 B2 and N > N1 ðD:12Þ
s1r B1
2. B2
< 1þ s2r and N1 < N < N2 ðD:13Þ
B1 s1r

where the threshold population sizes are
N1 ¼ B2 B2 � B1ð Þ
kB2

1s2r
;N2 ¼ B2 � B1

k B1 s1r þ s2rð Þ � B2s1rð Þ : ðD:14Þ

Note that N1 < N2 (Fig. D.1B) since B2 > B1 and s1r P s2r .20

For (D.11) to be a NE, Coy females cannot invade at this rest
point (i.e., Pf 2 > Pf 1 ). At (D.11),
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Pf 2 �Pf 1¼
B2�B1ð Þ B2

1scþB1B2 s1rþs2r�scð Þ�B2
2s1r

� �
þkB1N B1 s1rþs2rð Þ�B2s1rð Þ B2sc�B1 s2rþscð Þð Þ

B1kNs2r s2rþscð Þ B1 s1rþs2rð Þ�B2s1rð Þþs2r B1�B2ð Þ B1scþB2s1rð Þ
ðD:15Þ

and there is a unique critical population density

N3 ¼
B2 � B1ð Þ B2

1sc þ B1B2 s1r þ s2r � scð Þ � B2
2s1r

� �
kB1 B1 s1r þ s2rð Þ � B2s1rð Þ B1 s2r þ scð Þ � B2scð Þ ðD:16Þ

at which Pf 2 ¼ Pf 1 . We note that N3 has a vertical asymptote at

sc1 ¼ B1s2r
B2 � B1

(the vertical line in Fig. D.1) and at 1þ s2r
s1r

¼ B2
B1
.

By combining conditions for existence of the boundary rest
point in (D.12) and (D.13) with the condition for its non-
invasibility based on (D.15)21 we find that the boundary rest point
(D.11) is a NE under each of the following cases:

1. 1þ s2r
s1r

< B2
B1
, sc < sc1 ;N1 < N < N3, see Fig. D.1A.

2. 1þ s2r
s1r

< B2
B1
, sc > sc1 ;N1 < N, see Fig. D.1A.

3. 1þ s2r
s1r

> B2
B1
, N1 < N < N2, see Fig. D.1B.

We observe that when s1r ¼ s2r then condition 1þ s2r
s1r

< B2
B1

(1þ s2r
s1r

> B2
B1
) simplifies to B1 < 2B2 (B1 > 2B2). Conditions 1.-3. are

listed in the corresponding entries of Table 1.
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Cressman, R., Křivan, V., 2019. Bimatrix games that include interaction times alter
the evolutionary outcome: The Owner-Intruder game. J. Theor. Biol. 460, 262–
273.

Dawkins, R., 1976. The Selfish Gene. Oxford University Press, Oxford.
Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems.

SIAM, Philadelphia, PA.
Fromhage, L., McNamara, J.M., Houston, A.I., 2007. Stability and value of male care

for offspring: is it worth only half the trouble? Biol. Lett. 3, 234–236.
Garay, J., Csiszár, V., Móri, T.F., 2017. Evolutionary stability for matrix games under

time constraints. J. Theor. Biol. 415, 1–12.
Garay, J., Cressman, R., Móri, T.F., Varga, T., 2018. The ESS and replicator equation in

matrix games under time constraints. J. Math. Biol. 76, 1951–1973.
He, Q.Q., Feng, T.J., Tao, Y., Zhang, B., Ji, T., 2018. Asymmetric evolutionary game

dynamics based on individuals’ own volition. J. Theor. Biol. 454, 118–125.
Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics.

Cambridge University Press, Cambridge, UK.
Houston, A.I., McNamara, J.M., 1999. Models of Adaptive Behaviour. Cambridge

University Press, Cambridge, UK.
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