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a b s t r a c t 

Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different 

roles, do not consider the effect that interaction duration has on payoffs. Howe ver, interactions between 

different strategies often take different amounts of time. In this article, we further develop a new ap- 

proach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. 

We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) 

searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We 

describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that in- 

cludes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale 

than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of 

the time-constrained game. This general approach is then applied to the Owner–Intruder bimatrix game 

where the two strategies are Hawk and Dove in both roles. While the classic Owner–Intruder game has 

at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair du- 

ration change this prediction in that up to four interior NE may exist with their stability depending on 

whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) 

and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of sta- 

ble boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique 

(stable) NE if interaction time between two Doves is short compared to some other interactions involving 

Doves. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Classic evolutionary game theoretical models in normal form

consider two players with a finite number of strategies and a pay-

off matrix. Players in a large (infinite) population meet at random,

interact pair-wise, and obtain their corresponding (individual) fit-

nesses. There are three important and somewhat hidden assump-

tions: (i) interaction times between two strategies are not consid-

ered, i.e., they are all assumed to be the same, (ii) the distribution

of strategy pairs corresponds to random pair formation among all

individuals and (iii) individual fitness accrues only through pair in-

teractions. These assumptions fit genetic population models with

two (or more) alleles at a single locus. In the genetic model, the

alleles pair randomly during meiosis and the resulting distribu-
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ion of genotypes is given by the Hardy–Weinberg equation. When

lone, alleles cannot gain any fitness. For many phenotypic models

e.g., the Hawk–Dove, or Prisoner’s dilemma), these assumptions

re likely not satisfied. For example, when two aggressive individ-

als are in a fight, their interaction can be much longer when com-

ared to the situation where one individual (a Dove) exits from an

nteraction with a Hawk (in which case the Hawk will win the con-

est). Because contests between different strategies can take differ-

nt times, the resulting equilibrium distribution of pairs does not

orrespond to the Hardy–Weinberg equation. 

K ̌rivan and Cressman (2017) showed that, when individuals pair

nstantaneously but the interaction times are strategy dependent,

he Hawk–Dove model may have a mixed ESS (i.e., an evolution-

rily stable state that consists of a mixture of Hawks and Doves)

hen the cost of a fight is lower than the value of the con-

ested resource. For this to happen, the interaction time between

wo Hawks must be long enough relative to interaction times be-

ween other strategies. Such an outcome is not possible in the

https://doi.org/10.1016/j.jtbi.2018.10.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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A  
lassic Hawk–Dove game that does not consider interaction times.

imilarly, for the repeated Prisoner’s dilemma, provided cooper-

tors stay together for enough rounds of the game while pairs

ith at least one defector disband quickly, cooperation does evolve

 K ̌rivan and Cressman, 2017 ). This situation arises naturally if play-

rs can choose whether to continue the game to the next round

ith the same opponent, since it is always better to play against

 cooperator than a defector in the Prisoner’s dilemma game (see

lso the opting-out game ( Zhang et al., 2016 )). 

Moreover, individuals can gain/lose fitness when alone (e.g.,

ndividuals with different strategies may have different mor-

alities). While the above games do not consider singles,

 ̌rivan et al. (2018) assumed that pairing between individuals is

ot immediate and being single has fitness consequences. They

howed that distributional dynamics alone can lead to density de-

endence in models (e.g., the Hawk–Dove model) that are only fre-

uency dependent when pairing is instantaneous and all interac-

ion times are the same. 

All the models considered above are based on symmetric games

in particular, matrix games), where the two contestants are as-

umed to be drawn from the same population and can differ only

n their choice of strategy. It is well known that various asymme-

ries ( Broom and Rychtář, 2013 ) in contestants lead to qualitatively

ifferent outcomes when interaction times are not considered. A

lass of asymmetric games, bimatrix games, where the two con-

estants are drawn from two different types of individuals (e.g.,

wo populations or two roles) was studied thoroughly in the litera-

ure (e.g., Broom and Rychtář, 2013; Cressman, 2003; Hofbauer and

igmund, 1998 ). A well-known result of classic evolutionary game

heory for these games is that no interior evolutionarily stable

trategy exists ( Selten, 1980 ) (i.e., no ESS where each population

s a mixture of pure strategies). Furthermore, bimatrix games may

ave an interior Nash equilibrium (NE) but it cannot be asymp-

otically stable under the (bimatrix) replicator equation, the stan-

ard game dynamics of evolutionary game theory ( Hofbauer and

igmund, 1998 ). In particular, ESSs and asymptotically stable equi-

ibria correspond to strict NEs of the bimatrix game (i.e., pure

trategy pairs where both players do strictly worse by unilaterally

hanging their strategy). 

Given the conceptual differences between the evolutionary out-

omes of classic matrix and bimatrix games, it is important to un-

erstand the consequences of strategy-dependent interaction times

y extending the analysis beyond the matrix games considered

y K ̌rivan and Cressman (2017) . To this end, in this article, we

tudy the effect of interaction time on the evolutionary outcome

f bimatrix games when both populations have two strategies. We

onsider two pair formation processes based on the assumption

hat the number of individuals of each population are the same.

n Section 2 , as existing pairs disband, these individuals instanta-

eously form new pairs randomly among themselves. From the an-

lytic expression of the equilibrium distribution of pairs at a given

umber of each strategy in both populations, we analyze the re-

ulting game (i.e., investigate its NEs and their stability) when in-

ividual fitness is defined as expected payoff per unit time. When

nteraction times are all the same, we recover the classic results.

therwise, more complicated evolutionary outcomes emerge such

s multiple interior NEs (some of which are stable and some un-

table) as well as strict NE that differ from the classic game.

hese possibilities are illustrated there by a thorough analysis of

he Owner–Intruder game ( Broom and Rychtář, 2013 ), the bimatrix

ersion of the Hawk–Dove game where individuals assume one of

he two roles, owner or intruder. 

In Section 3 , when pairs disband, the resulting singles form new

airs at random through the mass action principle with a finite en-

ounter rate. Since the analytic expression of the equilibrium dis-

ribution of pairs at a given number of each strategy in both pop-
lations is no longer tractable unless all interaction times are the

ame, we analyze the Owner–Intruder game, with unequal interac-

ion times, numerically. 

. Instantaneous pair formation 

We consider a bimatrix game with two strategies denoted by e i 
 i = 1 , 2 ) for the row player in population 1 and f j ( j = 1 , 2 ) for the

olumn player in population 2. The payoff bimatrix is 

[ f 1 f 2 

e 1 π e 
11 , π

f 
11 

π e 
12 , π

f 
12 

e 2 π e 
21 , π

f 
21 

π e 
22 , π

f 
22 

]
(1) 

where π e 
i j 

(respectively, π f 
i j 

) is the payoff to e i (respectively f j )

hen interacting with f j (respectively e i ). In contrast to classic evo-

utionary game theory, we explicitly incorporate the duration of in-

eractions into the game through the time interaction matrix 

[ f 1 f 2 

e 1 τ11 τ12 

e 2 τ21 τ22 

]
(2) 

where τ ij is the expected time two players using strategy e i and

 j stay together. 

In this section, we assume that, when pairs split, all these

ewly single individuals immediately form new pairs at random.

e are interested in the equilibrium distribution of strategy pairs

 e i , f j ) for given numbers of the different strategies. Let n ij be the

umber of strategy pair ( e i , f j ). As shown in Appendix A , pair dy-

amics are 

dn 11 

dt 
= −n 11 

τ11 

+ 

(
n 11 

τ11 
+ 

n 12 

τ12 

)(
n 11 

τ11 
+ 

n 21 

τ21 

)
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

dn 12 

dt 
= −n 12 

τ12 

+ 

(
n 11 

τ11 
+ 

n 12 

τ12 

)(
n 12 

τ12 
+ 

n 22 

τ22 

)
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

dn 21 

dt 
= −n 21 

τ21 

+ 

(
n 21 

τ21 
+ 

n 22 

τ22 

)(
n 11 

τ11 
+ 

n 21 

τ21 

)
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

dn 22 

dt 
= −n 22 

τ22 

+ 

(
n 21 

τ21 
+ 

n 22 

τ22 

)(
n 12 

τ12 
+ 

n 22 

τ22 

)
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

(3) 

nd the equilibrium distribution satisfies 

n i j 

τi j 

= 

(
n i 1 
τi 1 

+ 

n i 2 
τi 2 

)( n 1 j 
τ1 j 

+ 

n 2 j 
τ2 j 

)
(

n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

) for i, j = 1 , 2 . (4)

ntuitively, at equilibrium, the number of disbanding ( e i , f j ) pairs

er unit time (i.e., the left-hand side 
n i j 

τi j 
of (4) ) must equal the

umber of newly formed ( e i , f j ) pairs from the newly single e i 

trategists 

(
n i 1 
τi 1 

+ 

n i 2 
τi 2 

)
and f j strategists 

(
n 1 j 
τ1 j 

+ 

n 2 j 
τ2 j 

)
. 

We observe that at the equilibrium distribution, 
n i j 

τi j 
satisfy the

eneralized Hardy–Weinberg equation, i.e., 

n 11 

τ11 

n 22 

τ22 

= 

n 12 

τ12 

n 21 

τ21 

. (5) 

iven the number of e 1 and f 1 strategists ( N e 1 = n 11 + n 12 

nd N f 1 
= n 11 + n 21 , respectively) as well as the total num-

er of individuals N = n 11 + n 12 + n 21 + n 22 in either population,

ppendix A shows that the unique nonnegative solution to (4) and



264 R. Cressman, V. K ̌rivan / Journal of Theoretical Biology 460 (2019) 262–273 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

r  

t  

m  

i  

n  

i  

s  

g  

a

 

 

d  

(  

b

b  

t  

l  

p  

d  

t

 

t  

q  

b  

N  

m  

c  

o  

o  

t  

c  

N

 

m  

(  

�  

u  

f  

s

 

τ  

t  

w  

i

 

2 If ( e 1 , f 1 ) is a strict NE, it must also resist invasion by mutants in population 1 
(5) is (assuming τ 12 τ 21 � = τ 11 τ 22 ) 

n 11 = 

√ 

A + ( N e 1 + N f 1 )( τ12 τ21 − τ11 τ22 ) − N τ12 τ21 

2( τ12 τ21 − τ11 τ22 ) 
, 

n 12 = 

−
√ 

A + ( N e 1 − N f 1 )( τ12 τ21 − τ11 τ22 ) + N τ12 τ21 

2( τ12 τ21 − τ11 τ22 ) 
, 

n 21 = 

−
√ 

A − ( N e 1 − N f 1 )( τ12 τ21 − τ11 τ22 ) + N τ12 τ21 

2( τ12 τ21 − τ11 τ22 ) 
, 

n 22 = 

√ 

A − ( N e 1 + N f 1 )( τ12 τ21 − τ11 τ22 ) + N(τ12 τ21 − 2 τ11 τ22 ) 

2( τ12 τ21 − τ11 τ22 ) 
, 

(6)

where 

A = (Nτ12 τ21 − (N e 1 + N f 1 )(τ12 τ21 − τ11 τ22 )) 
2 

+ 4 N e 1 N f 1 τ11 τ22 ( τ12 τ21 − τ11 τ22 ) . (7)

When τ12 τ21 = τ11 τ22 the above distributional equilibrium cor-

responds to the standard Hardy–Weinberg distribution 

( n 11 , n 12 , n 21 , n 22 ) = 

(
N e 1 N f 1 

N 

, 
N e 1 N f 2 

N 

, 
N e 2 N f 1 

N 

, 
N e 2 N f 2 

N 

)
(8)

where N e 2 ≡ N − N e 1 and N f 2 
≡ N − N f 1 

. This is an important spe-

cial case since it includes the classic situation, i.e., all interaction

times are the same ( τ11 = τ12 = τ21 = τ22 ). 

2.1. Fitness and evolutionary outcomes 

Following K ̌rivan and Cressman (2017) , we define fitness as

the expected payoff that an individual of a given phenotype ob-

tains per unit of interaction time. For example, let us consider

an individual playing strategy e 1 in population 1. The probability

that this individual is paired with an individual playing strategy

f 1 is n 11 / (n 11 + n 12 ) and with an individual playing strategy f 2 is

n 12 / (n 11 + n 12 ) . When paired with an individual playing strategy f 1 ,

the focal individual receives payoff π e 
11 

/τ11 per unit of time. Simi-

larly, when paired with an individual playing strategy f 2 , the focal

individual gets payoff π e 
12 

/τ12 per unit of time. Thus, the focal in-

dividual has expected payoff (i.e., fitness) �e 1 given by the first

equation in (9) . The fitness for individuals playing e 2 and those in

the second population are calculated analogously, which leads to

( i, j = 1 , 2 ) 

�e i = 

n i 1 

n i 1 + n i 2 

π e 
i 1 

τi 1 

+ 

n i 2 

n i 1 + n i 2 

π e 
i 2 

τi 2 

� f j 
= 

n 1 j 

n 1 j + n 2 j 

π f 
1 j 

τ1 j 

+ 

n 2 j 

n 1 j + n 2 j 

π f 
2 j 

τ2 j 

. 

(9)

The corresponding time-constrained bimatrix game based on pay-

off bimatrix (1) and time interaction matrix (2) is then the two-

strategy game with payoffs given by the fitness functions (9) eval-

uated at the distributional equilibrium (6) for fixed size N of each

population. 1 

To analyze this time-constrained bimatrix game, we exam-

ine how its NE structure depends on model parameters. We

start by looking for NE in pure strategies (i.e., both populations

are monomorphic) before considering NE where both populations

are polymorphic (i.e., the interior NE later in this section) and

boundary NE (where exactly one population is polymorphic) in

Section 2.3 . Let us consider the equilibrium where all individu-

als of population 1 play strategy e 1 while all individuals of the
1 We will use the phrase “fitness functions” rather than “payoffs” for these time- 

constrained games from now on to avoid confusion with payoffs in (1) . 

t

t

i

p

econd population play strategy f 1 . Then n 11 = N and fitnesses of

esidents are �e 1 = 

π e 
11 

τ11 
and � f 1 

= 

π f 
11 

τ11 
. Now consider a mutant of

he first population playing strategy e 2 in the resident system. This

utant can pair only with f 1 −strategists in which case its fitness

s �e 2 = 

π e 
21 

τ21 
. Similarly, � f 2 

= 

π f 
12 

τ12 
. Thus, the strategy ( e 1 , f 1 ) can-

ot be invaded if 
π e 

21 
τ21 

< 

π e 
11 

τ11 
and 

π f 
12 

τ12 
< 

π f 
11 

τ11 
, in which case ( e 1 , f 1 )

s a strict NE. 2 Similar considerations for other pure strategy pairs

how that a strategy ( e i , f j ) is a strict NE for the fitness functions

iven in (9) if it is a strict NE of the classic game given by a time-

djusted payoff bimatrix 

[ 

f 1 f 2 

e 1 
π e 

11 

τ11 
, 

π f 
11 

τ11 

π e 
12 

τ12 
, 

π f 
12 

τ12 

e 2 
π e 

21 

τ21 
, 

π f 
21 

τ21 

π e 
22 

τ22 
, 

π f 
22 

τ22 

] 

. (10)

We remark that the inequality conditions for a strict NE are in-

ependent of population size. Furthermore, the fitness functions

9) when the populations are not monomorphic are convex com-

inations of the appropriate entries in the time-adjusted payoff

imatrix (e.g., �e 1 = α
π e 

11 
τ11 

+ (1 − α) 
π e 

12 
τ12 

for some 0 ≤α ≤ 1). It is

he same for the classic bimatrix game except that for us α is no

onger a linear function of the strategy frequencies of the other

opulation since the distributional equilibrium is not the stan-

ard Hardy–Weinberg distribution. In fact, α depends on popula-

ion size N as well. 

A strict NE can be pictured as corresponding to a particular ver-

ex of the unit square (cf. Fig. 2 with the axes scaled to be fre-

uencies of the first strategy in each population instead of num-

ers and with vertices given as solid dots corresponding to strict

E). It is well-known (see Figs. 10.1, 10.2, 11.1 in Hofbauer and Sig-

und, 1998 , or Figs. 3.3.1, 3.3.2, 3.3.3 in Cressman, 2003 ) that a

lassic two-strategy bimatrix game may have no strict NE, exactly

ne strict NE (e.g., Fig. 2 A), or exactly two strict NE that are diag-

nally opposite each other (e.g., Fig. 2 E). Furthermore, the classic

wo-strategy bimatrix game (with nondegenerate payoff bimatrix)

an be classified by its strict NE and its interior NE (i.e., its unique

E where both populations are polymorphic) if it exists. 

By examining interior NE, we will see this classification

ethod fails for two-strategy time-constrained bimatrix games

see Section 2.2 ). These equilibria must satisfy �e 1 = �e 2 and

f 1 
= � f 2 

so that neither phenotype can increase its payoff by

nilaterally switching its strategy. Unfortunately, obtaining analytic

ormulas for interior NE seems to be out of reach except in two

pecial cases. 

One special case is when interaction times satisfy τ12 τ21 =
11 τ22 . Then the payoffs (9) evaluated at the equilibrium distribu-

ion (8) are the same as the payoffs for the classic bimatrix game

ith payoff matrix given by the time adjusted payoff matrix (10) ,

.e., 

�e i = 

N f 1 

N 

π e 
i 1 

τi 1 

+ 

N f 2 

N 

π e 
i 2 

τi 2 

� f j 
= 

N e 1 

N 

π f 
1 j 

τ1 j 

+ 

N e 2 

N 

π f 
2 j 

τ2 j 

, 

(11)
hat use any other strategy (including a mixed strategy) besides e 1 . However, since 

he fitness of the focal mutant is linear in the components of its mixed strategy, it 

s enough to verify ( e 1 , f 1 ) cannot be invaded by the pure strategy e 2 (and by f 2 in 

opulation 2). 
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here i, j = 1 , 2 , and the interior NE simplifies to 

(N e 1 , N f 1 ) = 

(
N τ12 ( π

f 
22 

τ21 − π f 
21 

τ22 ) 

τ22 ( π
f 

11 
τ22 − π f 

12 
τ21 ) + τ12 ( π

f 
22 

τ21 − π f 
21 

τ22 ) 
, 

N τ21 ( π
e 
22 τ12 − π e 

12 τ22 ) 

τ22 ( π e 
11 
τ22 − π e 

12 
τ21 ) + τ12 ( π e 

22 
τ21 − π e 

21 
τ22 ) 

) (12) 

henever both components are strictly between 0 and N . In fact,

his is the interior NE of the classic bimatrix game with time-

djusted bimatrix (10) . 

The other special case is interior symmetric NE (i.e., those

n the main diagonal where N e 1 = N f 1 
) for role-independent time

onstrained bimatrix games. As discussed in Section 2.2 , there are

p to two such diagonal interior symmetric NE and the formulas

or these are given in K ̌rivan and Cressman (2017) . 

To find interior NE in the general case, we can instead consider

he replicator equation at fixed population size N . This dynamics is

iven by 3 

dN e 1 

dt 
= 

N e 1 (N − N e 1 ) 

N 

(�e 1 (N e 1 , N f 1 ) − �e 2 (N e 1 , N f 1 )) 

dN f 1 

dt 
= 

N f 1 (N − N f 1 ) 

N 

(� f 1 (N e 1 , N f 1 ) − � f 2 (N e 1 , N f 1 )) 

(13) 

here �e i (N e 1 , N f 1 
) and � f i 

(N e 1 , N f 1 
) are fitnesses (9) evaluated at

he equilibrium distribution (6) for a given (N e 1 , N f 1 
) . Rest points

f the replicator equation with N e 1 and N f 1 
strictly between 0 and

 are the interior NE of the underlying game ( Hofbauer and Sig-

und, 1998 ). Moreover, when all τi j = τ are equal, the dynamics

13) is the replicator equation of the classic bimatrix game (up to

he factor τ that only affects the speed along trajectories and not

he evolutionary outcome). 

Through the Owner-Intruder game with time-constraints, we il-

ustrate the two special cases mentioned above (i.e., either τ12 τ21 =
11 τ22 or interior symmetric NE) as well as the replicator method

or the general case. 

.2. Owner–Intruder game 

The classic owner intruder game ( Broom and Rychtář, 2013;

ressman, 2003; Hofbauer and Sigmund, 1998; Maynard Smith,

982 ) is the two-role extension of the symmetric Hawk–Dove

ame (i.e., matrix game) that models the situation in which an in-

ividual either owns a site or is an intruder trying to seize a site.

n individual can either be a Hawk (strategy e 1 if owner and f 1 
f intruder) or a Dove (strategy e 2 if owner and f 2 if intruder) in

ither of the two roles. The payoff bimatrix of the game is 

[Owner \ Intruder Hawk Dove 

Hawk 
V −C 

2 
, V −C 

2 
V, 0 

Dove 0 , V 

V 
2 
, V 

2 

]
where V (the value attached to the site) and C (the cost of fight-

ng) are positive. It is an example of a role-independent bimatrix

ame since an individual’s payoff depends only on the strategies

sed in the interaction and not on whether the individual is the
4 
wner or the intruder. 

3 Replicator dynamics at fixed population size assume that frequencies of 

 1 strategists p 1 are described by 
dp 1 
dt 

= p 1 (1 − p 1 )(�e 1 (N e 1 , N f 1 ) − �e 2 (N e 1 , N f 1 )) 

 Hofbauer and Sigmund, 1998 ). Because N e 1 = p 1 N and the overall size N of pop- 

lation 1 is assumed to be fixed, we obtain 
dN e 1 

dt 
= 

dp 1 
dt 

N which yields the first 

quation in (13) . 
4 Broom and Rychtář (2013) refer to role independence as an “uncorrelated asym- 

etry” (see also the role games of Hofbauer and Sigmund (1998) ). Mathematically, 

ole independence is equivalent to the second payoff entries in the bimatrix form- 

ng the transpose of the matrix of first entries. It is assumed that the pure strategy 

s

t

s

s

n

s

When the cost of fighting is low ( C < V ), the classic game has

 single NE (e 1 , f 1 ) = (H, H) where individuals in both positions

ehave as hawks. When the cost of fighting is high ( C > V ) there

re two strict NE (e 2 , f 1 ) = (D, H) and (e 1 , f 2 ) = (H, D ) as well as

 mixed NE (p 1 , q 1 ) = (V /C, V /C) , where Hawk strategy is played

ith probability V / C in both roles. This mixed NE cannot be a (two-

pecies) ESS, because bimatrix games can have ESSs only in pure

trategies ( Selten, 1980 ). 5 

For the time-constrained bimatrix game, we first analyze its

trict NE through the following time-adjusted bimatrix (cf. (10) ) 

[Owner \ Intruder Hawk Dove 

Hawk 
V −C 
2 τ11 

, V −C 
2 τ11 

V 
τ12 

, 0 

Dove 0 , V 
τ21 

V 
2 τ22 

, V 
2 τ22 

]
. 

he following list contains all strict NE of the time-constrained

wner–Intruder game ( Fig. 1 ). After each item in this list, the pan-

ls in Fig. 2 that have this strict NE are indicated in parentheses. 

• If V > C , then strategy ( H, H ) is a NE (e.g., Fig. 2 A–D). 
• If τ 12 > 2 τ 22 and τ 21 > 2 τ 22 , then strategy ( D, D ) is a NE (e.g.,

Fig. 2 B, F, G, H). 
• If V < C and τ 12 < 2 τ 22 , then strategy ( H, D ) is a NE (e.g., Fig. 2 E,

J). 
• If V < C and τ 21 < 2 τ 22 , then strategy ( D, H ) is a NE (e.g., Fig. 2 E,

I). 

ependence of strict NEs as a function of model parameters are

hown in Fig. 1 . There is at least one strict NE for all parameter val-

es except in the degenerate situations where V = C, τ12 = 2 τ22 , or

21 = 2 τ22 (these are the dashed lines in Fig. 1 ) that are discussed

n Section 2.3 . 

Of particular note is that, although strategy pair (Dove, Dove) is

ever an ESS (i.e. a strict NE) for the classic Owner–Intruder game

since Dove is never an ESS for the Hawk–Dove matrix game), this

air is a strict NE when 2 τ 22 < min { τ 12 , τ 21 }. This analysis shows

hat when compared with the classical model, the model that con-

iders duration of interactions can have strategy ( D, D ) as a NE pro-

ided the interaction time between Doves is small. 

In the special case where interaction times satisfy τ12 τ21 =
11 τ22 , the interior NE (provided it exists) is given by (12) as 

(N e 1 , N f 1 ) = 

(
Nτ12 V (τ21 − 2 τ22 ) 

τ 2 
22 

(V − C) + τ12 V (τ21 − 2 τ22 ) 
, 

Nτ21 V (τ12 − 2 τ22 ) 

(V − C) τ 2 
22 

+ τ21 V (τ12 − 2 τ22 ) 

)
. 

e observe that when all interaction times are the same, the inte-

ior equilibrium is (N e 1 , N f 1 
) = ( NV /C, NV /C) exactly as in the clas-

ical Owner–Intruder game. 

To investigate interior NE further for the Owner–Intruder game,

tness functions (9) are now 

�e 1 = 

n 11 (V − C) 

2 τ11 (n 11 + n 12 ) 
+ 

n 12 V 

τ12 (n 11 + n 12 ) 
, 

�e 2 = 

n 22 V 

2 τ22 (n 21 + n 22 ) 
, 

� f 1 = 

n 11 (V − C) 

2 τ11 (n 11 + n 21 ) 
+ 

n 21 V 

τ21 (n 11 + n 21 ) 
, 

� f 2 = 

n 22 V 

2 τ22 (n 12 + n 22 ) 
. 

(14) 
ets for both roles are the same as well as the ordering of their elements. Typically, 

he strategies are given the same name in both roles (e.g., Hawk and Dove) and the 

ame order. Every role-independent bimatrix game is the two-role extension of a 

ymmetric matrix game and has NE where both populations use the same strategy; 

amely, a NE of the matrix game. In addition, there may be other NE. 
5 In fact, a strategy pair is an ESS for a classic bimatrix game if and only if it is a 

trict NE. 
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Fig. 1. Strict NE of the Owner–Intruder game as functions of V and 2 τ 22 parameters. Panel A assumes that τ 21 < τ 12 and panel B assumes the opposite inequality. 
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7 From extensive simulations of the replicator equation, it seems likely that any 

interior symmetric NE of two-strategy role-independent time-constrained bimatrix 

games are always saddles but we have no proof of this conjecture. In the special 

case where τ12 τ21 = τ11 τ22 (and τ12 = τ21 ), interior symmetric NE are saddles since, 
Evaluating these at the equilibrium distribution (6) yields 

�e 1 = 

( Cτ12 + ( 2 τ11 − τ12 ) V ) 
(√ 

A − Nτ12 τ21 

)
4 N e 1 τ11 τ12 ( τ11 τ22 − τ12 τ21 ) 

+ 

τ12 ( V − C ) 
(
N e 1 + N f 1 

)
+ 2 τ11 V 

(
N e 1 − N f 1 

)
4 N e 1 τ11 τ12 

�e 2 = −
V 
(√ 

A + N ( τ12 τ21 − 2 τ11 τ22 ) −
(
N e 1 + N f 1 

)
( τ12 τ21 − τ11 τ22 ) 

)
4 τ22 ( N − N e 1 ) ( τ11 τ22 − τ12 τ21 ) 

� f 1 = −
√ 

A ( Cτ21 + ( 2 τ11 − τ21 ) V ) 

4 N f 1 τ11 τ21 ( τ12 τ21 − τ11 τ22 ) 
+ 

Nτ12 ( Cτ21 + 2 τ11 V − τ21 V ) 

4 N f 1 τ11 ( τ12 τ21 − τ11 τ22 ) 

− ( C − V ) 
(
N e 1 + N f 1 

)
4 N f 1 τ11 

+ 

2 τ11 V 
(
N f 1 − N e 1 

)
4 N f 1 τ11 τ21 

� f 2 = −
V 
(√ 

A + N ( τ12 τ21 − 2 τ11 τ22 ) −
(
N e 1 + N f 1 

)
( τ12 τ21 − τ11 τ22 ) 

)
4 τ22 

(
N − N f 1 

)
( τ11 τ22 − τ12 τ21 ) 

, 

where A is given in (7) . To find interior NE, we need to solve �e 1 =
�e 2 and � f 1 = � f 2 . 

Two-strategy, bimatrix games that are role-independent have

role-independent interaction times if and only if τ12 = τ21 (i.e., the

length of Hawk–Dove interactions does not depend on whether

the Hawk is the owner or the intruder). 6 Symmetric NE of the

role-independent time-constrained Owner–Intruder game are then

those of the time-constrained Hawk–Dove matrix game, which are

found analytically in K ̌rivan and Cressman (2017) using Solve
command of Mathematica 11. 

Since attempts to use this method to find interior NE when the

time-constrained bimatrix game was not role-independent or in-

teraction times did not satisfy τ12 τ21 = τ11 τ22 failed, we now ana-

lyze the NE of the Owner–Intruder game numerically through the

replicator equation, focusing on the cases where V > C and V < C

separately. 

First, assume that V > C ( Fig. 2 , panels A–D). Then ( H, H ) is

always a strict NE. When the time-constrained Owner–Intruder

game is role-independent, the replicator equation is invariant along

the main diagonal of the unit square and its trajectories in the unit

square are reflections in the main diagonal ( Fig. 2 A,B,C). Further-

more, on the diagonal, the dynamics (13) restricts to the replicator

equation for the time-constrained Hawk–Dove matrix game, which

was analyzed by K ̌rivan and Cressman (2017) . They showed that,

when interaction times between two Hawks are long enough (and

all other interaction times are the same), there exist two (symmet-

ric) interior NEs and the one with fewer Hawks is locally asymp-

totically stable while the other one is unstable. However, numeri-
6 We call a multi-strategy time-constrained bimatrix game “role-independent” if 

both its payoff bimatrix and its time interaction matrix are role-independent. This 

last requirement is equivalent to the time interaction matrix being symmetric (i.e., 

τi j = τ ji for all i, j ). 

f

u

e

r

(

s

al simulations (e.g., Fig. 2 C) show that both interior symmetric NE

i.e., those gray points that are on the main diagonal) are saddles

i.e., unstable) for the bimatrix replicator dynamics. 7 

Simulations of the replicator equation for the role-independent

ime-constrained Owner–Intruder game with V > C show that long

nteraction times between Hawks now lead to two new asymmet-

ic interior NE (i.e., those off the main diagonal shown as black

nterior dots in Fig. 2 C). Numerical simulations suggest that these

wo equilibria are neutrally stable as they appear to be surrounded

y a family of closed trajectories. The domain of the phase space

lled by these closed curves is separated from the rest by two het-

roclinic orbits that join the two symmetric NE. In particular, the

ymmetric strict NE ( H, H ) where all individuals play Hawk is not

lobally asymptotically stable. 

The neutral stability of the asymmetric NE disappears when the

ime interaction matrix is role dependent. For example, it is rea-

onable to assume that interaction time between intruding Hawk

nd owning Dove is longer than that between intruding Dove and

wning Hawk (i.e., τ 21 > τ 12 ) because an owning Dove tries to de-

end its site against attacking Hawk. This role-dependent interac-

ion time makes one of the two interior asymmetric NE unstable

hile the other becomes locally asymptotically stable ( Fig. 2 D). 

Now assume that V < C ( Fig. 2 , panels E–K). Hawk is no longer

n ESS for the classic Hawk–Dove game and the only NE is the in-

erior ESS where the population plays Hawk with probability V 
C . On

he other hand, the classic Owner–Intruder game has two strict NE

 H, D ) and ( D, H ) 8 and the unstable interior NE where both popula-

ions plays Hawk with probability V 
C . This corresponds to the time-

onstrained game with all interaction times equal ( Fig. 2 E). When

awk–Dove interactions are sufficiently long compared to Dove–

ove interactions (specifically, τ 21 > 2 τ 22 and τ 12 > 2 τ 22 ), then ( D,

 ) is the only NE ( Fig. 2 F). With a lower cost ( Fig. 2 G), two sym-

etric interior NE appear (they are both saddles) along with two

eutrally stable asymmetric interior NE that are surrounded by

 family of closed trajectories. Furthermore, a small perturbation

f these NE by introducing a slight role dependence in interac-

ion times makes one of them locally asymptotically stable and
rom (11) , �e 1 (and � f 1 ) depends only on the strategy frequency of the other pop- 

lation, implying that the Jacobian of replicator dynamics (13) evaluated at interior 

quilibrium (12) has zeros on the main diagonal. This extends the same well-known 

esult for classic role-independent bimatrix games ( Hofbauer and Sigmund, 1998 ). 
8 The second strict NE is often called the “paradoxical ESS”

 Maynard Smith, 1982 ) since it corresponds to the intruder always taking over the 

ite and becoming the owner. 
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1 
he other unstable (panel H). Larger differences for role dependent

nteraction times (panels I and J respectively) eliminate interior

E altogether and make the paradoxical ESS ( D, H ) (respectively,

 H, D )) globally asymptotically stable. Panel K is a degenerate case

here τ12 = τ21 = 2 τ22 and so has boundary NE as discussed in the

ollowing section. 

Finally , panel L assumes V = C = 1 , τ11 = 3 and all other inter-

ction times are 1. This parametrization corresponds to the situa-

ion where sets of the NE along the boundary of square [0, N ] × [0,

 ] exist. As calculated in the following section, the sets of NE are

 ≤ N e 1 < 

3 
4 N when N f 1 

= N and 0 ≤ N f 1 
< 

3 
4 N when N e 1 = N. 

.3. Boundary NE 

The previous two sections analyzed the strict NE and interior

E for two-strategy time-constrained bimatrix games. These games

ay also have NE on an edge of the square that are not at a ver-

ex (i.e., partially mixed NE where only one of the two populations

s polymorphic). For example, suppose that population 1 is poly-

orphic and population 2 is monomorphic at pure strategy f 1 , i.e.,

 f 1 
= N. Then, at a NE on this edge, the fitnesses of both strategies

f population 1 must be equal, i.e., �e 1 = �e 2 . Since n 12 = n 22 = 0 ,

e 1 = 

π e 
11 

τ11 
and �e 2 = 

π e 
21 

τ21 
from (9) . 9 In this degenerate case where

π e 
11 

τ11 
= 

π e 
21 

τ21 
, a point along the edge N f 1 

= N is a NE if and only if

f 1 
≥ � f 2 

. Since n 21 = N e 2 , n 11 = N e 1 and N = N e 1 + N e 2 , 

f 1 = 

N e 1 

N 

π f 
11 

τ11 

+ 

N e 2 

N 

π f 
21 

τ21 

. (15) 

n the other hand, the invasion fitness of strategy f 2 when there

re no individuals playing this strategy is (see Appendix B ) 

f 2 = 

N e 1 π
f 

12 
τ21 + N e 2 π

f 
22 

τ11 

N τ11 τ22 + N e 1 ( τ12 τ21 − τ11 τ22 ) 
. (16) 

olving � f 1 
= � f 2 

gives us, in general, up to two roots for N e 1 sat-

sfying 0 ≤ N e 1 ≤ N. These roots divide the edge into closed subin-

ervals, on each of which � f 1 
− � f 2 

does not change sign. Each

uch subinterval with this difference nonnegative is then a con-

ected set of NE. 10 However, since each point on this edge is a rest

oint of the replicator equation, none can be asymptotically stable

nder this dynamics. 

For the Owner–Intruder game, boundary NE emerge on the

op edge of the square [0, N ] × [0, N ] where N f 1 
= N when V = C

ince 
π e 

11 
τ11 

= 

π e 
21 

τ21 
= 0 along this edge. By evaluating when � f 1 

≥ � f 2 

long this edge, we find the following three cases for sets of NE of

he form (N e 1 , N) : 

1. τ 11 ≤ 2 τ 12 and τ 21 < 2 τ 22 and 0 ≤ N e 1 ≤ N

2. τ 11 > 2 τ 12 and τ 21 < 2 τ 22 and 0 ≤ N e 1 ≤
N τ11 ( τ21 −2 τ22 ) 

2( τ12 τ21 −τ11 τ22 ) 

3. τ 11 < 2 τ 12 and τ 21 ≥ 2 τ 22 and 

Nτ11 (τ21 −2 τ22 ) 
2(τ12 τ21 −τ11 τ22 ) 

≤ N e 1 ≤ N. 

Similarly, let us consider the right edge of the square where

ll individuals of the first species play strategy Hawk, i.e., N e 1 = N.

hen V = C, this leads to the following sets of NE for the Owner–

ntruder game: 

1. τ 11 ≤ 2 τ 21 and τ 12 < 2 τ 22 and 0 ≤ N f 1 
≤ N

2. τ 11 > 2 τ 21 and τ 12 < 2 τ 22 and 0 ≤ N f 1 
≤ N τ11 ( τ12 −2 τ22 ) 

2( τ12 τ21 −τ11 τ22 ) 

3. τ < 2 τ and τ > 2 τ and 

Nτ11 (τ12 −2 τ22 ) ≤ N ≤ N. 
11 21 12 22 2(τ12 τ21 −τ11 τ22 ) f 1 

9 In classic two-strategy bimatrix games, the pure strategy pair ( e 1 , f 1 ) may be 

 NE in this situation but not a strict NE. We have ignored this degenerate case in 

he classification of pure strategy NE in Sections 2.1 and 2.2 of our time-constrained 

imatrix game through (10) above. 
10 In classical games, this set is called a NE component ( Cressman, 2003 ). 

n

n

B

m

b

s

These sets of NE on the boundary are illustrated in Fig. 2 L

or the role-independent time-constrained Owner–Intruder game 

ith V = C. From K ̌rivan and Cressman (2017) the interior NE in

his figure appears for τ11 > τ (3 − C/V + 2 
√ 

1 − C/V ) = 2 τ (assum-

ng τ12 = τ22 = τ ). In this case the NEs on the edges form two dis-

onnected components. Since τ12 = τ21 , the NE component on the

pper edge is then the reflection in the main diagonal of the com-

onent on the right-hand edge. 

We note that sets of NE also appear ( Fig. 2 K) on the lower (re-

pectively, left-hand) edges of the square when τ12 = 2 τ22 (respec-

ively, τ21 = 2 τ22 ). By other choices of interaction time τ 11 we can

lso get disconnected components along these edges. 

. Non instantaneous pair formation 

So far we have assumed that pair formation is instantaneous,

.e., there are no singles. This assumption is natural in popula-

ion genetics, where alleles exist as singles only during meiosis

ut otherwise they are always paired in diploid individuals. How-

ver, since it may be more realistic in general to assume that it

akes some time for singles to form pairs, we consider both singles

nd paired individuals in this section. We also assume that, when

 pair disbands, these new singles are ready immediately to start

earching for new partners with encounter rate λ and new pairs

re formed by random encounters between one single from each

opulation. 11 

The number of singles of the two strategies for population 1 are

enoted by n e i for i = 1 , 2 and for population 2 by n f j for j = 1 , 2 .

hen 

N e i = n e i + n i 1 + n i 2 

N f j 
= n f j 

+ n 1 j + n 2 j 

(17) 

re the total number of individuals playing a given strategy. We

ontinue to assume that the total number of individuals in each

opulation is N (i.e., N e 1 + N e 2 = N = N f 1 
+ N f 2 

). 

Distributional dynamics of singles and pairs when pair forma-

ion is described by the mass action law are then 

dn e 1 

dt 
= −λn e 1 (n f 1 + n f 2 ) + 

n 11 

τ11 

+ 

n 12 

τ12 

dn e 2 

dt 
= −λn e 2 (n f 1 + n f 2 ) + 

n 21 

τ21 

+ 

n 22 

τ22 

dn f 1 

dt 
= −λn f 1 (n e 1 + n e 2 ) + 

n 11 

τ11 

+ 

n 21 

τ21 

dn f 2 

dt 
= −λn f 2 (n e 1 + n e 2 ) + 

n 12 

τ12 

+ 

n 22 

τ22 

dn 11 

dt 
= λn e 1 n f 1 −

n 11 

τ11 

dn 12 

dt 
= λn e 1 n f 2 −

n 12 

τ12 

dn 21 

dt 
= λn e 2 n f 1 −

n 21 

τ21 

dn 22 

dt 
= λn e 2 n f 2 −

n 22 

τ22 

. 

(18) 

ppendix C shows that (18) has a unique distributional equilibrium

or a fixed N and given N e 1 and N f . 
11 These last assumptions rule out applying the methods to bimatrix games where 

ewly single individuals may wait after disbanding before they are ready to form 

ew pairs. For example, in the model for parental care of offspring known as the 

attle of the Sexes ( Dawkins, 1976 ), when fast females mate with philandering 

ales to produce offspring, it is assumed that the male immediately deserts and 

egins searching for a new mate whereas the female remains and cares for the off- 

pring for a certain amount of time before searching for a new mate. 
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Assuming that singles do not get any payoffs, the fitnesses (i.e.,

the expected payoff to an individual per unit time) of the four

strategies evaluated at the unique equilibrium of (18) are ( i, j =
1 , 2 ) 

�e i = 

n i 1 

N e i 

π e 
i 1 

τi 1 

+ 

n i 2 

N e i 

π e 
i 2 

τi 2 

, 

� f j 
= 

n 1 j 

N f j 

π f 
1 j 

τ1 j 

+ 

n 2 j 

N f j 

π f 
2 j 

τ2 j 

. 

(19)

These fitness functions depend on N , N e 1 and N f 1 
. Since, at the

unique distributional equilibrium of (18) , 

n i j = λn e i n f i 
τi j , i, j = 1 , 2 (20)

fitnesses (19) simplify to ( i, j = 1 , 2 ) 

�e i = 

λ( n f 1 π
e 
i 1 

+ n f 2 π
e 
i 2 
) 

λn f 1 τi 1 + λn f 2 τi 2 + 1 

, 

� f j 
= 

λ( n e 1 π
f 

1 j 
+ n e 2 π

f 
2 j 

) 

λn e 1 τ1 j + λn e 2 τ2 j + 1 

. 

(21)

The time-constrained bimatrix game with non instantaneous

pair formation based on payoff bimatrix (1) and time interaction

matrix (2) is then the two-strategy game with payoffs given by the

fitness functions (21) evaluated at the distributional equilibrium of

(18) for fixed size N of each population and encounter rate λ. As

in Section 2 , we are interested in the NE of this game and its evo-

lutionary outcome. 

3.1. Classic bimatrix game with non instantaneous pair formation 

The classic model implicitly assumes all interaction times are

equal (i.e., τi j = τ for all i, j = 1 , 2 ). However, since the classic

model also assumes that individuals are always interacting (i.e., al-

ways in pairs), the question arises whether the classic predictions

remain valid when pair formation requires time. This section ex-

amines the question. 

The equilibrium distribution of (18) is 

n e i = 

N e i 

N 

(√ 

4 λNτ + 1 − 1 

)
2 λNτ

n f j 
= 

N f j 

N 

(√ 

4 λNτ + 1 − 1 

)
2 λNτ

. 

Substituting these expressions to (21) leads to 

�e i = 

4 Nλ

(1 + 

√ 

1 + 4 λτN ) 2 

(
π e 

i 1 

N f 1 

N 

+ π e 
i 2 

N f 2 

N 

)
, 

� f j 
= 

4 Nλ

(1 + 

√ 

1 + 4 λτN ) 2 

(
π f 

1 j 

N e 1 

N 

+ π f 
2 j 

N e 2 

N 

)
. 

(22)

Thus, up to the positive factor 4 Nλ
(1+ √ 

1+4 λτN ) 2 
, these are the payoffs

of the classic bimatrix game with payoff matrix (1) . From this it

follows that the NE of the classic bimatrix game with non instanta-

neous pair formation is the same as the the classic bimatrix game

and, moreover, the trajectories of the replicator equation are the

same (up to the speed along the trajectory). Thus, the two games

have the same evolutionary outcomes. 

To rephrase, standard evolutionary game theory models of bi-

matrix games can explicitly incorporate time constraints with-

out affecting the game-theoretic analysis as long as all interaction

times are the same. It is then irrelevant whether pair formation is

instantaneous or requires some time. 
.2. Evolutionary outcomes with non instantaneous pair formation 

As we saw in Section 2 , evolutionary outcomes of time-

onstrained bimatrix games with instantaneous pair formation de-

end heavily on pair interaction times when these are not all

he same (e.g., Fig. 2 ). This section analyzes the same phenomena

hen pair formation is not instantaneous. 

We start by characterizing the strict NE of these games. From

21) , at strategy pair ( e 1 , f 1 ), 

e 1 = 

λn f 1 π
e 
11 

λn f 1 τ11 + 1 

, � f 1 = 

λn e 1 π
f 

11 

λn e 1 τ11 + 1 

, 

ince n e 2 = n f 2 = 0 . Note that the fitness �e 1 ( � f 1 
) does not de-

end on distributional equilibrium of population 1 (2). Thus, the

nvasion fitnesses of strategy e 2 and f 2 are 

e 2 = 

λn f 1 π
e 
21 

λn f 1 τ21 + 1 

nd 

f 2 = 

λn e 1 π
f 

12 

λn e 1 τ12 + 1 

s given in (21) with n e 2 = n f 2 = 0 . Furthermore, at this strat-

gy pair, N = n e 1 + n 11 = n e 1 + λn e 1 n f 1 τ11 = n f 1 + n 11 . Thus, n e 1 =
 f 1 

and so N = λτ11 n 
2 
e 1 

+ n e 1 and 

 e 1 = 

−1 + 

√ 

1 + 4 Nλτ11 

2 λτ11 

= n f 1 . 

trategy pair ( e 1 , f 1 ) is a strict NE provided �e 1 > �e 2 and � f 1 
>

f 2 
, i.e., 

π e 
11 

τ11 ( 
√ 

4 λNτ11 + 1 + 1) 
> 

π e 
21 

τ21 

(√ 

4 λNτ11 + 1 − 1 

)
+ 2 τ11 

π f 
11 

τ11 ( 
√ 

4 λNτ11 + 1 + 1 

> 

π f 
12 

τ12 

(√ 

4 λNτ11 + 1 − 1 

)
+ 2 τ11 

. 

(23)

imilarly, we can obtain conditions for other strict NE. Contrary to

he case of instantaneous pairing where these conditions are given

y the adjusted payoff matrix (10) , we cannot write these condi-

ions in a similar form when pairing is non-instantaneous. This is

een from expressions (23) , where the invasion fitness for strategy

 2 ( f 2 ) depends not only on interaction time τ 21 ( τ 12 ), but also on

nteraction time τ 11 . 

As λ increases to infinity, payoff �e 1 ( � f 1 
) converges to π e 

11 
/τ11 

 π f 
11 

/τ11 ) and invasion fitness �e 2 ( � f 2 
) converges to π e 

21 
/τ21 

 π f 
12 

/τ12 ). Thus, when the encounter rate of singles is large, the

trict NE of the time-constrained bimatrix game with non instan-

aneous pair formation are the same as the strict NE of the time-

onstrained bimatrix game of Section 2 (i.e., with instantaneous

air formation). In fact, for large λ, the interior NE match as well

ince there are essentially no singles in the system. 

The next section illustrates these general results for the Owner–

ntruder game. 

.3. The Owner–Intruder game with non instantaneous pair 

ormation 

When all interaction times equal to τ as in Section 3.1 , there is

n interior NE if and only if V < C . As a function of λ and τ , it is
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12 In Section 3 , this includes the distribution of pairs and singles. 
13 The difficulty of doing such an analysis can be appreciated by considering the 

complete analysis for the two-locus two-allele viability selection model of popula- 

tion genetics. Pontz et al. (2018) show that this two-dimensional dynamics on the 

unit square has at least 192 different phase portraits. We feel our model will have 

a comparable (or even higher) number of different cases. 
14 The same result occurs for the bimatrix version of the Prisoner’s Dilemma game 

where both players Defect at the evolutionary outcome even though they would be 

better off if both Cooperate. 
iven by 

n e 1 = n f 1 = 

V (−1 + 

√ 

1 + 4 λNτ ) 

2 Cλτ

n e 2 = n f 2 = 

(C − V )(−1 + 

√ 

4 λNτ ) 

2 Cλτ

N e 1 = N f 1 = 

NV 

C 
, 

(24) 

hich is the classic result for the case when V < C . 

However, for a general time interaction matrix, an analytic ex-

ression for the interior NE is not available. Our recourse is to ap-

ly the replicator equation (13) with payoffs (21) when pairing is

on-instantaneous. On contrary to the case of instantaneous pair-

ng, we cannot now express the distributional equilibrium at the

urrent strategy numbers explicitly. Thus, we have to solve replica-

or equation (13) together with the system of algebraic equations

N e 1 = n e 1 (1 + λn f 1 τ11 + λn f 2 τ12 ) 

N f 1 = n f 1 (1 + λn e 1 τ11 + λn e 2 τ21 ) . 
(25) 

his is a semi-explicit index 1 differential-algebraic equation

 Ascher and Petzold, 1998 ) that we solve numerically using Math-

matica 11. 

Fig. 3 shows the results for two encounter rates. Panels A–H use

he same parameter values (i.e., V, C, τ ij ) as corresponding panels

n Fig. 2 . For the role-independent time-constrained cases (pan-

ls A–C, E–G), trajectories remain reflections of each other with

espect to the main diagonal. We see that for large enough en-

ounter rate ( λ = 10 in panels A–H) the strict NE still match those

f Section 2 . However, there are differences in stability of inte-

ior NE between Figs. 2 and 3 . The neutral stability of the two

ff-diagonal equilibria in Fig. 2 C and G is lost and the two equi-

ibria become unstable. Fig. 3 C and G show two trajectories that

tart close to the two equilibria and that converge to equilibrium

(N e 1 , N f 1 
) = (100 , 100) and (N e 1 , N f 1 

) = (0 , 0) , respectively. Panels

’, D’, G’, and H’ show numerical simulations for yet smaller en-

ounter rate ( λ = 1 ). We observe that this leads to disappearance

f interior NE in panels C’ and D’, and to destabilization of the

nterior stable NE in panel H that is replaced by a locally stable

imit cycle in panel H’. These numerical simulations, for the pa-

ameter values used, show that small and intermediate encounter

ates make coexistence of both strategies in polymorphic state less

ikely. 

. Discussion 

This article extends to two-strategy bimatrix games the new

pproach to evolutionary game theory developed by K ̌rivan and

ressman (2017) for two-player, two-strategy, symmetric normal

orm games (i.e., matrix games) that incorporates the effect pair

nteraction times that depend on the players’ strategies have on

he evolutionary outcome. Evolutionary game theory applied to bi-

atrix games is based on two populations (or two roles) where

ndividuals interact in pairs, one from each population. Classical

imatrix games, similarly to matrix games, assume that individu-

ls get payoffs when paired, pairing is random and instantaneous,

nd the number of different types of pairs is given by the Hardy–

einberg distribution. The evolutionary outcome of the bimatrix

ame is then predicted through an analysis of the NE structure of

ts payoff bimatrix and how this is connected to the eventual be-

avior of the game dynamics (e.g., the replicator equation). A com-

lete analysis of the evolutionary outcome is well-known for all

lassical two-strategy bimatrix games ( Cressman, 2003; Hofbauer

nd Sigmund, 1998 ). 

When interaction times depend on strategies used by the pair,

he Hardy–Weinberg distribution of pairs is no longer relevant
nd expected individual payoff is now a nonlinear function of the

umbers using each strategy in the two populations whether the

air formation process among disbanded pairs is instantaneous

 Section 2 ) or not ( Section 3 ). However, in both cases, we show

he existence of a unique distribution as a function of these num-

ers at the beginning of these respective sections, 12 although we

re only able to provide an analytic expression for it when pair

ormation is instantaneous (see Eq. (6) ). Nevertheless, this allows

s to define a time-constrained, bimatrix game in Section 2 and

n Section 3 where payoff (which we call the fitness function) is

iven as expected individual payoff per unit time. As pointed out

n Sections 2 and 3.1 , this new formulation reduces to the classic

imatrix game when all interaction times are the same. 

What is then of interest is how different interaction times af-

ect the evolutionary outcome. To this end, we completely char-

cterized strict NE for all two-strategy, time-constrained, bimatrix

ames ( Sections 2.1 and 3.2 respectively). When pairing is instanta-

eous ( Sections 2.1 ) strict NE are characterized through their time-

djusted payoff matrices (10) . A strict NE corresponds to a locally

symptotically stable rest point of the replicator equation where

oth populations use one of their pure strategies as indicated by

olid dots at vertices of the squares of Figs. 2 and 3 respectively. 

Unfortunately, other NE of the time-constrained bimatrix game

re more difficult to analyze. In particular, the analytic formula

or interior NE is not available except in special circumstances due

o the complicated distribution that replaces the Hardy–Weinberg

istribution in these games. Since interior NE correspond to in-

erior rest points of the replicator equation, they can be approx-

mated by simulating this dynamics for particular games. No at-

empt is made for a complete analysis of all two-strategy time-

onstrained bimatrix games. 13 Instead, we focus on the time-

onstrained Owner–Intruder game. This classic role-independent

imatrix game has an easily understood evolutionary outcome. 

When the cost of fighting over a resource C is less than its

alue V , both the owner of the resource and the intruder should

ght for it (i.e., both play Hawk) even though their payoff by do-

ng so is less than if they split the resource without fighting (i.e.,

oth play Dove) in the classic bimatrix game. 14 The reason is that

awk strictly dominates Dove in each population. Although (Hawk,

awk) remains a strict NE in the time-constrained bimatrix game,

ther NE emerge as interaction times change. From panel B of

igs. 2 and 3 , we see that (Dove, Dove) can also be a strict NE

in which case there is also an interior NE) when their interac-

ion time is short enough compared to the equal time of the other

nteractions. Furthermore, while (Dove, Dove) is not a strict NE if

nly (Hawk, Hawk) interaction time changes, up to four interior NE

an appear if this interaction time is large enough, some of which

re (neutrally) stable and some unstable (panels C and D). 

When V < C , (Hawk, Hawk) is never a strict NE. In the classic

imatrix game, there are two strict NE; namely, (Hawk, Dove) and

he paradoxical ESS (Dove, Hawk) where the intruder always wins

he resource (i.e., the owner and intruder switch roles through

ach interaction) as well as one unstable saddle symmetric inte-

ior NE where both populations play the ESS of the classic sym-

etric Hawk–Dove matrix game. The replicator equation predicts

he paradoxical ESS will be the evolutionary outcome if and only
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Fig. 2. The replicator dynamics for the Owner–Intruder game depending on V, C and interaction times when pairing is instantaneous. The first four panels (i.e., panels A, B, 

C, and D) assume V > C (in fact, V = 4 and C = 1 ). The other panels assume V = 1 ≤ C with C = 4 (panels E, F, I, J, K), C = 1 . 5 (panels G, H) and C = 1 (panel L). All interaction 

times not equal to 1 are indicated in each panel. Thus, panels A and E respectively are the replicator dynamics of the classic Owner–Intruder game for V > C and V < C 

respectively since all interaction times are the same. In particular, the main diagonal is invariant in these two panels since the time-constrained game is role-independent. 

For the same reason, this invariance holds in panels B, C, F, G, K, L but not in the other four panels (D, H, I, J) that have role dependent interaction times (i.e., τ 12 � = τ 21 ). In 

panel B, strategy pairs ( H, H ) and ( D, D ) are strict NE (since min { τ 12 , τ 21 } > 2 τ 22 and V > C ) and an unstable saddle symmetric interior NE appears. In panel C, Hawk-Hawk 

interaction time is long enough ( τ11 = 5 ) that two unstable saddle symmetric interior NE emerge along with two neutrally stable asymmetric ones. Panel D is an asymmetric 

perturbation of the interaction time matrix from panel C (specifically τ 12 shifts from 1 to 1.1) that perturbs the two asymmetric NE to a stable and unstable one. Since 

min { τ 12 , τ 21 } > 2 τ 22 and V < C in panels F, G, H, ( D, D ) is the only strict NE. It may be globally asymptotically stable (panel F) or only locally asymptotically stable when 

there are four interior NE with two unstable saddles and two neutrally stable (the role-independent case of panel G) or two unstable saddles together with one unstable 

and one stable NE (panel H with perturbed interaction matrix compared to panel G). In the role-dependent interaction matrices of panels I and J, τ 12 (respectively τ 21 ) is 

large enough that the paradoxical ESS ( D, H ) (respectively ( H, D )) is the only strict NE and it is globally asymptotically stable. Finally, panels K and L illustrate that sets of 

boundary NE emerge (thick black line segments) when V = 1 , C = 4 , τ11 = τ12 = τ21 = 2 τ22 = 1 (panel K), and V = C (panel L). 
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if the initial population distribution has more Hawks as intruders

than as owners. As shown in Fig. 2 , panels I and J, either one of

these strict NE can disappear by introducing a role dependence

into the time interaction matrix (2) . In fact, both must disappear

when (Dove, Dove) becomes a strict NE through their interaction

time being short enough compared to the equal time of the other

interactions in Figs. 2 and 3 , in which case interior NE may (pan-

els G and H) or may not appear (panel F). There are also marked

differences between the evolutionary outcomes when pair forma-

tion is instantaneous compared to when it is non instantaneous, as

detailed in the main text. 

In this article, although we have relaxed the implicit assump-

tion of classic evolutionary game theory that all interactions take
he same amount of time, we have assumed that newly single in-

ividuals are immediately available to form pairs. This rules out

traightforward application of our methods to models where some

ingle individuals from a disbanded pair wait before joining the

air formation process. For instance, this occurs in parental care

odels, e.g., Battle of the Sexes ( Broom and Rychtář, 2013; Cress-

an, 2003; Dawkins, 1976; Hofbauer and Sigmund, 1998; Mylius,

999 ) when males are immediately available to mate after a couple

isbands whereas females will not mate immediately but stay to

are for offspring if abandoned by their mate. We also assume that

oth populations have the same number of individuals, which is

equired when pair formation is instantaneous. On the other hand,

hen pair formation is non-instantaneous, all calculations can be
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Fig. 3. The replicator dynamics for the Owner–Intruder game when pairing is not instantaneous. For role-independent time-constrained bimatrix games (panels A, B, C, E, F, 

G, C’, G’), the main diagonal remains invariant. The encounter rate between singles is λ = 10 in panels A–H and λ = 1 in panels C’–H’. Other parameters are the same as in 

the corresponding panels of Fig. 2 . Panels A and E are identical to their corresponding panels in Fig. 2 since these are all equivalent to the classic bimatrix game. There are 

also no noticeable differences between panels B and F compared to Fig. 2 . The differences with Fig. 2 (which emerges for very large λ) are as follows. For long interaction 

times between Hawks when V > C , the four interior NE of Fig. 2 disappear completely when λ = 1 (panels C’ and D’) whereas the two asymmetric interior NE become 

unstable for intermediate λ (panel C). When the interaction time between Doves is short and V < C , the asymmetric interior NE of the role-independent time-constrained 

bimatrix game lose stability and the two symmetric interior shift apart as λ decreases (panels G and G’). With role-dependent interaction times, the asymptotically stable 

interior NE of Fig. 2 H eventually becomes unstable when λ decreases and a stable limit cycle emerges. 
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eneralized to population 1 having a different size than population

, although the formulas are more complex. 15 

In this article, we have generalized two-strategy bimatrix games

y explicitly including interaction times when pure strategists from

ach population are paired. When applied to the classic Owner-

ntruder game where each individual, at given interaction, is either

 Hawk or a Dove, we have a model where owners and intruders

ave a choice between two levels of effort when engaged in a con-

ict (Hawks are willing to expend a great deal of time and effort to

btain the resource while Doves are not). Another approach to this

onflict situation is to allow intermediate levels of effort, resulting

n a time-constrained Owner-Intruder game with a continuum of

ure strategies. In the classic game with continuous strategy sets

for a recent review see Cressman and Apaloo, 2018 ), the analysis

f NE that have additional properties such as Continuously Stable

trategy (CSS) or Neighborhood Invader Strategy (NIS) are partic-
15 With unequal population size, the time-constrained bimatrix game with all τ ij 

qual is no longer the classic bimatrix game as in Section 3.1 . 

 

s  

g  
larly important. Although beyond the scope of this article, it is

hen essential to first understand the effect of interaction times on

hese concepts of CSS and NIS. 

The results of this article show that the evolutionary out-

ome for bimatrix games becomes more complex when interac-

ion times are incorporated into the game-theoretic model. The re-

ults are also more complex than those reported by K ̌rivan and

ressman (2017) for matrix games with strategy-dependent inter-

ction times as is to be expected given the conceptual differences

etween classic matrix and bimatrix games. It is our contention

hat these added complexities are often unavoidable to make the

volutionary model more realistic. This is especially true when the

odel purports to describe a behavioral system where pairs inter-

ct for different amounts of time. 
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Appendix A. Pairs distributional dynamics when pairing is 

instantaneous 

Here we derive pair dynamics (3) . Let us consider a small time

interval �. Because pairs n ij split up following a Poisson process

with parameter τ ij , in this time interval a proportion 

�
τi j 

of the n ij 

pairs disbands and there will be ( 
n i 1 
τi 1 

+ 

n i 2 
τi 2 

)� singles playing strat-

egy e i and ( 
n 1 j 
τ1 j 

+ 

n 2 j 
τ2 j 

)� singles playing strategy f j . The total num-

ber of disbanded singles in each population in time interval � is(
n 11 

τ11 

+ 

n 12 

τ12 

+ 

n 21 

τ21 

+ 

n 22 

τ22 

)
�. (A.1)

If these singles immediately and randomly pair, the proportion of

newly formed n ij pairs among all newly formed pairs will be 

( n i 1 τi 1 
+ 

n i 2 
τi 2 

)�(
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

)
�

( 
n 1 j 
τ1 j 

+ 

n 2 j 
τ2 j 

)�(
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

)
�

. (A.2)

To obtain the number of newly formed ( e i , f j ) pairs in the time in-

terval � we multiply (A.2) by the number of newly formed pairs

(which equals the number of disbanded singles because we as-

sume instantaneous pairing) in time interval � and we obtain (
n i 1 
τi 1 

+ 

n i 2 
τi 2 

)( n 1 j 
τ1 j 

+ 

n 2 j 
τ2 j 

)
n 11 

τ11 
+ 

n 12 

τ12 
+ 

n 21 

τ21 
+ 

n 22 

τ22 

�. 

Writing difference equations for pairs 

n i j (t + �) = n i j (t) − n i j (t) 

τi j 

� + 

(
n i 1 (t) 
τi 1 

+ 

n i 2 (t) 
τi 2 

)( n 1 j (t) 

τ1 j 
+ 

n 2 j (t) 

τ2 j 

)
n 11 (t) 
τ11 

+ 

n 12 (t) 
τ12 

+ 

n 21 (t) 
τ21 

+ 

n 22 (t) 
τ22 

�

(A.3)

and letting � −→ 0 + , we obtain the pair dynamics (3) in the main

text. 

From 

N e 1 = n 11 + n 12 

N f 1 = n 11 + n 21 

N e 2 = N − N e 1 

N f 2 = N − N f 1 

(A.4)

and the generalized Hardy–Weinberg Eq. (5) , Mathematica pro-

vides two equilibrium solutions for n ij in terms of N , N e 1 and

N f 1 
. However, only the one given in (6) is non-negative when

0 ≤ N e 1 , N f 1 
≤ N. 

It is not immediately clear that A ≥ 0 where A is given in (7) . To

see this, expand A as the following quadratic expression in N e 1 

A = N e 1 
2 ( τ12 τ21 − τ11 τ22 ) 

2 − 2 N e 1 ( τ12 τ21 − τ11 τ22 ) 

(N τ12 τ21 − N f 1 ( τ11 τ22 + τ12 τ21 )) 

+ ( τ12 τ21 (N − N f 1 ) + N f 1 τ11 τ22 ) 
2 = a N e 1 

2 + b N e 1 + c. 

The minimum value of this upward parabola is 

c − b 2 

2 a 
= 4 N f 1 τ11 τ12 τ21 τ22 (N − N f 1 ) . 

Since 0 ≤ N f ≤ N, this minimum is non-negative and so A ≥ 0. 

1 
ppendix B. Calculation of the invasion fitness (16) 

The fitness of strategy f 2 , � f 2 
, given in (9) calculated at the

istributional equilibrium (6) is 

� f 2 
= 

√ 

A ( π f 
22 

τ12 − π f 
12 

τ22 ) + N τ12 ( π
f 

12 
τ21 τ22 − 2 π f 

22 
τ11 τ22 + π f 

22 
τ12 τ21 ) 

2 τ12 τ22 (N − N f 1 
)( τ12 τ21 − τ11 τ22 ) 

−
( τ12 τ21 − τ11 τ22 )( π

f 
12 

τ22 ( N f 1 
− N e 1 

) + π f 
22 

τ12 ( N e 1 
+ N f 1 

)) 

2 τ12 τ22 (N − N f 1 
)( τ12 τ21 − τ11 τ22 ) 

, 

here A is given in (7) . The invasion fitness of strategy f 2 when

here are no individuals playing this strategy is then lim N f 1 
→ N � f 2 

.

e observe that 

lim 

 f 1 
→ N 

A = (N τ11 τ22 + N e 1 
( τ12 τ21 − τ11 τ22 )) 

2 . 

ince N ≥ N e 1 
, N τ11 τ22 + N e 1 

( τ12 τ21 − τ11 τ22 ) ≥ 0 , 

lim 

 f 1 
→ N 

√ 

A = N τ11 τ22 + N e 1 
( τ12 τ21 − τ11 τ22 ) 

nd the numerator of � f 2 
simplifies to 

(N − N f 1 
)( π f 

12 
τ22 + π f 

22 
τ12 )( τ12 τ21 − τ11 τ22 ) . 

hus, both the numerator and denominator of � f 2 
converge to 0

hen N f 1 
→ N and we calculate the limit using L’Hospital’s rule 

lim 

 f 1 
→ N 

� f 2 
= 

N e 1 
π f 

12 
τ21 + N e 2 

π f 
22 

τ11 

N τ11 τ22 + N e 1 
( τ12 τ21 − τ11 τ22 ) 

. (B.1)

Similarly, the fitness of strategy e 2 , �e 2 , given in (9) calculated

t the distributional equilibrium (6) is 

�e 2 
= 

√ 

A ( π e 
22 τ21 − π e 

21 τ22 ) + N τ21 ( π
e 
21 τ12 τ22 − 2 π2 

22 τ11 τ22 + π2 
22 τ12 τ21 ) 

2 τ21 τ22 (N − N 2 1 
)( τ12 τ21 − τ11 τ22 ) 

−
(τ12 τ21 − τ11 τ22 )( π

e 
21 τ22 ( N e 1 

− N f 1 
) + π e 

22 τ21 ( N e 1 
+ N f 1 

)) 

2 τ21 τ22 (N − N e 1 
)( τ12 τ21 − τ11 τ22 ) 

. 

he invasion fitness of strategy e 2 when there are no individuals

laying this strategy is 

lim 

 e 1 
→ N 

�e 2 
= 

N f 1 
π e 

21 τ12 + N f 2 
π e 

22 τ11 

N τ11 τ22 + N f 1 
( τ12 τ21 − τ11 τ22 ) 

(B.2)

y again applying L’Hospital’s rule. 

ppendix C. Uniqueness of distributional equilibrium of (25) 

Fix N e i and N f j 
( i, j = 1 , 2 ) and define q e i = 

n e i 
N e i 

(
q f j = 

n f j 
N f j 

)
as

he proportion of e i ( f j ) strategists in the population who are sin-

le. From (25) it follows that 

q e 1 = 

1 

1 + λN f 1 q f 1 τ11 + λN f 2 q f 2 τ12 

q e 2 = 

1 

1 + λN f 1 q f 1 τ21 + λN f 2 q f 2 τ22 

q f 1 = 

1 

1 + λN e 1 q e 1 τ11 + λN e 2 q e 2 τ21 

q f 2 = 

1 

1 + λN e 1 q e 1 τ12 + λN e 2 q e 2 τ22 

. 

(C.1)

y Lemma 2 in Garay et al. (2017) , there is a unique solution with

 e i and q f j between 0 and 1. 
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room, M. , Rychtář, J. , 2013. Game-Theoretical Models in Biology. CRC Press, Taylor

& Francis Group, Boca Raton, FL . 

http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0001
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0001
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0001
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0002
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0002
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0002


R. Cressman, V. K ̌rivan / Journal of Theoretical Biology 460 (2019) 262–273 273 

C  

C  

 

D

G  

H  

K  

K  

 

M  

M  

P  

S  

Z  

 

ressman, R. , 2003. Evolutionary dynamics and extensive form games. The MIT
Press, Cambridge, MA . 

ressman, R. , Apaloo, J. , 2018. Evolutionary game theory. In: Basar, T., Zaccour, G.
(Eds.), Handbook of Dynamic Game Theory. Springer International Publishing,

pp. 461–510 . 
awkins, R. , 1976. The selfish gene. Oxford University Press, Oxford . 

aray, J. , Csiszár, V. , Móri, T.F. , 2017. Evolutionary stability for matrix games under
time constraints. J. Theor. Biol. 415, 1–12 . 

ofbauer, J. , Sigmund, K. , 1998. Evolutionary games and population dynamics. Cam-

bridge University Press, Cambridge, UK . 
 ̌rivan, V. , Cressman, R. , 2017. Interaction times change evolutionary outcomes: Two

player matrix games. J. Theor. Biol. 416, 199–207 . 
 ̌rivan, V. , Galanthay, T. , Cressman, R. , 2018. Beyond replicator dynamics: From fre-

quency to density dependent models of evolutionary games. J. Theor. Biol. 455,
232–248 . 
aynard Smith, J. , 1982. Evolution and the theory of games. Cambridge University
Press, Cambridge, UK . 

ylius, S.D. , 1999. What pair formation can do to the battle of the sexes: Towards
more realistic game dynamics. J. Theor. Biol. 197, 469–485 . 

ontz, M. , Hofbauer, J. , Bürger, R. , 2018. Evolutionary dynamics in the two-locus
two-allele model with weak selection. J. Math. Biol. 76, 151–203 . 

elten, R. , 1980. A note on evolutionarily stable strategies in asymmetrical animal
conflicts. J. Theor. Biol. 84, 93–101 . 

hang, B.Y. , Fan, S.J. , Li, C. , Zheng, X.D. , Bao, J.Z. , Cressman, R. , Tao, Y. , 2016. Opt-

ing out against defection leads to stable coexistence with cooperation. Scientific
Reports 6, 35902 . 

http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0003
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0003
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0004
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0004
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0004
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0005
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0005
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0008
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0008
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0008
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0011
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0011
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0013
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0013
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014
http://refhub.elsevier.com/S0022-5193(18)30509-5/sbref0014

	Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game
	1 Introduction
	2 Instantaneous pair formation
	2.1 Fitness and evolutionary outcomes
	2.2 Owner-Intruder game
	2.3 Boundary NE

	3 Non instantaneous pair formation
	3.1 Classic bimatrix game with non instantaneous pair formation
	3.2 Evolutionary outcomes with non instantaneous pair formation
	3.3 The Owner-Intruder game with non instantaneous pair formation

	4 Discussion
	 Acknowledgement
	Appendix A Pairs distributional dynamics when pairing is instantaneous
	Appendix B Calculation of the invasion fitness (16)
	Appendix C Uniqueness of distributional equilibrium of (25)
	 References


