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ABSTRACT

Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different
roles, do not consider the effect that interaction duration has on payoffs. However, interactions between
different strategies often take different amounts of time. In this article, we further develop a new ap-
proach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness.
We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii)
searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We
describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that in-
cludes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale
than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of
the time-constrained game. This general approach is then applied to the Owner-Intruder bimatrix game
where the two strategies are Hawk and Dove in both roles. While the classic Owner-Intruder game has
at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair du-
ration change this prediction in that up to four interior NE may exist with their stability depending on
whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove)
and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of sta-
ble boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique
(stable) NE if interaction time between two Doves is short compared to some other interactions involving
Doves.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

tion of genotypes is given by the Hardy-Weinberg equation. When
alone, alleles cannot gain any fitness. For many phenotypic models

Classic evolutionary game theoretical models in normal form
consider two players with a finite number of strategies and a pay-
off matrix. Players in a large (infinite) population meet at random,
interact pair-wise, and obtain their corresponding (individual) fit-
nesses. There are three important and somewhat hidden assump-
tions: (i) interaction times between two strategies are not consid-
ered, i.e., they are all assumed to be the same, (ii) the distribution
of strategy pairs corresponds to random pair formation among all
individuals and (iii) individual fitness accrues only through pair in-
teractions. These assumptions fit genetic population models with
two (or more) alleles at a single locus. In the genetic model, the
alleles pair randomly during meiosis and the resulting distribu-
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(e.g., the Hawk-Dove, or Prisoner’s dilemma), these assumptions
are likely not satisfied. For example, when two aggressive individ-
uals are in a fight, their interaction can be much longer when com-
pared to the situation where one individual (a Dove) exits from an
interaction with a Hawk (in which case the Hawk will win the con-
test). Because contests between different strategies can take differ-
ent times, the resulting equilibrium distribution of pairs does not
correspond to the Hardy-Weinberg equation.

Kfivan and Cressman (2017) showed that, when individuals pair
instantaneously but the interaction times are strategy dependent,
the Hawk-Dove model may have a mixed ESS (i.e., an evolution-
arily stable state that consists of a mixture of Hawks and Doves)
when the cost of a fight is lower than the value of the con-
tested resource. For this to happen, the interaction time between
two Hawks must be long enough relative to interaction times be-
tween other strategies. Such an outcome is not possible in the
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classic Hawk-Dove game that does not consider interaction times.
Similarly, for the repeated Prisoner’s dilemma, provided cooper-
ators stay together for enough rounds of the game while pairs
with at least one defector disband quickly, cooperation does evolve
(Kfivan and Cressman, 2017). This situation arises naturally if play-
ers can choose whether to continue the game to the next round
with the same opponent, since it is always better to play against
a cooperator than a defector in the Prisoner’s dilemma game (see
also the opting-out game (Zhang et al., 2016)).

Moreover, individuals can gain/lose fitness when alone (e.g.,
individuals with different strategies may have different mor-
talities). While the above games do not consider singles,
Kfivan et al. (2018) assumed that pairing between individuals is
not immediate and being single has fitness consequences. They
showed that distributional dynamics alone can lead to density de-
pendence in models (e.g., the Hawk-Dove model) that are only fre-
quency dependent when pairing is instantaneous and all interac-
tion times are the same.

All the models considered above are based on symmetric games
(in particular, matrix games), where the two contestants are as-
sumed to be drawn from the same population and can differ only
in their choice of strategy. It is well known that various asymme-
tries (Broom and Rychtar, 2013) in contestants lead to qualitatively
different outcomes when interaction times are not considered. A
class of asymmetric games, bimatrix games, where the two con-
testants are drawn from two different types of individuals (e.g.,
two populations or two roles) was studied thoroughly in the litera-
ture (e.g., Broom and Rychtaf, 2013; Cressman, 2003; Hofbauer and
Sigmund, 1998). A well-known result of classic evolutionary game
theory for these games is that no interior evolutionarily stable
strategy exists (Selten, 1980) (i.e., no ESS where each population
is a mixture of pure strategies). Furthermore, bimatrix games may
have an interior Nash equilibrium (NE) but it cannot be asymp-
totically stable under the (bimatrix) replicator equation, the stan-
dard game dynamics of evolutionary game theory (Hofbauer and
Sigmund, 1998). In particular, ESSs and asymptotically stable equi-
libria correspond to strict NEs of the bimatrix game (i.e., pure
strategy pairs where both players do strictly worse by unilaterally
changing their strategy).

Given the conceptual differences between the evolutionary out-
comes of classic matrix and bimatrix games, it is important to un-
derstand the consequences of strategy-dependent interaction times
by extending the analysis beyond the matrix games considered
by Kfivan and Cressman (2017). To this end, in this article, we
study the effect of interaction time on the evolutionary outcome
of bimatrix games when both populations have two strategies. We
consider two pair formation processes based on the assumption
that the number of individuals of each population are the same.
In Section 2, as existing pairs disband, these individuals instanta-
neously form new pairs randomly among themselves. From the an-
alytic expression of the equilibrium distribution of pairs at a given
number of each strategy in both populations, we analyze the re-
sulting game (i.e., investigate its NEs and their stability) when in-
dividual fitness is defined as expected payoff per unit time. When
interaction times are all the same, we recover the classic results.
Otherwise, more complicated evolutionary outcomes emerge such
as multiple interior NEs (some of which are stable and some un-
stable) as well as strict NE that differ from the classic game.
These possibilities are illustrated there by a thorough analysis of
the Owner-Intruder game (Broom and Rychtaf, 2013), the bimatrix
version of the Hawk-Dove game where individuals assume one of
the two roles, owner or intruder.

In Section 3, when pairs disband, the resulting singles form new
pairs at random through the mass action principle with a finite en-
counter rate. Since the analytic expression of the equilibrium dis-
tribution of pairs at a given number of each strategy in both pop-

ulations is no longer tractable unless all interaction times are the
same, we analyze the Owner-Intruder game, with unequal interac-
tion times, numerically.

2. Instantaneous pair formation
We consider a bimatrix game with two strategies denoted by e;

(i=1,2) for the row player in population 1 and f; (j = 1, 2) for the
column player in population 2. The payoff bimatrix is

bl f
e f e f

e |: nﬂ,nlf] nu,nlfz :| 1)
e e

e 1> Ty T3 T

where 715. (respectively, 715) is the payoff to e; (respectively f;)
when interacting with f; (respectively e;). In contrast to classic evo-
lutionary game theory, we explicitly incorporate the duration of in-
teractions into the game through the time interaction matrix

e |: Tn T2 ] 2)
e 1 T2

where 7;; is the expected time two players using strategy e; and
f; stay together.

In this section, we assume that, when pairs split, all these
newly single individuals immediately form new pairs at random.
We are interested in the equilibrium distribution of strategy pairs
(e;, f;) for given numbers of the different strategies. Let n; be the
number of strategy pair (e;, f;). As shown in Appendix A, pair dy-
namics are

Moy Mg ) (Mn 4 M1

dny _ (rn + ru)(rn + rm)
- My o Moy My N
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dny, _ 77122 (Tz1 + Tzz)(l'lz + Tzz) (3)
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and the equilibrium distribution satisfies
n;j (Tn + Tiz)(ﬁj + 72j> ..
— = fori,j=1,2. (4)
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Intuitively, at equilibrium, the number of disbanding (e;, f;) pairs
per unit time (i.e., the left-hand side % of (4)) must equal the
number of newly formed (e; f;) pairs from the newly single e;

strategists (fn + Tiz) and f; strategists (TU’ + rzj)'

We observe that at the equilibrium distribution, :i satisfy the
1]

generalized Hardy-Weinberg equation, i.e.,

M N2 _ M2 Moy (5)
Tn T2 T2 ™1

Given the number of e; and f; strategists (Ne, =nq; + Ny
and Ny =ny +ny;, respectively) as well as the total num-
ber of individuals N = nq; +ny +ny; +ny; in either population,
Appendix A shows that the unique nonnegative solution to (4) and
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(5) is (assuming 712721 #T11T22)
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nm = ,
" 2(T12T21 — T T22)
—vA+ (Ney = Np) (T12T21 — T11 T22) + NTpa Ty
IBVIES ,
2(T12T — T T22)
—A = (Ney = Np) (T12T21 — T11 T22) + NTp2 Ty
ny = ,
2(T12Tn — T T22)
- VA = (Ne, + Np,) (Ti2Ta1 — T11T22) + N(T12T21 — 2741 T22)
2(T12Tn — T T22) '
(6)
where
A = (NT12Ta1 — (Ne, + Np,) (T2 To1 — T11 T22))?
+4Ne, Nf, T11 T22 (T12T21 — Tr1T22)- (7)

When 11,751 = 711 T2z the above distributional equilibrium cor-
responds to the standard Hardy-Weinberg distribution
Ne,Njy, - Ne,Ny,  Ne,Ny, Neszz>

N N N N (8)

(n11, N1z, N1, N2) = (

where Ne, = N — N, and N, =N-Ny,. This is an important spe-
cial case since it includes the classic situation, i.e., all interaction
times are the same (7y; = T = T1 = T2).

2.1. Fitness and evolutionary outcomes

Following Kfivan and Cressman (2017), we define fitness as
the expected payoff that an individual of a given phenotype ob-
tains per unit of interaction time. For example, let us consider
an individual playing strategy e; in population 1. The probability
that this individual is paired with an individual playing strategy
f1 is ny1/(nq; +nqy2) and with an individual playing strategy f, is
n12/(nyy + nqy2). When paired with an individual playing strategy fi,
the focal individual receives payoff 77, /71 per unit of time. Simi-
larly, when paired with an individual playing strategy f,, the focal
individual gets payoff 7}, /71, per unit of time. Thus, the focal in-
dividual has expected payoff (i.e., fitness) IT, given by the first
equation in (9). The fitness for individuals playing e, and those in
the second population are calculated analogously, which leads to
(i,j=1,2)

e e
m - M T Np T
e = - -
YoM+ T N+ T
(9)
f f
ni T ny; T

D g 1y gy

The corresponding time-constrained bimatrix game based on pay-
off bimatrix (1) and time interaction matrix (2) is then the two-
strategy game with payoffs given by the fitness functions (9) eval-
uated at the distributional equilibrium (6) for fixed size N of each
population.

To analyze this time-constrained bimatrix game, we exam-
ine how its NE structure depends on model parameters. We
start by looking for NE in pure strategies (i.e., both populations
are monomorphic) before considering NE where both populations
are polymorphic (i.e., the interior NE later in this section) and
boundary NE (where exactly one population is polymorphic) in
Section 2.3. Let us consider the equilibrium where all individu-
als of population 1 play strategy e; while all individuals of the

1 We will use the phrase “fitness functions” rather than “payoffs” for these time-
constrained games from now on to avoid confusion with payoffs in (1).

second population play strategy f;. Then ny; = N and fitnesses of

. b143 b .
residents are Ile, = ?111 and l'If1 = ?111 Now consider a mutant of

the first population playing strategy e, in the resident system. This
mutant can pair only with f;—strategists in which case its fitness

. 143 L. b4
— 21 — 12
is Tle, = 2 Similarly, ITy = Tz Thus, the strategy (eq, fi) can-
be invaded if 22 < Zii and Mo hich
not be invaded if 22 < 7 and 72 < 2l in which case (e1, f1)

is a strict NE.2 Similar considerations for other pure strategy pairs
show that a strategy (e;, f;) is a strict NE for the fitness functions
given in (9) if it is a strict NE of the classic game given by a time-
adjusted payoff bimatrix

fi fa
f f
e T Th Th T
™m’ T 2’ T
e 7-[} e ﬂf : (10)
e 221 21 222 722
2 1’ T2 T2’ T2

We remark that the inequality conditions for a strict NE are in-
dependent of population size. Furthermore, the fitness functions
(9) when the populations are not monomorphic are convex com-
binations of the appropriate entries in the time-adjusted payoff

bimatrix (e.g., ITe, :a%lell +(1 —a)% for some O<a<1). It is
the same for the classic bimatrix game except that for us « is no
longer a linear function of the strategy frequencies of the other
population since the distributional equilibrium is not the stan-
dard Hardy-Weinberg distribution. In fact, « depends on popula-
tion size N as well.

A strict NE can be pictured as corresponding to a particular ver-
tex of the unit square (cf. Fig. 2 with the axes scaled to be fre-
quencies of the first strategy in each population instead of num-
bers and with vertices given as solid dots corresponding to strict
NE). It is well-known (see Figs. 10.1, 10.2, 11.1 in Hofbauer and Sig-
mund, 1998, or Figs. 3.3.1, 3.3.2, 3.3.3 in Cressman, 2003) that a
classic two-strategy bimatrix game may have no strict NE, exactly
one strict NE (e.g., Fig. 2A), or exactly two strict NE that are diag-
onally opposite each other (e.g., Fig. 2E). Furthermore, the classic
two-strategy bimatrix game (with nondegenerate payoff bimatrix)
can be classified by its strict NE and its interior NE (i.e., its unique
NE where both populations are polymorphic) if it exists.

By examining interior NE, we will see this classification
method fails for two-strategy time-constrained bimatrix games
(see Section 2.2). These equilibria must satisfy ITe, =Il., and
[y =TIy, so that neither phenotype can increase its payoff by
unilaterally switching its strategy. Unfortunately, obtaining analytic
formulas for interior NE seems to be out of reach except in two
special cases.

One special case is when interaction times satisfy 71,75 =
T11T22. Then the payoffs (9) evaluated at the equilibrium distribu-
tion (8) are the same as the payoffs for the classic bimatrix game
with payoff matrix given by the time adjusted payoff matrix (10),
ie.,

moo MmN
N Ti N Tin

f f (11)
m, = NeTj | Ne, 735
fi= N T1j N sz’

2 1If (ey, f1) is a strict NE, it must also resist invasion by mutants in population 1
that use any other strategy (including a mixed strategy) besides e;. However, since
the fitness of the focal mutant is linear in the components of its mixed strategy, it
is enough to verify (e, fi) cannot be invaded by the pure strategy e, (and by f, in
population 2).
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where i, j = 1,2, and the interior NE simplifies to

Ntyp (7T2fz'521 - 7T2f1 )

(N€17 Nf]) :<

™ (7T1flfzz - 7T1f21’21) + T12(7T2fzf21 - 772f1 T2)

Nty (75, T12 — 7§, T22)
T2 (75, T2 — 5, T21) + T12(7T5, To1 — 705, T22)

(12)

whenever both components are strictly between 0 and N. In fact,
this is the interior NE of the classic bimatrix game with time-
adjusted bimatrix (10).

The other special case is interior symmetric NE (i.e., those
on the main diagonal where Ne, = Ny, ) for role-independent time
constrained bimatrix games. As discussed in Section 2.2, there are
up to two such diagonal interior symmetric NE and the formulas
for these are given in Kfivan and Cressman (2017).

To find interior NE in the general case, we can instead consider
the replicator equation at fixed population size N. This dynamics is
given by>

dNey _ Ney(N=Ne)) (17 (N, N; ) = e, (Ne,. Ny,)

dt N
(13)
dN Ne(N—-N
B MO (1 () = T ey Ny )

where e, (N, , Nf1) and l'Ifl_ (Ne, . Nfl) are fitnesses (9) evaluated at
the equilibrium distribution (6) for a given (Neer])- Rest points
of the replicator equation with Ne, and Ny, strictly between 0 and
N are the interior NE of the underlying game (Hofbauer and Sig-
mund, 1998). Moreover, when all 7;; = 7 are equal, the dynamics
(13) is the replicator equation of the classic bimatrix game (up to
the factor t that only affects the speed along trajectories and not
the evolutionary outcome).

Through the Owner-Intruder game with time-constraints, we il-
lustrate the two special cases mentioned above (i.e., either 1,7y =
T11 Ty or interior symmetric NE) as well as the replicator method
for the general case.

2.2. Owner-Intruder game

The classic owner intruder game (Broom and Rychtaf, 2013;
Cressman, 2003; Hofbauer and Sigmund, 1998; Maynard Smith,
1982) is the two-role extension of the symmetric Hawk-Dove
game (i.e., matrix game) that models the situation in which an in-
dividual either owns a site or is an intruder trying to seize a site.
An individual can either be a Hawk (strategy e; if owner and f;
if intruder) or a Dove (strategy e, if owner and f, if intruder) in
either of the two roles. The payoff bimatrix of the game is

Owner\ Intruder Hawk Dove
Hawk VZ;C, VT{ V, 0

v Vv

Dove 0, % 7,7

where V (the value attached to the site) and C (the cost of fight-
ing) are positive. It is an example of a role-independent bimatrix
game since an individual’s payoff depends only on the strategies
used in the interaction and not on whether the individual is the
owner or the intruder.*

3 Replicator dynamics at fixed population size assume that frequencies of
ey strategists p; are described by % = p1(1 = p1)(ITe, (Ne,, Nf, ) — Tle, (Ne,, Ny, )

(Hofbauer and Sigmund, 1998). Because N, = p;N and the overall size N of pop-

dN,,

ulation 1 is assumed to be fixed, we obtain = %N which yields the first

equation in (13).

4 Broom and Rychtar (2013) refer to role independence as an “uncorrelated asym-
metry” (see also the role games of Hofbauer and Sigmund (1998)). Mathematically,
role independence is equivalent to the second payoff entries in the bimatrix form-
ing the transpose of the matrix of first entries. It is assumed that the pure strategy

When the cost of fighting is low (C < V), the classic game has
a single NE (eq, f1) = (H,H) where individuals in both positions
behave as hawks. When the cost of fighting is high (C> V) there
are two strict NE (ey, f1) = (D,H) and (eq, f,) = (H, D) as well as
a mixed NE (p1,qq) = (V/C,V/C), where Hawk strategy is played
with probability V/C in both roles. This mixed NE cannot be a (two-
species) ESS, because bimatrix games can have ESSs only in pure
strategies (Selten, 1980).

For the time-constrained bimatrix game, we first analyze its
strict NE through the following time-adjusted bimatrix (cf. (10))

Owner\Intruder Hawk Dove
vV-Cc v-C |4
Hawk 20 2T T3’ 0
Dove 0. v v I
Ty 21y 2Ty

The following list contains all strict NE of the time-constrained
Owner-Intruder game (Fig. 1). After each item in this list, the pan-
els in Fig. 2 that have this strict NE are indicated in parentheses.

o If V> C, then strategy (H, H) is a NE (e.g., Fig. 2A-D).
o If 715 >279, and 7,1 > 275, then strategy (D, D) is a NE (e.g.,

Fig. 2B, F, G, H).

e If V<Cand tq3 <275y, then strategy (H, D) is a NE (e.g., Fig. 2E,

i)

e If V<Cand 15 <275y, then strategy (D, H) is a NE (e.g., Fig. 2E,

I).

Dependence of strict NEs as a function of model parameters are
shown in Fig. 1. There is at least one strict NE for all parameter val-
ues except in the degenerate situations where V = C, 713 = 2793, Or
Ty1 = 2Ty, (these are the dashed lines in Fig. 1) that are discussed
in Section 2.3.

Of particular note is that, although strategy pair (Dove, Dove) is
never an ESS (i.e. a strict NE) for the classic Owner-Intruder game
(since Dove is never an ESS for the Hawk-Dove matrix game), this
pair is a strict NE when 2755, <min{tqy, T21}. This analysis shows
that when compared with the classical model, the model that con-
siders duration of interactions can have strategy (D, D) as a NE pro-
vided the interaction time between Doves is small.

In the special case where interaction times satisfy 7137y =
T11Ty2, the interior NE (provided it exists) is given by (12) as

N7V (T2 — 2722)
(Nel’Nfl): 2 (Y — 74 -2 ’
75 ( O) + 112V (T 722)

Nty V(T12 — 2722)
V-0t + 7V (T12 — 2T22)
We observe that when all interaction times are the same, the inte-
rior equilibrium is (Ne,, Ny, ) = (NV/C, NV/C) exactly as in the clas-
sical Owner-Intruder game.
To investigate interior NE further for the Owner-Intruder game,
fitness functions (9) are now

__mv-0 npV
T 2t (nyn +npp) | (g +np)’
1122‘/
Moy =120
7 2155 (ny1 + ) (14)
_ nn (V — C) nZ]V
= 2m(nn + ) | T (nn + 1)’
ny,V
Iy,

T 2195(Np +np)

sets for both roles are the same as well as the ordering of their elements. Typically,
the strategies are given the same name in both roles (e.g., Hawk and Dove) and the
same order. Every role-independent bimatrix game is the two-role extension of a
symmetric matrix game and has NE where both populations use the same strategy;
namely, a NE of the matrix game. In addition, there may be other NE.

5 In fact, a strategy pair is an ESS for a classic bimatrix game if and only if it is a
strict NE.
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Fig. 1. Strict NE of the Owner-Intruder game as functions of V and 27,, parameters. Panel A assumes that 7,; <7, and panel B assumes the opposite inequality.

Evaluating these at the equilibrium distribution (6) yields

. _ Cret@m- T12)V) (VA = N1 T21)
o 4Ne, T11 T12(T11 T22 — T12T21)
Tia(V = C)(Ne, + Np,) + 2711V (Ne, — Nj,)
+
AN, T11 T12
_ V(\/Iq%* N(T]sz] - 2'!71] 'L'zz) - (Ng] + Nf])(le‘[z] - Tzz))
2 4795 (N = Ne, ) (T11T22 — T127T21)
Nl \/Z(CTZI + (2t — 21)V) Nt (Ct1 + 21V — 121V)
h=74N - 4N -
£ T T2 (T12T21 — T11T22) T (Ti2T21 — T T22)
(€~ V)(Ne, +Np,) . 2tV (Ng, = Ne,)
4Nf1 ™ 4Nf1 T2
0. — V(VA+N(tiTo1 — 2T T22) — (Ney +Np, ) (712721 — T T22))
f 4t (N = Np, ) (T Ta2 — TraTn) ’

where A is given in (7). To find interior NE, we need to solve Il,, =
H82 and Hf1 S Hfz

Two-strategy, bimatrix games that are role-independent have
role-independent interaction times if and only if 71, = 79 (i.e., the
length of Hawk-Dove interactions does not depend on whether
the Hawk is the owner or the intruder).® Symmetric NE of the
role-independent time-constrained Owner-Intruder game are then
those of the time-constrained Hawk-Dove matrix game, which are
found analytically in Kfivan and Cressman (2017) using Solve
command of Mathematica 11.

Since attempts to use this method to find interior NE when the
time-constrained bimatrix game was not role-independent or in-
teraction times did not satisfy 71,71 = 71172, failed, we now ana-
lyze the NE of the Owner-Intruder game numerically through the
replicator equation, focusing on the cases where V>C and V<C
separately.

First, assume that V> C (Fig. 2, panels A-D). Then (H, H) is
always a strict NE. When the time-constrained Owner-Intruder
game is role-independent, the replicator equation is invariant along
the main diagonal of the unit square and its trajectories in the unit
square are reflections in the main diagonal (Fig. 2A,B,C). Further-
more, on the diagonal, the dynamics (13) restricts to the replicator
equation for the time-constrained Hawk-Dove matrix game, which
was analyzed by Kfivan and Cressman (2017). They showed that,
when interaction times between two Hawks are long enough (and
all other interaction times are the same), there exist two (symmet-
ric) interior NEs and the one with fewer Hawks is locally asymp-
totically stable while the other one is unstable. However, numeri-

6 We call a multi-strategy time-constrained bimatrix game “role-independent” if
both its payoff bimatrix and its time interaction matrix are role-independent. This
last requirement is equivalent to the time interaction matrix being symmetric (i.e.,
T = T for all i, j).

cal simulations (e.g., Fig. 2C) show that both interior symmetric NE
(i.e., those gray points that are on the main diagonal) are saddles
(i.e., unstable) for the bimatrix replicator dynamics.’

Simulations of the replicator equation for the role-independent
time-constrained Owner-Intruder game with V> C show that long
interaction times between Hawks now lead to two new asymmet-
ric interior NE (i.e., those off the main diagonal shown as black
interior dots in Fig. 2C). Numerical simulations suggest that these
two equilibria are neutrally stable as they appear to be surrounded
by a family of closed trajectories. The domain of the phase space
filled by these closed curves is separated from the rest by two het-
eroclinic orbits that join the two symmetric NE. In particular, the
symmetric strict NE (H, H) where all individuals play Hawk is not
globally asymptotically stable.

The neutral stability of the asymmetric NE disappears when the
time interaction matrix is role dependent. For example, it is rea-
sonable to assume that interaction time between intruding Hawk
and owning Dove is longer than that between intruding Dove and
owning Hawk (i.e,, T > T12) because an owning Dove tries to de-
fend its site against attacking Hawk. This role-dependent interac-
tion time makes one of the two interior asymmetric NE unstable
while the other becomes locally asymptotically stable (Fig. 2D).

Now assume that V < C (Fig. 2, panels E-K). Hawk is no longer
an ESS for the classic Hawk-Dove game and the only NE is the in-
terior ESS where the population plays Hawk with probability % On
the other hand, the classic Owner-Intruder game has two strict NE
(H, D) and (D, H)® and the unstable interior NE where both popula-
tions plays Hawk with probability % This corresponds to the time-
constrained game with all interaction times equal (Fig. 2E). When
Hawk-Dove interactions are sufficiently long compared to Dove-
Dove interactions (specifically, 757 > 275, and 713 > 275,), then (D,
D) is the only NE (Fig. 2F). With a lower cost (Fig. 2G), two sym-
metric interior NE appear (they are both saddles) along with two
neutrally stable asymmetric interior NE that are surrounded by
a family of closed trajectories. Furthermore, a small perturbation
of these NE by introducing a slight role dependence in interac-
tion times makes one of them locally asymptotically stable and

7 From extensive simulations of the replicator equation, it seems likely that any
interior symmetric NE of two-strategy role-independent time-constrained bimatrix
games are always saddles but we have no proof of this conjecture. In the special
case where 717y = 711722 (and 12 = 7y1), interior symmetric NE are saddles since,
from (11), TI,, (and Iy, ) depends only on the strategy frequency of the other pop-
ulation, implying that the Jacobian of replicator dynamics (13) evaluated at interior
equilibrium (12) has zeros on the main diagonal. This extends the same well-known
result for classic role-independent bimatrix games (Hofbauer and Sigmund, 1998).

8 The second strict NE is often called the “paradoxical ESS”
(Maynard Smith, 1982) since it corresponds to the intruder always taking over the
site and becoming the owner.



R. Cressman, V. Kfivan/Journal of Theoretical Biology 460 (2019) 262-273 267

the other unstable (panel H). Larger differences for role dependent
interaction times (panels I and ] respectively) eliminate interior
NE altogether and make the paradoxical ESS (D, H) (respectively,
(H, D)) globally asymptotically stable. Panel K is a degenerate case
where 71, = 731 = 27y, and so has boundary NE as discussed in the
following section.

Finally, panel L assumes V =C =1, 711 = 3 and all other inter-
action times are 1. This parametrization corresponds to the situa-
tion where sets of the NE along the boundary of square [0, N] x [0,
N] exist. As calculated in the following section, the sets of NE are
0 < Ne, < 3N when N, =Nand 0 <Ny, < 3N when N, = N.

2.3. Boundary NE

The previous two sections analyzed the strict NE and interior
NE for two-strategy time-constrained bimatrix games. These games
may also have NE on an edge of the square that are not at a ver-
tex (i.e., partially mixed NE where only one of the two populations
is polymorphic). For example, suppose that population 1 is poly-
morphic and population 2 is monomorphic at pure strategy f, i.e.,
Ny, = N. Then, at a NE on this edge, the fitnesses of both strategies
of population 1 must be equal, i.e., ITe; = ITe,. Since ny; =ny; =0,

b 43 183 .
I, = ?111 and ITe, = ?211 from (9).9 In this degenerate case where
T _ 75

ol =74, a point along the edge Nr =N is a NE if and only if
l'If1 > l'Ifz. Since ny; = Ne,, nq; = Ne; and N = Ne, + Ne,,
f f
Ne, T N,, T
M, = & 11, 27721 15
=N 1 TN T (15)

On the other hand, the invasion fitness of strategy f, when there
are no individuals playing this strategy is (see Appendix B)

Ne, 7T1f2 721 + Ne, 7T2fz T
1y

= . 16
> Ntntan + Ne, (T12T21 — T11T22) (16)

Solving Iy, = Iy, gives us, in general, up to two roots for Ne, sat-
isfying 0 < Ne; < N. These roots divide the edge into closed subin-
tervals, on each of which ITy —IT; does not change sign. Each
such subinterval with this difference nonnegative is then a con-
nected set of NE.'° However, since each point on this edge is a rest
point of the replicator equation, none can be asymptotically stable
under this dynamics.

For the Owner-Intruder game, boundary NE emerge on the
top edge of the square [0, N] x [0, N] where Ny =N when V =C

e e
1 n

since T =2 = 0 along this edge. By evaluating when Ty, > ITg,

along this edge, we find the following three cases for sets of NE of
the form (Ne,,N):

1L 7115212 and Ty <27y and 0 < Nel <N
N711 (191 —2797)
2. >2 n <2 n <N, < —fulT1=2%2)
T >2T12 and Ty <27, and 0 < Ne, = 2(T12T1— T 722)
Ney (T —2m) - N, <N
1 <N

3. T11 <271 and Ty > 275, and
n 12 21 = 2522 2(t2T1 - T2)

Similarly, let us consider the right edge of the square where
all individuals of the first species play strategy Hawk, i.e., Ne; = N.
When V = C, this leads to the following sets of NE for the Owner-
Intruder game:

1 711 <27y and 713 <27 and 0 <Ny, <N
Nty (T15-2797)
2. 2 n 2 n < Nf < 11f1272522)
T11>2Ty1 4 d T2 <2Tyy 4 d0o< f; = T2t —T11 022

Nt11(T12-2797)
3. T11 <27y and T3 > 27Ty and L 12-=2222. < N <N,
1 2 12 22 2@t -Tnt) — =

9 In classic two-strategy bimatrix games, the pure strategy pair (ej, f;) may be
a NE in this situation but not a strict NE. We have ignored this degenerate case in
the classification of pure strategy NE in Sections 2.1 and 2.2 of our time-constrained
bimatrix game through (10) above.

10 In classical games, this set is called a NE component (Cressman, 2003).

These sets of NE on the boundary are illustrated in Fig. 2L
for the role-independent time-constrained Owner-Intruder game
with V = C. From Kfivan and Cressman (2017) the interior NE in
this figure appears for tq; > (3 - C/V +2,/1 - C/V) = 2t (assum-
ing 712 = Ty = 7). In this case the NEs on the edges form two dis-
connected components. Since T, = Ty7, the NE component on the
upper edge is then the reflection in the main diagonal of the com-
ponent on the right-hand edge.

We note that sets of NE also appear (Fig. 2K) on the lower (re-
spectively, left-hand) edges of the square when t1, = 215, (respec-
tively, o1 = 2797). By other choices of interaction time t4; we can
also get disconnected components along these edges.

3. Non instantaneous pair formation

So far we have assumed that pair formation is instantaneous,
i.e., there are no singles. This assumption is natural in popula-
tion genetics, where alleles exist as singles only during meiosis
but otherwise they are always paired in diploid individuals. How-
ever, since it may be more realistic in general to assume that it
takes some time for singles to form pairs, we consider both singles
and paired individuals in this section. We also assume that, when
a pair disbands, these new singles are ready immediately to start
searching for new partners with encounter rate A and new pairs
are formed by random encounters between one single from each
population.!

The number of singles of the two strategies for population 1 are
denoted by ne, for i =1,2 and for population 2 by ny; for j=1,2.
Then
Ne; = ne, + 11 + i

(17)
ij = I’lfj + Ny + Nyj

are the total number of individuals playing a given strategy. We
continue to assume that the total number of individuals in each
population is N (i.e., Ne; + Ne, =N = Nf1 + Nfz ).

Distributional dynamics of singles and pairs when pair forma-
tion is described by the mass action law are then

dne, nyg | N
= —Ane, (n n —+ —=
dt o (M, +115,) + ™ * T2
dne, M1 | N
= —Ane, (n n = 4+ =
dt e (M, + f2)+1’21 +T22
dny, ny Ny
= —Ang (ne, +n —+ =
dt i (ey + ey} + T T
dn n n
7f2:_)\’nf2(ne1+nez)+£ 22
dt T12 22 (18)
dny ny
—— = Al N, — —
dt e1’tfi T
dnyy ni
—= = ANe Ng — —=
dt alth T12
dny; Ny
— = = AN, Ny, — —
dt e'tfi o
dny, Ny
—= = AN, Np, — —==.
dt eh T22

Appendix C shows that (18) has a unique distributional equilibrium
for a fixed N and given Ne, and Nfl'

' These last assumptions rule out applying the methods to bimatrix games where
newly single individuals may wait after disbanding before they are ready to form
new pairs. For example, in the model for parental care of offspring known as the
Battle of the Sexes (Dawkins, 1976), when fast females mate with philandering
males to produce offspring, it is assumed that the male immediately deserts and
begins searching for a new mate whereas the female remains and cares for the off-
spring for a certain amount of time before searching for a new mate.
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Assuming that singles do not get any payoffs, the fitnesses (i.e.,
the expected payoff to an individual per unit time) of the four
strategies evaluated at the unique equilibrium of (18) are (i, j =
1,2)

e e
I _ M Ty | Np Ty
6= - T ——»
" Ne, i Ne T2 (19)
f f
My T M T
5 ij T1j ij Tyj

These fitness functions depend on N, N, and Ny, Since, at the
unique distributional equilibrium of (18),
nijzkneinﬁrfj, i,j=1,2 (20)

fitnesses (19) simplify to (i, j =1,2)

Mnp s +np,7H)
He,- = >
)\,ﬂf1 Ti1 + )\,T'lf2 T+ 1
f f (21)
_ )\(nﬁn]j + nezﬂzj)
fi A, Tyj + Alle, Tyj + 17

The time-constrained bimatrix game with non instantaneous
pair formation based on payoff bimatrix (1) and time interaction
matrix (2) is then the two-strategy game with payoffs given by the
fitness functions (21) evaluated at the distributional equilibrium of
(18) for fixed size N of each population and encounter rate A. As
in Section 2, we are interested in the NE of this game and its evo-
lutionary outcome.

3.1. Classic bimatrix game with non instantaneous pair formation

The classic model implicitly assumes all interaction times are
equal (ie, 7=t for all i,j=1,2). However, since the classic
model also assumes that individuals are always interacting (i.e., al-
ways in pairs), the question arises whether the classic predictions
remain valid when pair formation requires time. This section ex-
amines the question.

The equilibrium distribution of (18) is

N, (VAANT +T-1)

e =N 2ANT
Ny, (VAANT +1-1)
=N 2Nt
Substituting these expressions to (21) leads to
‘ A+V1t+drzNp2\"T' N "2 N ) (22)
4ANA N, N,
I, = —(nf.i-urf‘ﬁ),
LT A+ Vi+aeN2\V U N AN
Thus, up to the positive factor %, these are the payoffs

of the classic bimatrix game with payoff matrix (1). From this it
follows that the NE of the classic bimatrix game with non instanta-
neous pair formation is the same as the the classic bimatrix game
and, moreover, the trajectories of the replicator equation are the
same (up to the speed along the trajectory). Thus, the two games
have the same evolutionary outcomes.

To rephrase, standard evolutionary game theory models of bi-
matrix games can explicitly incorporate time constraints with-
out affecting the game-theoretic analysis as long as all interaction
times are the same. It is then irrelevant whether pair formation is
instantaneous or requires some time.

3.2. Evolutionary outcomes with non instantaneous pair formation

As we saw in Section 2, evolutionary outcomes of time-
constrained bimatrix games with instantaneous pair formation de-
pend heavily on pair interaction times when these are not all
the same (e.g., Fig. 2). This section analyzes the same phenomena
when pair formation is not instantaneous.

We start by characterizing the strict NE of these games. From
(21), at strategy pair (eq, f1),

_ Ang, nlf]

Alg, Ty + 17

e
Ang s

Iy, = ———
¢ )Lnfl‘f]1+1’

1 h
since ne, = ng, = 0. Note that the fitness ITe, (l'Ifl) does not de-
pend on distributional equilibrium of population 1 (2). Thus, the
invasion fitnesses of strategy e, and f, are

)“nfl T[ZGI
Me, = 2
T'lf1 721 + 1
and
f
I, — Alle, T/,

2 )»nel T2+ 1

as given in (21) with ne, =ng = 0. Furthermore, at this strat-
egy pair, N =ne, + Ny = e, + Alle, N, Ty = Ny, +Nqq. Thus, ne, =
ny, and so N = AtynZ, +ne, and

_ -1 +\/1+4N)\.T11 —n

Mo, = 2)\.'[1] h

Strategy pair (ey, f1) is a strict NE provided Ile, > Ie, and If, >
I, ie
fyr L€

e s
11 - 21
Tll(\/4)‘-NT11+1+1) T21<\/4 )\.NT]1+1—])+2T11
23)
f f (
T Tia

> .
T (V/AANT +1+1 m(,/%m]l - 1) +21

Similarly, we can obtain conditions for other strict NE. Contrary to
the case of instantaneous pairing where these conditions are given
by the adjusted payoff matrix (10), we cannot write these condi-
tions in a similar form when pairing is non-instantaneous. This is
seen from expressions (23), where the invasion fitness for strategy
e, (f2) depends not only on interaction time t,; (71;), but also on
interaction time ;.

As A increases to infinity, payoff ITe, (l'lfl) converges to 7§, /Ty

(n{]/ru) and invasion fitness Ile, (Il;) converges to 75, /Ty

(7T1f2/T12)~ Thus, when the encounter rate of singles is large, the
strict NE of the time-constrained bimatrix game with non instan-
taneous pair formation are the same as the strict NE of the time-
constrained bimatrix game of Section 2 (i.e., with instantaneous
pair formation). In fact, for large A, the interior NE match as well
since there are essentially no singles in the system.

The next section illustrates these general results for the Owner-
Intruder game.

3.3. The Owner-Intruder game with non instantaneous pair
formation

When all interaction times equal to T as in Section 3.1, there is
an interior NE if and only if V<C. As a function of A and 7, it is
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given by
V(-1++/1+4ANT)
Moy =1j = 200t
(C—V)(~1+ v4ANT) (24)
ey =M, = 20t
NV
Nel = Nf1 = ?,

which is the classic result for the case when V <C.

However, for a general time interaction matrix, an analytic ex-
pression for the interior NE is not available. Our recourse is to ap-
ply the replicator equation (13) with payoffs (21) when pairing is
non-instantaneous. On contrary to the case of instantaneous pair-
ing, we cannot now express the distributional equilibrium at the
current strategy numbers explicitly. Thus, we have to solve replica-
tor equation (13) together with the system of algebraic equations

Ne] = Mg, (1 + )»nfl Tn + )\.Tlf2 le)

(25)
Nf, =Ny, (1 + Anel T + )\.TleZ'L'zl).

This is a semi-explicit index 1 differential-algebraic equation
(Ascher and Petzold, 1998) that we solve numerically using Math-
ematica 11.

Fig. 3 shows the results for two encounter rates. Panels A-H use
the same parameter values (i.e., V, C t;;) as corresponding panels
in Fig. 2. For the role-independent time-constrained cases (pan-
els A-C, E-G), trajectories remain reflections of each other with
respect to the main diagonal. We see that for large enough en-
counter rate (A = 10 in panels A-H) the strict NE still match those
of Section 2. However, there are differences in stability of inte-
rior NE between Figs. 2 and 3. The neutral stability of the two
off-diagonal equilibria in Fig. 2C and G is lost and the two equi-
libria become unstable. Fig. 3C and G show two trajectories that
start close to the two equilibria and that converge to equilibrium
(Ney, Ng,) = (100,100) and (Ne,, Ny, ) = (0,0), respectively. Panels
C, D', G, and H' show numerical simulations for yet smaller en-
counter rate (A = 1). We observe that this leads to disappearance
of interior NE in panels C' and D’, and to destabilization of the
interior stable NE in panel H that is replaced by a locally stable
limit cycle in panel H'. These numerical simulations, for the pa-
rameter values used, show that small and intermediate encounter
rates make coexistence of both strategies in polymorphic state less
likely.

4. Discussion

This article extends to two-strategy bimatrix games the new
approach to evolutionary game theory developed by Kfivan and
Cressman (2017) for two-player, two-strategy, symmetric normal
form games (i.e.,, matrix games) that incorporates the effect pair
interaction times that depend on the players’ strategies have on
the evolutionary outcome. Evolutionary game theory applied to bi-
matrix games is based on two populations (or two roles) where
individuals interact in pairs, one from each population. Classical
bimatrix games, similarly to matrix games, assume that individu-
als get payoffs when paired, pairing is random and instantaneous,
and the number of different types of pairs is given by the Hardy-
Weinberg distribution. The evolutionary outcome of the bimatrix
game is then predicted through an analysis of the NE structure of
its payoff bimatrix and how this is connected to the eventual be-
havior of the game dynamics (e.g., the replicator equation). A com-
plete analysis of the evolutionary outcome is well-known for all
classical two-strategy bimatrix games (Cressman, 2003; Hofbauer
and Sigmund, 1998).

When interaction times depend on strategies used by the pair,
the Hardy-Weinberg distribution of pairs is no longer relevant

and expected individual payoff is now a nonlinear function of the
numbers using each strategy in the two populations whether the
pair formation process among disbanded pairs is instantaneous
(Section 2) or not (Section 3). However, in both cases, we show
the existence of a unique distribution as a function of these num-
bers at the beginning of these respective sections,'? although we
are only able to provide an analytic expression for it when pair
formation is instantaneous (see Eq. (6)). Nevertheless, this allows
us to define a time-constrained, bimatrix game in Section 2 and
in Section 3 where payoff (which we call the fitness function) is
given as expected individual payoff per unit time. As pointed out
in Sections 2 and 3.1, this new formulation reduces to the classic
bimatrix game when all interaction times are the same.

What is then of interest is how different interaction times af-
fect the evolutionary outcome. To this end, we completely char-
acterized strict NE for all two-strategy, time-constrained, bimatrix
games (Sections 2.1 and 3.2 respectively). When pairing is instanta-
neous (Sections 2.1) strict NE are characterized through their time-
adjusted payoff matrices (10). A strict NE corresponds to a locally
asymptotically stable rest point of the replicator equation where
both populations use one of their pure strategies as indicated by
solid dots at vertices of the squares of Figs. 2 and 3 respectively.

Unfortunately, other NE of the time-constrained bimatrix game
are more difficult to analyze. In particular, the analytic formula
for interior NE is not available except in special circumstances due
to the complicated distribution that replaces the Hardy-Weinberg
distribution in these games. Since interior NE correspond to in-
terior rest points of the replicator equation, they can be approx-
imated by simulating this dynamics for particular games. No at-
tempt is made for a complete analysis of all two-strategy time-
constrained bimatrix games.”> Instead, we focus on the time-
constrained Owner-Intruder game. This classic role-independent
bimatrix game has an easily understood evolutionary outcome.

When the cost of fighting over a resource C is less than its
value V, both the owner of the resource and the intruder should
fight for it (i.e., both play Hawk) even though their payoff by do-
ing so is less than if they split the resource without fighting (i.e.,
both play Dove) in the classic bimatrix game.'* The reason is that
Hawk strictly dominates Dove in each population. Although (Hawk,
Hawk) remains a strict NE in the time-constrained bimatrix game,
other NE emerge as interaction times change. From panel B of
Figs. 2 and 3, we see that (Dove, Dove) can also be a strict NE
(in which case there is also an interior NE) when their interac-
tion time is short enough compared to the equal time of the other
interactions. Furthermore, while (Dove, Dove) is not a strict NE if
only (Hawk, Hawk) interaction time changes, up to four interior NE
can appear if this interaction time is large enough, some of which
are (neutrally) stable and some unstable (panels C and D).

When V <C, (Hawk, Hawk) is never a strict NE. In the classic
bimatrix game, there are two strict NE; namely, (Hawk, Dove) and
the paradoxical ESS (Dove, Hawk) where the intruder always wins
the resource (i.e., the owner and intruder switch roles through
each interaction) as well as one unstable saddle symmetric inte-
rior NE where both populations play the ESS of the classic sym-
metric Hawk-Dove matrix game. The replicator equation predicts
the paradoxical ESS will be the evolutionary outcome if and only

12 In Section 3, this includes the distribution of pairs and singles.

13 The difficulty of doing such an analysis can be appreciated by considering the
complete analysis for the two-locus two-allele viability selection model of popula-
tion genetics. Pontz et al. (2018) show that this two-dimensional dynamics on the
unit square has at least 192 different phase portraits. We feel our model will have
a comparable (or even higher) number of different cases.

4 The same result occurs for the bimatrix version of the Prisoner’s Dilemma game
where both players Defect at the evolutionary outcome even though they would be
better off if both Cooperate.
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Fig. 2. The replicator dynamics for the Owner-Intruder game depending on V, C and interaction times when pairing is instantaneous. The first four panels (i.e., panels A, B,
C, and D) assume V> C (in fact, V = 4 and C = 1). The other panels assume V =1 < C with C =4 (panels E, F, [, ], K), C = 1.5 (panels G, H) and C = 1 (panel L). All interaction
times not equal to 1 are indicated in each panel. Thus, panels A and E respectively are the replicator dynamics of the classic Owner-Intruder game for V>C and V<C
respectively since all interaction times are the same. In particular, the main diagonal is invariant in these two panels since the time-constrained game is role-independent.
For the same reason, this invariance holds in panels B, C, F, G, K, L but not in the other four panels (D, H, I, ]) that have role dependent interaction times (i.e., 712 # T21). In
panel B, strategy pairs (H, H) and (D, D) are strict NE (since min{71,, T21}> 275, and V> () and an unstable saddle symmetric interior NE appears. In panel C, Hawk-Hawk
interaction time is long enough (77; = 5) that two unstable saddle symmetric interior NE emerge along with two neutrally stable asymmetric ones. Panel D is an asymmetric
perturbation of the interaction time matrix from panel C (specifically 71, shifts from 1 to 1.1) that perturbs the two asymmetric NE to a stable and unstable one. Since
min{tq, T21}> 27y and V<C in panels F, G, H, (D, D) is the only strict NE. It may be globally asymptotically stable (panel F) or only locally asymptotically stable when
there are four interior NE with two unstable saddles and two neutrally stable (the role-independent case of panel G) or two unstable saddles together with one unstable
and one stable NE (panel H with perturbed interaction matrix compared to panel G). In the role-dependent interaction matrices of panels I and ], T, (respectively ;) is
large enough that the paradoxical ESS (D, H) (respectively (H, D)) is the only strict NE and it is globally asymptotically stable. Finally, panels K and L illustrate that sets of
boundary NE emerge (thick black line segments) when V =1, C=4, 11y = T3 = To; = 273 = 1 (panel K), and V = C (panel L).

if the initial population distribution has more Hawks as intruders the same amount of time, we have assumed that newly single in-
than as owners. As shown in Fig. 2, panels I and ], either one of dividuals are immediately available to form pairs. This rules out
these strict NE can disappear by introducing a role dependence straightforward application of our methods to models where some
into the time interaction matrix (2). In fact, both must disappear single individuals from a disbanded pair wait before joining the
when (Dove, Dove) becomes a strict NE through their interaction pair formation process. For instance, this occurs in parental care
time being short enough compared to the equal time of the other models, e.g., Battle of the Sexes (Broom and Rychtaf, 2013; Cress-

interactions in Figs. 2 and 3, in which case interior NE may (pan- man, 2003; Dawkins, 1976; Hofbauer and Sigmund, 1998; Mylius,
els G and H) or may not appear (panel F). There are also marked 1999) when males are immediately available to mate after a couple
differences between the evolutionary outcomes when pair forma- disbands whereas females will not mate immediately but stay to
tion is instantaneous compared to when it is non instantaneous, as care for offspring if abandoned by their mate. We also assume that
detailed in the main text. both populations have the same number of individuals, which is

In this article, although we have relaxed the implicit assump- required when pair formation is instantaneous. On the other hand,

tion of classic evolutionary game theory that all interactions take when pair formation is non-instantaneous, all calculations can be
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Fig. 3. The replicator dynamics for the Owner-Intruder game when pairing is not instantaneous. For role-independent time-constrained bimatrix games (panels A, B, C, E, F,
G, C, G’), the main diagonal remains invariant. The encounter rate between singles is A = 10 in panels A-H and A =1 in panels C'-H’. Other parameters are the same as in
the corresponding panels of Fig. 2. Panels A and E are identical to their corresponding panels in Fig. 2 since these are all equivalent to the classic bimatrix game. There are
also no noticeable differences between panels B and F compared to Fig. 2. The differences with Fig. 2 (which emerges for very large A) are as follows. For long interaction
times between Hawks when V> C, the four interior NE of Fig. 2 disappear completely when A =1 (panels C' and D’) whereas the two asymmetric interior NE become
unstable for intermediate A (panel C). When the interaction time between Doves is short and V <, the asymmetric interior NE of the role-independent time-constrained
bimatrix game lose stability and the two symmetric interior shift apart as A decreases (panels G and G’). With role-dependent interaction times, the asymptotically stable
interior NE of Fig. 2H eventually becomes unstable when A decreases and a stable limit cycle emerges.

generalized to population 1 having a different size than population
2, although the formulas are more complex.'”

In this article, we have generalized two-strategy bimatrix games
by explicitly including interaction times when pure strategists from
each population are paired. When applied to the classic Owner-
Intruder game where each individual, at given interaction, is either
a Hawk or a Dove, we have a model where owners and intruders
have a choice between two levels of effort when engaged in a con-
flict (Hawks are willing to expend a great deal of time and effort to
obtain the resource while Doves are not). Another approach to this
conflict situation is to allow intermediate levels of effort, resulting
in a time-constrained Owner-Intruder game with a continuum of
pure strategies. In the classic game with continuous strategy sets
(for a recent review see Cressman and Apaloo, 2018), the analysis
of NE that have additional properties such as Continuously Stable
Strategy (CSS) or Neighborhood Invader Strategy (NIS) are partic-

1> With unequal population size, the time-constrained bimatrix game with all t;
equal is no longer the classic bimatrix game as in Section 3.1.

ularly important. Although beyond the scope of this article, it is
then essential to first understand the effect of interaction times on
these concepts of CSS and NIS.

The results of this article show that the evolutionary out-
come for bimatrix games becomes more complex when interac-
tion times are incorporated into the game-theoretic model. The re-
sults are also more complex than those reported by Kfivan and
Cressman (2017) for matrix games with strategy-dependent inter-
action times as is to be expected given the conceptual differences
between classic matrix and bimatrix games. It is our contention
that these added complexities are often unavoidable to make the
evolutionary model more realistic. This is especially true when the
model purports to describe a behavioral system where pairs inter-
act for different amounts of time.
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Appendix A. Pairs distributional dynamics when pairing is
instantaneous

Here we derive pair dynamics (3). Let us consider a small time
interval A. Because pairs n; split up following a Poisson process
with parameter 7, in this time interval a proportion % of the ny
pairs disbands and there will be (% + %)A singles playing strat-
egy e; and (% + %)A singles playing strategy f;. The total num-
ber of disbanded singles in each population in time interval A is

n n n n
<j+£+£+£)&

(A1)
™ T12 1 722

If these singles immediately and randomly pair, the proportion of
newly formed n;; pairs among all newly formed pairs will be
n; n; Mmj 4 My
ﬁ—i_?;A (T1;+sz)A

n T12 1 22 m T12 1 22

(A2)

To obtain the number of newly formed (e;, f;) pairs in the time in-
terval A we multiply (A.2) by the number of newly formed pairs
(which equals the number of disbanded singles because we as-
sume instantaneous pairing) in time interval A and we obtain

Ti Ti2 Tij Tj A
Moy Mgy Moy M
n T12 ™ 22

Writing difference equations for pairs

() | np@©) [ n) | m)
(;T + %’z )< f]u + Tj?)
nn (t) + nip () + N1 (£) + N (t)

m T12 ™ 22

(A3)

n;i (¢t + A) = n;(t) -

n;;(t)
Tii

and letting A — 0., we obtain the pair dynamics (3) in the main
text.
From

Ne, =ny +nyp

Ny, =npn +nxn (Ad)
Ne, =N — N, '
Nfz = N_Nf1

and the generalized Hardy-Weinberg Eq. (5), Mathematica pro-
vides two equilibrium solutions for n; in terms of N, N, and
Ny,. However, only the one given in (6) is non-negative when
0§Ne1,Nf1 <N.

It is not immediately clear that A>0 where A is given in (7). To
see this, expand A as the following quadratic expression in Ne,

A = Ne,2(TraTa1 — TiiT22)* = 2Ne, (T12T21 — T11T22)
(NT12T21 — Np, (T11T22 + T127T21))
+(T12T1 (N = Np,) + Nj, T T22)* = aNe,? + bNe, +c.
The minimum value of this upward parabola is
2
€C=5g= 4Nf, T11T12T21 T2 (N — Nj)).

Since 0 < Ny, <N, this minimum is non-negative and so A>0.

Appendix B. Calculation of the invasion fitness (16)
The fitness of strategy f>, Iy, given in (9) calculated at the
distributional equilibrium (6) is

o. — VAT — ) + Nop (rh vt — 2, tntes + Tt
L2 21127 (N = N ) (Ti2To1 — T T22)

(Tr2T1 — TnTzz)(?T]szzz (Ng, = Nep) + ﬂzfzflz (Ney +Ng,))
271272 (N = Ny ) (T12T1 — T T22) '

where A is given in (7). The invasion fitness of strategy f, when
there are no individuals playing this strategy is then lime NI,
1

We observe that

NlimNA = (NT To2 + Ny (T12T21 — T T22))?.
-

Since N > Ne;, Nty1Taz + Ney (Ti2To1 — TnTaz) 2 0,

Nlimwﬂ = N1 722 + Ney (T12T21 — T T22)
-

and the numerator of IT;, simplifies to
(N—Np, YT T + T T) (Tt — TnT).

Thus, both the numerator and denominator of Iy, converge to 0
when N, — N and we calculate the limit using L'Hospital’s rule

. _ Ne1 nlfzrm + Ne2 nzfz L2
lim l'Ifz = .
Np =N NTy1 722 + Ney (T12T21 — T11 T22)

(B.1)

Similarly, the fitness of strategy ey, Ie,, given in (9) calculated
at the distributional equilibrium (6) is

VAT, T — T8 T2) + NTgy (7§ T2 Toa — 2703, T Toa + T T12 Tan)
2 211 T2 (N = N2 ) (T12T21 — T T22)
(T12T21 — T T22) (703, T2 (Ney — Ny ) + 705, T21 (Ney + Ny )
271722 (N — Ney ) (T12T21 — T11 T22)

I,

The invasion fitness of strategy e, when there are no individuals
playing this strategy is
Nﬁ 5T + Nf2 5T

lim I, =
27 Noytpp + Ng, (t12T21 — T T22)

Ne, =N

(B.2)

by again applying L'Hospital’s rule.
Appendix C. Uniqueness of distributional equilibrium of (25)
Ny,

the proportion of e; (f;) strategists in the population who are sin-
gle. From (25) it follows that

Ng.
Fix Ne. and N;, (i, j = 1,2) and define g, = ~i (q; = 2 ) as
i f] i Ne. f]
1

1
e = 1 +)\,Nf1qjc1f11 +)LNfZQf2'E]2
1
e, = 1+)\,Nf]Qf]T21+)\,Nf2qf”2T22 (1)
_ 1
Ih =713 ANe,Ge, T11 + ANe, e, Ta1
1
a5 =

1+ ANe,qe, T12 + ANe,Ge, Toz”

By Lemma 2 in Garay et al. (2017), there is a unique solution with
qe; and a, between 0 and 1.
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