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Abstract The population-dispersal dynamics for predator–prey interactions and two
competing species in a two patch environment are studied. It is assumed that both
species (i.e., either predators and their prey, or the two competing species) are mobile
and their dispersal between patches is directed to the higher fitness patch. It is proved
that such dispersal, irrespectively of its speed, cannot destabilize a locally stable pred-
ator–prey population equilibrium that corresponds to no movement at all. In the case of
two competing species, dispersal can destabilize population equilibrium. Conditions
are given when this cannot happen, including the case of identical patches.

Keywords Competition · Dispersal · Evolution · Habitat selection ·
Ideal free distribution · Predator · Prey · Population dynamics
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1 Introduction

As Levin (1992) argued in his MacArthur award lecture, the problem of pattern and
scale remains the central problem in ecology. For problems related to time scales, the
crucial question is if and how do behavioral, ecological and evolutionary processes
combine and influence each other. Do behavioral processes that proceed on time scales
of minutes or hours attenuate on a longer population time scale of days, weeks, or
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years? Do processes on the population time scale influence evolutionary processes
that run on the scale of hundreds and thousands of years? One reason why behavioral
ecology has developed in separation from population ecology was the belief that pro-
cesses operating on one time scale have little or no bearing on processes operating on
a different time scale. However, recent models that combine different time scales chal-
lenge this view. In the case where animal behavior operates on a fast time scale, game
theoretical approaches are used to determine optimal strategies at current population
sizes. These optimal strategies are then fed back to population dynamics and the corre-
sponding models predict that adaptive animal behaviors have the potential to promote
species coexistence (for recent reviews see Bolker et al. 2003; Werner and Peacor 2003;
Abrams 2010). Similarly, models that assume fast population dynamics and slow evo-
lutionary processes show that traits change with changes in population densities. Trait
dynamics in this case are described by the canonical equation of adaptive dynamics
(e.g., Geritz et al. 1998; Abrams 2005; Vincent and Brown 2005; Dercole and Rinaldi
2008). Both these approaches reduce complexity of the resulting model because the
time scale separation reduces the number of differential equations that describe the
system under study. The question that arises is then: Are predictions based on these
models still valid when less extreme (or no) time scale separation is assumed? In this
article we study this question in the context of population-dispersal models.

Models that consider population dynamics together with dispersal in a multi patch
environment were thoroughly studied in the literature on evolution of dispersal (e.g.,
Gadgil 1971; Hamilton and May 1977; Comins et al. 1980; Hastings 1983; Holt 1985;
McPeek and Holt 1992; Holt and McPeek 1996; Amarasekare 1998; Diffendorfer
1998; Dieckmann et al. 1999; Ferriere et al. 2000; Holt and Barfield 2001; Donahue
et al. 2003; Padrón and Trevisan 2006; Cantrell et al. 2007) and on metapopulation
dynamics (Levin 1974; Hassell et al. 1991; Bascompte and Solé 1995; Hassell et al.
1995; Ruxton 1996; Tilman and Kareiva 1997; Hanski and Gilpin 1997; Rohani and
Ruxton 1999b; Hanski 1999). These models assume that individuals interact in patches
between which they can also disperse. The dispersal rates between patches are assumed
to be fixed, often corresponding to random dispersal. The main questions of these mod-
els are (1) what are the evolutionarily stable patterns of dispersal (i.e., what are the
conditions that dispersal rates must satisfy so that individuals using a different dispersal
strategy cannot invade residents) and (2) how dispersal influences species persistence.

One path to investigate these questions follows the classical idea of evolutionary
ecology where the less fit phenotypes are replaced in evolution by fitter ones. In the
context of evolution of dispersal, phenotypes are characterized by their dispersal prop-
erties. Fretwell and Lucas (1969) introduced the concept of the ideal free distribution
(IFD) under which individuals in all occupied patches have the same fitness. Cressman
and Křivan (2006) proved that the IFD is an evolutionarily stable strategy (ESS) of the
habitat selection game (reviewed in Křivan et al. 2008). These game theoretical con-
cepts do not deal with explicit dispersal mechanisms. Fixed dispersal rates that lead to
the IFD when population dynamics are at an equilibrium are called balanced dispersal
(Holt 1985). Cantrell et al. (2007) showed (in multiple species and/or multiple patches)
that only those dispersal rates that lead to the IFD can be evolutionarily stable.

A second path of studies focuses on the stabilizing properties of dispersal on oth-
erwise unstable population dynamics. It was shown that passive animal dispersal
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at particular fixed rates can stabilize otherwise unstable predator–prey dynamics
(e.g., Holt 1984, 1985; Murdoch et al. 2003). This is because passive dispersal often
causes sufficient negative density dependence in recruitment rates to stabilize popula-
tion dynamics at an equilibrium. Thus, locally unstable population dynamics can lead
to stability at the metapopulation level. However, for this to happen, heterogeneity
in either patch population dynamics and/or dispersal rates are needed. In addition,
dispersal rates cannot be so high that they synchronize local population dynamics
across patches, but must be high enough to generate strong enough negative density
dependence that can stabilize population dynamics.

Other models have been developed whereby the above fixed dispersal rates that char-
acterize each phenotype are replaced by the assumption that individuals can quickly
adjust their dispersal to reflect changes in patch occupancy (Křivan and Sirot 2002;
Cressman et al. 2004; Cressman and Křivan 2006). In fact, these works often assume
that dispersal strategy follows changes in population densities infinitely fast. Interest-
ingly, it was shown (e.g., Cressman et al. 2004) that fast adaptive animal dispersal
can destabilize the stable population equilibrium of two competing species that do not
disperse at all. Abrams et al. (2007) analyzed this case in more detail. In particular,
they relaxed the assumption of complete time scale separation between dispersal and
population dynamics. Using numerical simulations, they showed that the predicted
instability of the competition equilibrium due to fast dispersal led to fluctuations in
population densities as there was no stable equilibrium point independent of the spe-
cific details of the dispersal dynamics. Furthermore, they also showed that different
forms of these dispersal dynamics have a large effect on the population dynamics
(see also Abrams 2007, 2010).

The idea that different processes operate on different time-scales was recently chal-
lenged in a number of articles on “rapid evolution” where evolutionary processes have
a comparable time scale as population dynamics (for examples of such rapid evolu-
tion, see Wikelski and Thom 2000; Yalden 2000; Relyea and Auld 2004; Losos et
al. 2006). Changes in animal behaviors can take longer and run on a similar time
scale as population dynamics. Thus, one has to accept that in some cases there is no
clear time-scale separation of ecological processes. It is then important to understand
what happens when behavior, population dynamics and evolution run on compara-
ble time-scales. This is certainly true for models of dispersal. Dispersal can occur on
a variety of time scales ranging from very fast to very slow, relative to population
dynamics. So, it is important to better understand the effect of different time scales on
population-dispersal dynamics.

In this article, we focus on models that combine population dynamics and adap-
tive dispersal in a two-patch environment. These models describe, in order, a single
species, a predator–prey model, and a two competing species model in a two-patch
environment. The dispersal between patches is assumed to be such that individuals
tend to move to patches with the highest fitness. We will show that, under these assump-
tions, we can study analytically how population numbers and distributions depend on
the scales on which demographic and distributional dynamics operate. In particular,
we analyze how and if dispersal speed relative to demographic changes influences
population stability and distribution.

123



332 R. Cressman, V. Křivan

2 Single species

We start with a single species in a two-patch environment. Population-dispersal dynam-
ics are described by

dx1

dt
= x1 f1(x1) − δ(d12x1 − d21x2),

dx2

dt
= x2 f2(x2) − δ(d21x2 − d12x1),

(1)

where xi denotes population density in patch i(= 1, 2), fi is the patch specific per
capita population growth rate, δ is the dispersal speed, and di j is the probability of
dispersing from patch i to patch j . Thus, di j models animal preferences for the two
habitats. The usual analysis of such models first calculates the equilibrium as a func-
tion of model parameters and then studies its local stability. When individuals do not
disperse (δ = 0), the populations in each patch evolve independently. Thus, for simple
density dependent models such as logistic growth where fi is a linear function, one
solves the system of linear equations fi = 0 (i = 1, 2) to find the non-trivial population
equilibrium. However, the same model with dispersal (δ > 0) is much more difficult
to analyze, because we need to solve a system of two coupled quadratic equations to
get the interior (i.e., where both x1 and x2 are positive) equilibrium. Although this
is possible (computer algebra systems such as Mathematica handle it routinely), the
resulting formulas are quite complicated. They can be used to study numerically the
dependence of the equilibrium on a parameter. In this article, we are particularly inter-
ested in the effect of dispersal speed δ on the stability of the population equilibrium.
When δ is small relative to demographic parameters, dispersal operates on a slow time
scale when compared to population demography and vice versa. That is, manipulating
δ allows us to effectively change time scales on which behavioral and population pro-
cesses operate. Thus, we can ask, for example, whether slowly dispersing populations
can influence relatively fast population dynamics, or vice versa.

To illustrate these ideas, Fig. 1a shows dependence of population equilibria in two
patches as a function of dispersal speed when population dynamics are described by
the logistic equation ( fi = ri (1 − xi/Ki )). When individuals do not disperse (δ = 0),
population densities reach patch carrying capacities (K1 = 10, K2 = 1 in Fig. 1a)
and patch payoffs measured as the per capita population growth rate are the same (and
equal 0, Fig. 1b). Thus, the corresponding equilibrium distribution ui = Ki/(K1+K2)

(Fig. 1c) is the ideal free distribution (i.e., IFD, Fretwell and Lucas 1969). As individ-
uals start to disperse, one patch (dashed line) will become overpopulated, while the
other patch (solid line) will be underpopulated, and, generically, the corresponding
distribution will deviate from the IFD. Without any dispersal, it is obvious that the
equilibrium is globally stable. However, one can wonder what happens when animals
start to disperse. Provided population growth rate in each patch is negatively density
dependent (not necessarily described by logistic growth), the interior population-dis-
tributional equilibrium will stay globally asymptotically stable regardless of dispersal
speed (Appendix A). This clearly shows that, in the case of a single population in a
two-patch environment population, stability is independent of the dispersal speed.
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Fig. 1 This figure shows population-distribution dynamics for a two-patch logistic growth model as a func-
tion of dispersal speed δ. The left panels assume unbalanced dispersal rates (d12 = 0.1, d21 = 0.2), while
the right panels assume balanced dispersal rates (d12 = 0.1, d21 = 1). The top panels show dependence
of the equilibrium population densities, middle panels show fitness in patch 1 (solid line) and in patch 2
(dashed line), bottom panels show the corresponding distribution of the population in patch 1 (solid line)
and in patch 2 (dashed line). Parameters: r1 = 1, r2 = 0.5, K1 = 10, K2 = 1

However, the above situation is not evolutionarily stable, because a population using
dispersal speed δ can be invaded and replaced by a population using a slower dispersal
speed unless dispersal rates satisfy

d12

d21
= K2

K1
. (2)

The only evolutionary stable strategy (ESS) is not to disperse at all (i.e., δ = 0)
(Hastings 1983; Holt 1985). When dispersal rates satisfy (2), the system is said to
exhibit balanced dispersal (McPeek and Holt 1992; Holt and Barfield 2001). In this
case, there is no net movement between patches when population abundances in both
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patches are equal to patch carrying capacities. Thus, this situation is exactly the same
as if there was no dispersal. This is confirmed in the right panels of Fig. 1 which show
that neither equilibrium population densities, nor distribution depend on the dispersal
speed δ if there is balanced dispersal. These dispersal rates are evolutionarily stable,
because no mutant using a different dispersal strategy can invade a resident system
using balanced dispersal (McPeek and Holt 1992; Cressman and Křivan 2006).

Although we can calculate the ESS dispersal rates from (2), this does not provide
a mechanistic description of the underlying distributional dynamics that leads to bal-
anced dispersal. In this article, we will assume that the net movement between patches
is always toward the patch with the higher per capita growth rate (also called the patch
payoff). That is, d ji x j − di j xi > 0 when fi > f j . In fact, we will assume that net
movement is described by

δ(d ji x j − di j xi ) = D(xi , x j )( fi − f j ) (3)

where D is a nonnegative function of x1 and x2. For technical reasons (specifically,
to ensure that population densities cannot become negative), assume that D is a con-
tinuous function satisfying D(x1, 0) = D(0, x2) = 0 for all xi ≥ 0, i = 1, 2. Model
(1) becomes

dx1

dt
= x1 f1(x1) + D(x1, x2)( f1 − f2),

dx2

dt
= x2 f2(x2) + D(x1, x2)( f2 − f1).

(4)

With such adaptive dispersal rates, the positive equilibrium of the above model is
independent of the dispersal rate D and it is the same as in the case where individuals
do not disperse at all (i.e., fi = 0 for i = 1, 2). Appendix A shows that when patch
payoff is negatively density dependent, the population-distribution equilibrium of the
above model (i.e., the patch carrying capacities K1 and K2) is globally asymptotically
stable independently of dispersal speed. At this equilibrium, net dispersal (3) is zero
and so dispersal rates are balanced (i.e., they satisfy Eq. (2)).

One particular realization of such dispersal rates is

di j = max{ f j − fi , 0} x j

x1 + x2
, (5)

which leads to

D(x1, x2) = δ
x1x2

x1 + x2
(6)

in (3). These dispersal rates assume that individuals (i) are attracted to patches that
have a higher fitness when compared with the current patch, and (ii) the attraction is
proportional to the number of conspecifics in the new patch. Such “packing behavior”
was observed in birds (e.g., Ahlering and Faaborg 2009; Folmer et al. 2010). Thus,
there is a trade-off in these dispersal rates because a higher number of conspecifics
in a patch attracts new immigrants, but it also decreases patch payoff. In other words,
individuals will not disperse to patches that are not occupied even if patch payoff there
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was high (which can be due to the perception barrier that does not allow individuals
to perceive patch quality), but they also will not immigrate to patches with a high
number of conspecifics. The population-dispersal dynamics (1) with dispersal (5) are
then equivalent to the population-distributional dynamics

dx

dt
= x(u1 f1(u1x) + u2 f2(u2x))

du1

dt
= (1 + δ)u1(1 − u1)( f1(u1x) − f2(u2x))

(7)

where x = x1 + x2 is the overall population abundance and ui = xi/x is the corre-
sponding population distribution across patches. That is, from the first equation, over-
all abundance evolves according to the average per capita growth rate u1 f1(u1x) +
u2 f2(u2x). Furthermore, the proportion of the population in the patch with the higher
fitness increases by the second equation, which is known as the replicator equation
(e.g., Taylor and Jonker 1978; Hofbauer and Sigmund 1998; Cressman and Křivan
2006) up to the factor 1 + δ. This form clearly shows how demographic and distribu-
tional time scales are related. If δ > 1 (δ < 1) then distributional dynamics operate
on a faster (slower) time scale when compared to demographic processes.

Thus, with adaptive dispersal toward the patch with higher fitness, the stationary
distribution is ui = Ki/(K1 + K2) and the overall equilibrium population abundance
is x = K1 + K2 independently of the dispersal speed. Furthermore, changes in time
scales do not influence stability of this population-dispersal equilibrium.

Similar results are known for models that assume non-adaptive dispersal. In partic-
ular, when the patches are identical (i.e., f1(x1) = f2(x2) if x1 = x2), then the equi-
librium for system (1) is the carrying capacity K1 = K2 in each patch for all choices
of fixed δ and non-directional dispersal (i.e., dispersal is random and so d12 = d21).
Moreover, from the analysis at the beginning of this section, this population-dispersal
equilibrium is asymptotically stable for all such dispersal rates. On the other hand,
when there are two (or more) behavioral types in each patch, then time scales can
influence stability if the random dispersal rates of the types are sufficiently different.
This follows from Cressman and Vickers (1997) who show that Turing instabilities
(Turing 1952) arise in corresponding single-species spatially-homogeneous models
with continuous space. It also follows from the analysis of Jansen and Lloyd (2000)
(see also Rohani and Ruxton 1999a; Cosner 2008) when the two behavioral types
correspond to separate species such as predators and prey.

In the following two sections, we study whether time scales influence stability in
multi-species environments where dispersal rates between the two patches and the
speed of demographic changes can be species dependent (and where each species
has only one behavioral type). We are particularly interested in this question when
dispersal is adaptive and patches are not identical.

3 Predator–prey models with dispersal

We assume that predator fitness gi (i = 1, 2) in each patch is an increasing func-
tion that depends only on prey density there (e.g., the standard Gause (Gause 1934)
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predator–prey model satisfies this). With adaptive dispersal, the population-dispersal
dynamics become

dx1

dt
= x1 f1(x1, y1) + Dx (x, y)( f1(x1, y1) − f2(x2, y2))

dx2

dt
= x2 f2(x2, y2) + Dx (x, y)( f2(x2, y2) − f1(x1, y1))

dy1

dt
= y1g1(x1) + Dy(x, y)(g1(x1) − g2(x2))

dy2

dt
= y2g2(x2) + Dy(x, y)(g2(x2) − g1(x1))

(8)

where xi and yi are population abundances of prey and predators, respectively, in patch
i(= 1, 2). In these equations, the dispersal rates Dx (x, y) and Dy(x, y) for prey and
predator populations, respectively, are assumed to satisfy conditions as in (3) and (4)
needed to keep the positive cone invariant.

In all our simulations with adaptive dispersal, the prey dispersal rate is taken explic-
itly as Dx (x, y) = δx

x1x2
x1+x2

(cf., Eq. (6)) and, similarly, for the predator dispersal rate,
Dy(x, y) = δy

y1 y2
y1+y2

. Parameters δx and δy then continue to describe the prey and
predator, respectively, dispersal speed. Changing these parameters allows us effec-
tively to change dispersal versus population dynamics time scales. The above popu-
lation dynamical model can then be equivalently rewritten using the overall prey and
predator abundances and their distribution between patches

dx

dt
= x(u1 f1 + u2 f2)

dy

dt
= y(v1g1 + v2g2)

du1

dt
= (1 + δx )u1(1 − u1)( f1 − f2)

dv1

dt
= (1 + δy)v1(1 − v1)(g1 − g2)

(9)

where ui (vi ) is the fraction of prey (predators) in patch i (i = 1, 2), and x (y) is the
overall prey (predator) population abundance.

In what follows, we will assume that there exists an interior equilibrium
(x∗

1 , x∗
2 , y∗

1 , y∗
2 ) of the predator–prey population dynamics without any dispersal. We

observe that this interior equilibrium is also an equilibrium of the model when pop-
ulations do disperse (i.e., the equilibrium is independent of the dispersal rates). The
following proposition is proved in Appendix B by linearizing (8) about the equilibrium.
Global stability of the equilibrium remains an open problem.

Proposition 1 Assume that (x∗
1 , x∗

2 , y∗
1 , y∗

2 ) is an interior equilibrium (i.e., both spe-
cies coexist in both patches) of model (8) when Dx = Dy = 0. If

∂ fi

∂xi
(x∗, y∗) < 0,

∂ fi

∂yi
(x∗, y∗) < 0,

dgi

dxi
(x∗

i ) > 0, (10)

this equilibrium is locally asymptotically stable for the model with any choice of
dispersal rates Dx (x, y) and Dy(x, y).
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We remark that when there is no dispersal (i.e., Dx = Dy = 0), the inequalities
(10) in the proposition are the standard assumptions (e.g., Allen 2007) that ensure
the equilibrium is locally asymptotically stable in each patch i . In particular, since
prey fitness decreases when either prey or predator density increases, and predator
fitness increases with more prey, the trace of the Jacobian matrix is negative and the
determinant is positive (see Appendix B). Proposition 1 states that dispersal cannot
destabilize populations at this equilibrium. In other words, a stable predator–prey
equilibrium without dispersal cannot be destabilized when individuals move adap-
tively between two patches. In particular, no instability driven by different predator
and prey dispersal speeds can occur in these two-patch predator–prey models.

The result reported in Proposition 1 is similar to those in other studies of dis-
persal-driven instability when the patches are identical. In this case, a stable interior
equilibrium (x∗

1 , y∗
1 ) in patch one without dispersal corresponds to a spatially-homo-

geneous (i.e., x∗
1 = x∗

2 and y∗
1 = y∗

2 ) interior equilibrium of the population-dispersal
dynamics under random dispersal. If fitness functions satisfy (10), it is well-known
(Jansen and Lloyd 2000) that no instability produced by different predator and prey
random dispersal rates can occur (i.e., no Turing instabilities (Turing 1952) can emerge
in these models). In fact, even when dispersal is partially adaptive in the sense that prey
increase their dispersal rate from a patch as the density of predators increase in this
patch due to higher predation risk (or analogously, predators decrease their dispersal
rate as prey density rises), Huang and Diekmann (2003) show Turing instabilities are
impossible. Turing instabilities due to different dispersal rates for hosts and parasites
(Briggs and Hoopes 2004) require that parasite growth rates also depend on parasite
density (i.e., gi is a function of both xi and yi ).

3.1 Lotka–Volterra

The Lotka–Volterra predator–prey population-dispersal model in a two patch environ-
ment is

dx1

dt
= x1

(
a1(1 − x1

K1
) − λ1 y1

)
+ Dx (x, y)

×
(

a1(1 − x1

K1
) − λ1 y1 − a2(1 − x2

K2
) + λ2 y2

)

dx2

dt
= x2

(
a2(1 − x2

K2
) − λ2 y2

)
+ Dx (x, y)

×
(

a2(1 − x2

K2
) − λ2 y2 − a1(1 − x1

K1
) + λ1 y1

)

dy1

dt
= y1(e1λ1x1 − m1) + Dy(x, y)(e1λ1x1 − m1 − e2λ2x2 + m2)

dy2

dt
= y2(e2λ2x2 − m2) + Dy(x, y)(e2λ2x2 − m2 − e1λ1x1 + m1).

(11)

This is a special case of (8) where the fitness functions are given by fi (xi , yi ) =
ai (1 − xi

Ki
)−λi yi and gi (xi ) = eiλi xi − mi . The interior equilibrium (x∗

1 , x∗
2 , y∗

1 , y∗
2 )
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of (11) exists (i.e., an equilibrium where both species are distributed over both patches)
when there is no dispersal if and only if the equilibrium prey density x∗

i in each patch is
less than its carrying capacity in the absence of predators (i.e., if and only if x∗

i < Ki ).
Specifically, the equilibrium is

(x∗
1 , x∗

2 , y∗
1 , y∗

2 ) =
(

m1

e1λ1
,

m2

e2λ2
,

a1(e1λ1 K1 − m1)

e1λ
2
1 K1

,
a2(e2λ2 K2 − m2)

e2λ
2
2 K2

)
. (12)

The corresponding prey distribution is

u∗
1 = e2m1λ2

e1m2λ1 + e2m1λ2

while predator distribution is

v∗
1 = a1e2 K2λ

2
2(m1 − e1 K1λ1)

a1e2 K2λ
2
2(m1 − e1 K1λ1) + a2e1 K1λ

2
1(m2 − e2 K2λ2)

.

For the Lotka–Volterra model (11) without dispersal (i.e., when Dx = Dy = 0),
the interior equilibrium is globally asymptotically stable if it exists (Svirezhev and
Logofet 1983; Křivan 2008). In particular, the fitness functions satisfy condition (10)
and so, by Proposition 1, the interior equilibrium is also locally asymptotically stable
for any dispersal speeds.

3.2 Rosenzweig–MacArthur model

Let hi be the (positive) handling time of a captured prey in patch i in the standard Rosen-
zweig–MacArthur predator–prey model (e.g., Rosenzweig and MacArthur 1963; Hof-
bauer and Sigmund 1988; Křivan 2008) with the Holling type II functional response.
Then, the fitness function for prey becomes

fi = ai

(
1 − xi

Ki

)
− λi yi

1 + λi hi xi
, i = 1, 2

and for predators

gi = eiλi xi

1 + λi hi xi
− mi , i = 1, 2.

The predator–prey model (8) then has the interior equilibrium

x∗
i = mi

(ei − hi mi )λi
, i = 1, 2

y∗
i = ai ei (ei Kiλi − mi (1 + hi Kiλi ))

Ki (ei − hi mi )2λ2
i

, i = 1, 2
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A B

Fig. 2 Trajectories of the Rosenzweig–MacArthur model (13) with no dispersal fill the surface of a torus
(Panel A). In panel B a trajectory is shown in (x1, x2) space. This leads to a Lissajous like curve. Parameters:
δx = δy = 0, a1 = 1.5, a2 = 0.5, e1 = 0.15, e2 = 0.1, m1 = 0.4, m2 = 0.2, K1 = 25, K2 = 20, λ1 =
1, λ2 = 1, h1 = 0.1, h2 = 0.1

provided hi < ei/mi and mi < eiλi Ki/(1 + hiλi Ki ). This latter inequality holds if
and only if the equilibrium prey density is less than its carrying capacity in the absence
of predators (i.e., if and only if x∗

i < Ki ).
It is well-known (e.g., Hofbauer and Sigmund 1988; Křivan 2008) that, without

dispersal, this interior equilibrium is globally asymptotically stable in patch i if and
only if x∗

i is sufficiently large. For our model, global asymptotic stability occurs if and

only if x∗
i >

hi λi Ki −1
2hi λi

(if and only if Ki <
ei +mi hi

hi λi (ei −mi hi )
). These are the conditions

equivalent to the inequalities in (10). From Proposition 1, we again find that a stable
predator–prey equilibrium without dispersal cannot be destabilized when individuals
move adaptively between two patches. It is also well-known that, without dispersal,
populations will fluctuate periodically as they approach a globally stable limit cycle
in each patch when the predator–prey equilibrium is unstable in both patches. Gener-
ically, this limiting behavior results in aperiodic movement that fills the surface of a
torus in the four-dimensional space (x1, x2, y1, y2) as shown in Fig. 2a. Projections
to a plane (Fig. 2b shows projection to (x1, x2) plane) produces Lissajous curves
(Greenslade 1993).

It is then interesting to study whether adaptive dispersal can stabilize unstable pred-
ator–prey equilibria when prey carrying capacities are large enough to produce stable
population oscillations (i.e., Ki >

ei +mi hi
hi λi (ei −mi hi )

for at least one patch). This becomes
especially interesting when comparing stability results under our adaptive dispersal to
the known result that passive dispersal between patches can lead to negative density
dependent recruitment rates provided fluctuations in population densities are asyn-
chronous (Murdoch et al. 2003; Briggs and Hoopes 2004). This mechanism underlies
deterministic metapopulation dynamics where populations can coexist on the global
spatial scale despite local extinctions (Hanski 1999). The necessary conditions for such
global stability are differences in patch or dispersal dynamics, and dispersal rates that
are neither too high to synchronize local patch dynamics, nor too low to decouple
patch dynamics.

To illustrate the above discussion, recall that our population dynamics in (8) assume
prey have negative density dependent growth rates. If we replace the dispersal term in
(8) by passive dispersal, i.e.,
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A B

C D

E F

Fig. 3 This figure describes qualitative properties of trajectories for the Rosenzweig–MacArthur predator–
prey model. The top two panels show simulations of model (13) with random dispersal between patches
(d12 = d21 = 1 and η12 = η21 = 1) when predators and prey coexist along a limit cycle in each patch with-
out any dispersal (K1 = 25, K2 = 20). These simulations document that intermediate values of random
dispersal stabilize population dynamics at an equilibrium. Solid dots in the left panels that have predator
dispersal rate fixed at 0.1 correspond to maxima and minima of locally stable periodic trajectories and
lines describe locally stable equilibria. The right top panel shows the two curves where a Hopf bifurcation
occurs at which the locally stable equilibrium loses its stability and a locally stable limit cycle (denoted
as LC) appears. In the lower left corner (denoted as Osc), this limit cycle for yet smaller dispersal rates
(not shown here) loses its stability and trajectories fill the surface of a torus. The middle and bottom panels
correspond to model (8) with adaptive dispersal. In the middle two panels, without any dispersal, popula-
tion dynamics oscillate in both patches (K1 = 18, K2 = 17). These numerical simulations document that
adaptive dispersal cannot stabilize population dynamics at an equilibrium. The left panel shows how the
locally stable limit cycle (solid dots) becomes unstable (empty dots) at low prey dispersal rates (predator
dispersal rate δy is fixed at 0.1), while the right panel shows the curve of Neimark–Sacker bifurcations
along which the locally stable limit cycle bifurcates to an aperiodic motion on a torus. In the bottom panels,
without any dispersal, population dynamics oscillate only in patch 1 and settle to an equilibrium in patch 2
(K1 = 18, K2 = 10). These numerical simulations show that adaptive dispersal with sufficiently high prey
and/or predator dispersal rates can stabilize population dynamics at an equilibrium. The left panel shows
qualitative behavior of the model as a function of prey dispersal only (δy is fixed at 0.1), while the right
panel shows regions of prey and predator dispersal rates where either populations coexist at an equilibrium,
or along a limit cycle. These two parameter regions are separated by the Hopf bifurcation curve. Parameters:
a1 = 1.5, a2 = 0.5, e1 = 0.15, e2 = 0.1, m1 = 0.4, m2 = 0.2, λ1 = 1, λ2 = 1, h1 = 0.1, h2 = 0.1

123



Population-dispersal dynamics 341

dx1

dt
= x1 f1(x1, y1) − δx (d12x1 − d21x2)

dx2

dt
= x2 f2(x2, y2) − δx (d21x2 − d12x1)

dy1

dt
= y1g1(x1) − δy(η12 y1 − η21 y2)

dy2

dt
= y2g2(x2) − δy(η21 y2 − η12 y1)

(13)

then the recruitment rate would possibly add another negative density dependence.
A combination of these two effects can therefore increase stability of the predator–
prey system (13) as documented in the top panels of Fig. 3 where intermediate values of
passive prey and/or predator dispersal stabilizes otherwise unstable population dynam-
ics at an equilibrium. Figure 3b shows two Hopf bifurcation curves across which the
locally stable equilibrium becomes destabilized and a limit cycle occurs. We remark
that for very low dispersal rates (not depicted in Fig. 3a) the limit cycle becomes
unstable and trajectories will fill the surface of a torus (as shown in Fig. 2).

Appendix B shows that our model (8) (which assumes adaptive dispersal) leads to
strikingly different predictions. In fact, adaptive dispersal cannot stabilize population
dynamics if oscillations occur in both patches (Fig. 3, middle panels). The left panel
shows that a locally stable limit cycle (solid dots) loses its stability when prey dispersal
rate is too small (empty dots). The right panel shows the Neimark–Sacker bifurcation
curve (Kuznetsov 1995). When traversing this curve from the right, the locally stable
limit cycle loses its stability and trajectories fill the surface of a torus (c.f. Fig. 2). Only
if population dynamics settle at an equilibrium in one patch and oscillate in the other
patch, can high enough dispersal rates stabilize population dynamics at an equilibrium
(Appendix B and bottom panels of Fig. 3).

4 Competing species with dispersal

Here we consider two competing species in a two-patch environment. Population-dis-
persal dynamics in a two-patch environment are described as

dx1

dt
= x1 f1(x1, y1) + Dx (x, y)( f1(x1, y1) − f2(x2, y2))

dx2

dt
= x2 f2(x2, y2) + Dx (x, y)( f2(x2, y2) − f1(x1, y1))

dy1

dt
= y1g1(x1, y1) + Dy(x, y)(g1(x1, y1) − g2(x2, y2))

dy2

dt
= y2g2(x2, y2) + Dy(x, y)(g2(x2, y2) − g1(x1, y1))

(14)

where xi and yi are population abundances of the two competing species in patch
i(= 1, 2). We assume that ∂ fi

∂xi
< 0,

∂ fi
∂yi

< 0,
∂gi
∂xi

< 0,
∂gi
∂yi

< 0 so that model (14)
describes competition between the two species. In addition, assume that, without any
dispersal, the two species coexist at a stable equilibrium in each patch. In particular,
this requires
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∂ fi

∂yi

∂gi

∂xi
<

∂ fi

∂xi

∂gi

∂yi
, i = 1, 2,

i.e., the interspecific competition is weaker than intraspecific competition. This equi-
librium is also an equilibrium for the system with adaptive dispersal and our interest
is to study its stability as a function of dispersal rates Dx and Dy . The following
Proposition is proved in Appendix C.

Proposition 2 Let us assume that model (14) with Dx = Dy = 0 has an interior

equilibrium at which both species coexist at both patches. Let A = ∂ f1
∂y1

∂g1
∂x1

− ∂ f1
∂x1

∂g1
∂y1

,

B = ∂ f2
∂y2

∂g2
∂x2

− ∂ f2
∂x2

∂g2
∂y2

, C = ∂ f1
∂x1

∂g2
∂y2

− ∂ f1
∂y1

∂g2
∂x2

, D = ∂ f2
∂x2

∂g1
∂y1

− ∂ f2
∂y2

∂g1
∂x1

be evaluated at

this equilibrium. From the above discussion, if A < 0 and B < 0, then the equilibrium
is locally asymptotically stable without dispersal.

Assume that A, B are both negative. If the equilibrium remains locally asymptot-
ically stable independent of the dispersal rates Dx and Dy, then C + D > A + B.
Conversely, if C + D > 0, then the equilibrium is locally asymptotically stable for
any dispersal rates Dx and Dy.

Although the two species do compete only if they are in the same patch, the above
proposition tells us that when these species disperse, it is not enough to consider com-
petition within patches only. In fact, to ensure stability of the interior equilibrium, we
must look at the virtual competition between species x in patch 1 and species y in
patch 2 and between species x in patch 2 and species y in patch 1, as if they were com-
peting (i.e., at the expressions C and D in Proposition 2). From Appendix C, it is clear
that adding sufficiently high dispersal introduces instability when A + B > C + D
(see also Fig. 3).

On the other hand, by the final statement of Proposition 2, adaptive dispersal cannot
destabilize an otherwise stable equilibrium when space is homogeneous (and so com-
petition is patch independent). In this case, each species has the same fitness function
in both patches (i.e., f1 = f2, g1 = g2) and so C = −A > 0 and D = −B > 0. Thus
the interior equilibrium is locally asymptotically stable for all dispersal rates if and
only if it is locally asymptotically stable when there is no dispersal. That is, pattern
formation similar to a Turing instability cannot occur in the two-patch competition
model with adaptive dispersal.

In the case of the Lotka–Volterra competition model, species one fitness in patch
i(= 1, 2) is

fi = ai

(
1 − xi

Ki
− αi

yi

Ki

)
,

and species two fitness is

gi = bi

(
1 − yi

Li
− βi

xi

Li

)
,

and population dynamics are
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Fig. 4 This figure documents the case where strong enough dispersal destabilizes competition dynamics
(15) when interspecific competition is patch dependent. The curve corresponds to the Hopf bifurcation
curve in the δx −δy parameter plane for the competition model (15). The curve shown is the set of dispersal
rates at which the interior equilibrium is destabilized by the Hopf bifurcation. For dispersal rates to the left
and below this curve, population dynamics converge to an equilibrium, while to the right and above, the
interior equilibrium is unstable and a locally stable limit cycle exists. Parameters: a1 = 1, a2 = 0.1, b1 =
0.1, b2 = 1, L1 = 2, L2 = 19, K1 = 19, K2 = 2, α1 = 9, α2 = 0.1, β1 = 0.1, β2 = 9.

dx1

dt
= x1a1(1 − x1

K1
− α1

y1

K1
)

+Dx (x, y)

(
a1(1 − x1

K1
− α1

y1

K1
) − a2(1 − x2

K2
− α2

y2

K2
)

)

dx2

dt
= x2a2(1 − x2

K2
− α2

y2

K2
)

+Dx (x, y)

(
a2(1 − x2

K2
− α2

y2

K2
) − a1(1 − x1

K1
− α1

y1

K1
)

)

dy1

dt
= y1b1(1 − y1

L1
− β1

x1

L1
)

+Dy(x, y)

(
b1(1 − y1

L1
− β1

x1

L1
) − b2(1 − y2

L2
− β2

x2

L2
)

)

dy2

dt
= y2b2(1 − y2

L2
− β2

x2

L2
)

+Dy(x, y)

(
b2(1 − y2

L2
− β2

x2

L2
) − b1(1 − y1

L1
− β1

x1

L1
)

)
.

(15)

The interior equilibrium where both species are distributed over both patches is

x∗
i = Ki − αi Li

1 − αiβi
, y∗

i = Li − βi Ki

1 − αiβi
, i = 1, 2.

Provided competition coefficients are patch dependent, Cressman et al. (2004) showed
that infinitely fast adaptive dispersal can destabilize an otherwise stable interior equi-
librium. However, they also showed that this can happen only if competition is patch
dependent. The above methods can be used to extend these results to situations where
demographic and dispersal dynamics operate on similar time scales. Using their exam-
ple, Fig. 4 shows the situation where A < 0, B < 0 and A + B > C + D, i.e.,
where conditions of Proposition 2 for local equilibrium stability do not hold. Then,
for small dispersal rates, the interior equilibrium is still locally asymptotically stable,
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but becomes unstable due to a Hopf bifurcation for larger rates of dispersal. In fact,
the simulations show that with increasing dispersal rates the amplitude of the cycle
rapidly expands and along the cycle population densities become very close to zero
(see also Abrams et al. 2007).

Such examples illustrate a new that the effects of time scales between ecological and
behavioral processes cannot be ignored, especially for systems involving competing
species.

5 Discussion

In this article, the effect of adaptive dispersal on population stability is investigated
in a two patch environment. We showed that, when there is an equilibrium in each
patch without dispersal and net dispersal between the two patches is in the direction
of higher fitness, this remains an equilibrium in the resultant population-dispersal
dynamics. The question of most interest is then how the stability of this equilibrium
depends on the dispersal rates between patches.

Our results are most clear for a single species with individual fitness in each patch
decreasing with population size. Here, within-patch population dynamics and adap-
tive dispersal will both lead the system to carrying capacity in each patch (Sect. 2).
Thus, a population equilibrium with isolated patches (no dispersal) is globally asymp-
totically stable if and only if it is globally asymptotically stable for each choice of
dispersal rates under the population-dispersal dynamics based on adaptive dispersal.
To rephrase, adaptive dynamics does not affect the eventual outcome of such systems.
We also show that passive dispersal leads to a locally asymptotically stable equilibrium
that typically depends on the fixed dispersal rates. In particular, there will be under-
matching (e.g., Kennedy and Gray 1993) in some patch where equilibrium density is
below carrying capacity.

The effect of adaptive dispersal on two-species systems is more subtle and depends
on the type of trophic interactions. When there are locally stable coexistence equilibria
of predators and prey in each isolated patch (e.g., the Lotka–Volterra model), dispersal
cannot destabilize the system (Proposition 1, Sect. 3). Conversely, when predator–
prey population dynamics fluctuate (e.g., in the Rosenzweig–MacArthur model) in
both isolated patches, we proved that adaptive dispersal cannot stabilize such unstable
population dynamics. Thus, if the equilibrium in each patch is stable (respectively,
unstable) without dispersal, then the inclusion of dispersal cannot change the stability
(respectively, instability) of the equilibrium. However, large adaptive dispersal rates
can lead to stability in overall predator–prey population densities provided population
dynamics in only one patch are locally stable.

In the case of two competing species, a locally stable equilibrium without dispersal
requires that interspecific competition is weaker than intraspecific competition in each
patch. In the presence of adaptive dispersal, we showed that similar conditions involv-
ing virtual inter- and intra-specific competition between species in different patches
must also be considered in order to analyze the stability of an interior equilibrium
(Proposition 2, Sect. 4). In the special case of patch independent competition, dispersal
does not alter the stability properties of this equilibrium. Furthermore, if the combined
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interspecific virtual competition between patches is weaker than intraspecific virtual
competition, then dispersal cannot destabilize an otherwise stable equilibrium. How-
ever, strong interspecific virtual competition effects can destabilize such an equilibrium
when dispersal rates are sufficiently high.

The above results extend those of other studies on the effects of dispersal on popula-
tion dynamics in multi-patch environments. These studies initially focused on a system
where population dynamics are the same across patches and dispersal is random (e.g.,
Turing 1952; Levin 1974; Rohani and Ruxton 1999b). In this case, the equilibrium
of the system without dispersal continues to be an equilibrium with dispersal and
so the effect of dispersal on the equilibrium stability can be examined. These stud-
ies show that semi-antagonistic interactions (i.e., predator–prey type interactions) are
necessary for dispersal induced instabilities to occur. Rohani and Ruxton (1999b) sum-
marized the outcome of several studies on density-independent (i.e., passive) dispersal
both in continuous and discrete space as follows: (a) if the individual populations are
intrinsically unstable then dispersal cannot be stabilizing, (b) dispersal can only be
destabilizing in predator–prey like systems and then only if the difference in dispersal
rates for the two species is large. These results relate only to the case of the spatially
homogeneous equilibrium (either in continuous space, or across patches).

The homogeneous equilibrium disappears when passive dispersal is non-random. In
this case, the new resulting population equilibrium and its stability will depend on dis-
persal probabilities between patches and it is possible that intermediate dispersal rates
will stabilize inherently unstable population dynamics (Hassell et al. 1991). A similar
situation arises for the non homogeneous equilibrium that emerges when population
dynamics are patch specific (Holt 1984, 1985; Murdoch et al. 2003). The models we
have studied in this article are similar to the homogeneous case with random dispersal,
even though population dynamics may be patch dependent, since the equilibrium is
again independent of adaptive dispersal. That is, population-dispersal dynamics with
density-dependent adaptive dispersal have the same population equilibrium as the
corresponding system without dispersal.

In our models, we have focused on how stability of our dispersal-independent equi-
librium depends on dispersal. When compared to studies on random dispersal, there
is no destabilization due to adaptive dispersal in the predator–prey model. In other
words, any diffusion driven Turing type instability is impossible when dispersal is
adaptive. On the other hand, adaptive dispersal can lead to instability of the dispersal-
independent equilibrium when the species are competitors, in contrast to those studies
that assume random dispersal for competing species (Rohani and Ruxton 1999b).
To exclude this possibility, one needs to assume not only that the intraspecific com-
petition in each patch is stronger than interspecific competition, but also that the
same condition holds for the virtual competition between species in different patches.
Although the species do not literally compete in a virtual fashion, the effects of within-
patch competition are felt across patches by means of the dispersal mechanism. This
phenomenon is reminiscent of the “ghost of the competition past”, where two spe-
cies are kept segregated in two different habitats as the result of their virtual (past)
competition (Morris 1999).

Our results on population-dispersal stability of the predator–prey and competition
models with adaptive dispersal were obtained using the linearization method and are
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thus only local. Whether or not the asymptotic stability of the population-dispersal
equilibrium is global, remains an open problem. In this article, we have assumed
that adaptive dispersal implies net movement to the patch with the higher per capita
growth rate. Our results do not necessarily extend to models where movement depends
on other mechanisms (e.g., only on the growth rate in the current patch such as the
partially adaptive model of Huang and Diekmann 2003). In particular, the equilibrium
without dispersal may change under this type of movement.
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Appendix A: Stability of the interior equilibrium for the single-species
patch model

First we consider the single species model (1) with fixed, density independent
dispersal rates. Our model with positive carrying capacities has an interior equilib-
rium (Hofbauer and Sigmund 1998). The Jacobian matrix evaluated at the interior
equilibrium is

J =
(

f1 + x1 f ′
1 − d12δ d21δ

d12δ f2 + x2 f ′
2 − d21δ

)
=

(
x1 f ′

1 − d21
x2
x1

δ d21δ

d12δ x2 f ′
2 − d12

x1
x2

δ

)
.

As we assume f ′
i < 0, the trace of matrix J is negative and

det J = x1x2 f ′
1 f ′

2 − δd12 f ′
1

x2
1

x2
− δd21 f ′

2
x2

2

x1

is positive. Thus, the interior equilibrium, is locally asymptotically stable indepen-
dently of dispersal speed. In fact, it is globally asymptotically stable (Takeuchi 1996).

Now we consider the model where distribution dynamics are described by model
(4). The Jacobian matrix evaluated at the carrying capacity Ki in each patch is

J =
(

(K1 + D(K1, K2)) f ′
1(K1) −D(K1, K2) f ′

2(K2)

−D(K1, K2) f ′
1(K1) (K2 + D(K1, K2)) f ′

2(K2)

)
.

Since f ′
i (Ki ) < 0, the trace of matrix J is negative and

det J = (K1 K2 + (K1 + K2)D(K1, K2)) f ′
1(K1) f ′

2(K2)

is positive. Thus, the interior equilibrium is locally asymptotically stable independently
of dispersal speed.
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In fact, this equilibrium is globally asymptotically stable for any number of patches
under adaptive dispersal because, if maxi fi > 0, then the patch (or patches) with
highest payoff will increase in density both through within patch population growth
and through a net gain from dispersal. By doing so, patch payoffs will necessarily
decrease, i.e., maxi fi is a decreasing function. Similarly, if mini fi < 0, then mini fi

is an increasing function. Therefore, fi → 0 for all i . This argument follows from the
Lyapunov-like function method used by Cressman and Křivan (2006) (Appendix B)
generalized to population-dispersal dynamics when dispersal is adaptive.

Appendix B: Stability of the interior equilibrium for predator–prey model (8)

The Jacobian at the interior equilibrium of model (8) [that we denote here as
(x1, x2, y1, y2) for the sake of simplicity instead of (x∗

1 , x∗
2 , y∗

1 , y∗
2 )] is

⎛
⎜⎜⎜⎝

(x1 + Dx )
∂ f1
∂x1

−Dx
∂ f2
∂x2

(x1 + Dx )
∂ f1
∂y1

−Dx
∂ f2
∂y2

−Dx
∂ f1
∂x1

(x2 + Dx )
∂ f2
∂x2

−Dx
∂ f1
∂y1

(x2 + Dx )
∂ f2
∂y2

(y1 + Dy)g′
1 −Dy g′

2 0 0
−Dy g′

1 (y2 + Dy)g′
2 0 0

⎞
⎟⎟⎟⎠

where Dx and Dy are the prey and predator dispersal rates respectively evaluated at
this equilibrium.

The coefficients of the characteristic polynomial λ4 + A1λ
3 + A2λ

2 + A3λ + A4
are

A1 = −(x1 + Dx )
∂ f1

∂x1
− (x2 + Dx )

∂ f2

∂x2
,

A2 = −g′
1

(
(Dx + x1)(Dy + y1)

∂ f1

∂y1
+ Dx Dy

∂ f2

∂y2

)

−g′
2

(
Dx Dy

∂ f1

∂y1
+ (Dx + x2)(Dy + y2)

∂ f2

∂y2

)

+(x1x2 + Dx (x1 + x2))
∂ f1

∂x1

∂ f2

∂x2
,

A3 = (x1x2 + Dx (x1 + x2))

(
(Dy + y1)g

′
1
∂ f1

∂y1

∂ f2

∂x2
+ (Dy + y2)g

′
2
∂ f1

∂x1

∂ f2

∂y2

)
,

A4 = g′
1g′

2(x1x2 + Dx (x1 + x2))(y1 y2 + Dy(y1 + y2))
∂ f1

∂y1

∂ f2

∂y2
.

By the Routh–Hurwitz conditions for 4 × 4 matrices (Allen 2007), all eigenvalues
of the Jacobian have negative real parts if and only if all Ai ’s are positive and

A3(A1 A2 − A3) − A2
1 A4 > 0. (16)
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Clearly, by our assumptions on fi and gi , all Ai ’s are positive. To prove (16), we first
show that A1 A2 − A3 > 0.

A1 A2 − A3 =
(

(x1 + Dx )
∂ f1
∂x1

+ (x2 + Dx )
∂ f2
∂x2

)

×
(

g′
1

(
(Dx + x1)(Dy + y1)

∂ f1
∂y1

+ Dx Dy
∂ f2
∂y2

)

+g′
2

(
Dx Dy

∂ f1
∂y1

+ (Dx + x2)(Dy + y2)
∂ f2
∂y2

)

− (x1x2 + Dx (x1 + x2))
∂ f1
∂x1

∂ f2
∂x2

)

−(x1x2 + Dx (x1 + x2))

(
(Dy + y1)g′

1
∂ f1
∂y1

∂ f2
∂x2

+ (Dy + y2)g′
2

∂ f1
∂x1

∂ f2
∂y2

)

=
(

(x1 + Dx )
∂ f1
∂x1

+ (x2 + Dx )
∂ f2
∂x2

) (
g′

1(Dx + x1)(Dy + y1)
∂ f1
∂y1

+g′
2(Dx + x2)(Dy + y2)

∂ f2
∂y2

)

+
(

(x1 + Dx )
∂ f1
∂x1

+ (x2 + Dx )
∂ f2
∂x2

) (
g′

1
∂ f2
∂y2

+ g′
2
∂ f1
∂y1

)
Dx Dy

−(x1x2 + Dx (x1 + x2))

(
(x1 + Dx )

∂ f1
∂x1

+ (x2 + Dx )
∂ f2
∂x2

)
∂ f1
∂x1

∂ f2
∂x2

−(x1x2 + Dx (x1 + x2))

(
(Dy + y1)g′

1
∂ f1
∂y1

∂ f2
∂x2

+ (Dy + y2)g′
2

∂ f1
∂x1

∂ f2
∂y2

)
.

(17)

Since

−(x1(Dx + x2) + Dx x2)

(
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2

)
∂ f1

∂x1

∂ f2

∂x2

and

(
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2

)(
g′

1
∂ f2

∂y2
+ g′

2
∂ f1

∂y1

)
Dx Dy

are positive, A1 A2 − A3 is greater than expression (17) with these terms deleted. It
is also greater than the expression resulting from deleting these terms and replacing
x1x2 + Dx (x1 + x2) by (x1 + Dx )(x2 + Dx ) in expression (17). Thus, we get
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A1 A2 − A3 >

(
(x1 + Dx )

∂ f1
∂x1

+ (x2 + Dx )
∂ f2
∂x2

)

×
(

g′
1(Dx + x1)(Dy + y1)

∂ f1
∂y1

+ g′
2(Dx + x2)(Dy + y2)

∂ f2
∂y2

)

−(x1 + Dx )(x2 + Dx )

(
(Dy + y1)g′

1
∂ f1
∂y1

∂ f2
∂x2

+ (Dy + y2)g′
2

∂ f1
∂x1

∂ f2
∂y2

)

= (x1 + Dx )2(y1 + Dy)g′
1
∂ f1
∂x1

∂ f1
∂y1

+ (x2 + Dx )2(y2 + Dy)g′
2

∂ f2
∂x2

∂ f2
∂y2

≥ 0.

Moreover,

A4 ≤ g′
1g′

2(x1(x2 + Dx ) + Dx x2)(y1 + Dy)(y2 + Dy)
∂ f1

∂y1

∂ f2

∂y2
,

and so

A2
1 A4 <

(
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2

)2

×g′
1g′

2(x1(x2 + Dx ) + Dx x2)(y1 + Dy)(y2 + Dy)
∂ f1

∂y1

∂ f2

∂y2
.

It follows that

A3(A1 A2 − A3) − A2
1 A4 > (x1(Dx + x2) + Dx x2)

×
(

(Dy + y1)g
′
1
∂ f1

∂y1

∂ f2

∂x2
+ (Dy + y2)g

′
2
∂ f1

∂x1

∂ f2

∂y2

)

×
(

(x1 + Dx )
2(y1 + Dy)g

′
1
∂ f1

∂x1

∂ f1

∂y1
+ (x2 + Dx )

2(y2 + Dy)g
′
2
∂ f2

∂x2

∂ f2

∂y2

)

−
(

(x1 + Dx )
∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2

)2

g′
1g′

2(x1(x2 + Dx )

+Dx x2)(y1 + Dy)(y2 + Dy)
∂ f1

∂y1

∂ f2

∂y2
)

= (x1(x2 + Dx ) + Dx x2)
∂ f1

∂x1

∂ f2

∂x2

(
∂ f1

∂y1
(x1 + Dx )(y1 + Dy)g

′
1

− ∂ f2

∂y2
(x2 + Dx )(y2 + Dy)g

′
2

)2

≥ 0.

We also observe that in the case of the Holling type II functional response when
predator–prey population dynamics are unstable in both patches (which happens when
∂ f1
∂x1

> 0,
∂ f2
∂x2

> 0) coefficient A1 is negative and the population equilibrium is unsta-
ble. In the mixed case when predator–prey population dynamics are unstable in one
patch but stable in the other patch (which happens when ∂ f1

∂x1
> 0,

∂ f2
∂x2

< 0 or vice
versa), we cannot use the above analysis to infer local stability of the population
equilibrium independently of dispersal rates. Numerical simulations (such as those in
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Fig. 3, bottom panels) show that large enough dispersal rates can stabilize population
dynamics.

Appendix C: Routh–Hurwitz stability condition for the competition model

The Jacobian at the equilibrium of model (14) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x1 + Dx )
∂ f1

∂x1
−Dx

∂ f2

∂x2
(x1 + Dx )

∂ f1

∂y1
−Dx

∂ f2

∂y2

−Dx
∂ f1

∂x1
(x2 + Dx )

∂ f2

∂x2
−Dx

∂ f1

∂y1
(x2 + Dx )

∂ f2

∂y2

(y1 + Dy)
∂g1

∂x1
−Dy

∂g2

∂x2
(y1 + Dy)

∂g1

∂y1
−Dy

∂g2

∂y2

−Dy
∂g1

∂x1
(y2 + Dy)

∂g2

∂x2
−Dy

∂g1

∂y1
(y2 + Dy)

∂g2

∂y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In what follows we set

A = ∂ f1

∂y1

∂g1

∂x1
− ∂ f1

∂x1

∂g1

∂y1
,

B = ∂ f2

∂y2

∂g2

∂x2
− ∂ f2

∂x2

∂g2

∂y2
,

C = ∂ f1

∂x1

∂g2

∂y2
− ∂ f1

∂y1

∂g2

∂x2
,

D = ∂ f2

∂x2

∂g1

∂y1
− ∂ f2

∂y2

∂g1

∂x1
,

X = Dx (x1 + x2) + x1x2 > 0,

Y = Dy(y1 + y2) + y1 y2 > 0.

We also use the following inequalities

X ≤ (Dx + x1)(Dx + x2), Y ≤ (Dy + y1)(Dy + y2).

The coefficients of the characteristic polynomial λ4 + A1λ
3 + A2λ

2 + A3λ + A4
are

A1 = −(Dx + x1)
∂ f1

∂x1
− (Dx + x2)

∂ f2

∂x2
− (Dy + y1)

∂g1

∂y1
− (Dy + y2)

∂g2

∂y2
,

A2 = X
∂ f1

∂x1

∂ f2

∂x2
− (x1 + Dx )(y1 + Dy)A

+(x1 + Dx )(y2 + Dy)
∂ f1

∂x1

∂g2

∂y2
− Dx Dy

∂ f2

∂y2

∂g1

∂x1
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+Y
∂g1

∂y1

∂g2

∂y2
− (x2 + Dx )(y2 + Dy)B + (x2 + Dx )(y1 + Dy)

∂ f2

∂x2

∂g1

∂y1

−Dx Dy
∂ f1

∂y1

∂g2

∂x2
,

A3 =
(

∂g2

∂y2
(Dx + x1)Y + ∂ f2

∂x2
(Dy + y1)X

)
A

+
(

∂g1

∂y1
(Dx + x2)Y + ∂ f1

∂x1
(Dy + y2)X

)
B,

and

A4 = XY AB.

Assuming that ∂ f1
∂x1

< 0,
∂ f2
∂x2

< 0,
∂g1
∂y1

< 0,
∂g2
∂y2

< 0, A < 0, and B < 0, then Ai is
positive for i = 1, 3, 4. The Dx Dy term of A2 has coefficient

−A − B + C + D.

This could be negative, in which case the equilibrium will be unstable when Dx and
Dy are large enough. This proves that condition C + D > A+ B from Proposition 2 is
a necessary condition for local stability of the interior equilibrium to be independent
of dispersal rates. In particular, if C + D > A + B, then A2 > 0 since all of its other
terms are positive.

Now assume that C + D > 0 (and A, B are negative). Then

A2 ≥ X
∂ f1

∂x1

∂ f2

∂x2
− (x1 + Dx )(y1 + Dy)A + (x1 y2 + Dx y2 + Dy x1)

∂ f1

∂x1

∂g2

∂y2

+Y
∂g1

∂y1

∂g2

∂y2
− (x2 + Dx )(y2 + Dy)B + (x2 y1 + Dx y1 + Dy x2)

∂ f2

∂x2

∂g1

∂y1
.

Using the above lower estimate of A2 yields

A1 A2 − A3 ≥ −
[
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2
+ (y1 + Dy)

∂g1

∂y1

+(y2 + Dy)
∂g2

∂y2

] [
X

∂ f1

∂x1

∂ f2

∂x2
+ (x1 y2 + Dx y2 + Dy x1)

∂ f1

∂x1

∂g2

∂y2

+Y
∂g1

∂y1

∂g2

∂y2
+ (x2 y1 + Dx y1 + Dy x2)

∂ f2

∂x2

∂g1

∂y1

]

+
[
(x1 + Dx )

∂ f1

∂x1
+ (y1 + Dy)

∂g1

∂y1

]
(x1 + Dx )(y1 + Dy)A

+
[
(x2 + Dx )

∂ f2

∂x2
+ (y2 + Dy)

∂g2

∂y2

]
(x2 + Dx )(y2 + Dy)B
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+(y1 + Dy)
∂ f2

∂x2
AD2

x + (x1 + Dx )
∂g2

∂y2
AD2

y

+(y2 + Dy)
∂ f1

∂x1
B D2

x + (x2 + Dx )
∂g1

∂y1
B D2

y

> −
[
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2
+ (y1 + Dy)

∂g1

∂y1

+(y2 + Dy)
∂g2

∂y2

] [
X

∂ f1

∂x1

∂ f2

∂x2
+ Y

∂g1

∂y1

∂g2

∂y2

]

+
[
(x1 + Dx )

∂ f1

∂x1
+ (y1 + Dy)

∂g1

∂y1

]
(x1 + Dx )(y1 + Dy)A

+
[
(x2 + Dx )

∂ f2

∂x2
+ (y2 + Dy)

∂g2

∂y2

]
(x2 + Dx )(y2 + Dy)B

> 0.

We observe that

−
[
(x1 + Dx )

∂ f1

∂x1
+ (x2 + Dx )

∂ f2

∂x2
+ (y1 + Dy)

∂g1

∂y1

+(y2 + Dy)
∂g2

∂y2

] [
X

∂ f1

∂x1

∂ f2

∂x2
+ Y

∂g1

∂y1

∂g2

∂y2

]

= −
(

∂ f1

∂x1

)2
∂ f2

∂x2
X (x1 + Dx )

− ∂ f1

∂x1

(
∂ f2

∂x2

)2

X (x2 + Dx ) −
(

∂g1

∂y1

)2
∂g2

∂y2
Y (y1 + Dy)

−∂g1

∂y1

(
∂g2

∂y2

)2

Y (y2 + Dy) − ∂ f2

∂x2

∂g1

∂y1

∂g2

∂y2
Y (x2 + Dx )

− ∂ f1

∂x1

∂g1

∂y1

∂g2

∂y2
Y (x1 + Dx ) − ∂ f1

∂x1

∂ f2

∂x2

∂g1

∂y1
X (y1 + Dy)

− ∂ f1

∂x1

∂ f2

∂x2

∂g2

∂y2
X (y2 + Dy) > AX (y1 + Dy)

∂ f2

∂x2
+ B X (y2 + Dy)

∂ f1

∂x1

+AY (x1 + Dx )
∂g2

∂y2
+ BY (x2 + Dx )

∂g1

∂x1
= A3.

In the last inequality, we ignored all terms that contain a squared partial derivative and
used the fact that − ∂ f1

∂x1

∂g1
∂y1

< A and − ∂ f2
∂x2

∂g2
∂y2

< B.
The above calculations prove the following result.
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Proposition 3

A1 A2 − A3 > A3 +
(

(Dx + x1)
∂ f1

∂x1
+ (Dy + y1)

∂g1

∂y1

)
(Dx + x1)(Dy + y1)A

+
(

(Dx + x2)
∂ f2

∂x2
+ (Dy + y2)

∂g2

∂y2

)
(Dx + x2)(Dy + y2)B.

Using these inequalities we now prove that A3(A1 A2 − A3)− A2
1 A4 > 0. We have

A3(A1 A2 − A3) − A2
1 A4

> A2
3 +

[(
∂g2

∂y2
(Dx + x1)Y + ∂ f2

∂x2
(Dy + y1)X

)
A +

(
∂g1

∂y1
(Dx + x2)Y

+ ∂ f1

∂x1
(Dy + y2)X

)
B

]

×
[(

(Dx + x1)
∂ f1

∂x1
+ (Dy + y1)

∂g1

∂y1

)
(Dx + x1)(Dy + y1)A

+
(

(Dx + x2)
∂ f2

∂x2
+ (Dy + y2)

∂g2

∂y2

)
(Dx + x2)(Dy + y2)B

]

−
(

(Dx + x1)
∂ f1

∂x1
+ (Dx + x2)

∂ f2

∂x2
+ (Dy + y1)

∂g1

∂y1

+(Dy + y2)
∂g2

∂y2

)2

AB XY = A2
3

+A2
(

∂g2

∂y2
(Dx + x1)Y + ∂ f2

∂x2
(Dy + y1)X

)

×
(

(Dx + x1)
∂ f1

∂x1
+ (Dy + y1)

∂g1

∂y1

)
(Dx + x1)(Dy + y1)

+B2
(

∂g1

∂y1
(Dx + x2)Y + ∂ f1

∂x1
(Dy + y2)X

)

×
(

(Dx + x2)
∂ f2

∂x2
+ (Dy + y2)

∂g2

∂y2

)
(Dx + x2)(Dy + y2)

+AB

[(
∂g2

∂y2
(Dx + x1)Y

+ ∂ f2

∂x2
(Dy + y1)X

) (
(Dx + x2)

∂ f2

∂x2
+ (Dy + y2)

∂g2

∂y2

)
(Dx + x2)(Dy + y2)

+
(

∂g1

∂y1
(Dx + x2)Y + ∂ f1

∂x1
(Dy + y2)X

)

×
(

(Dx + x1)
∂ f1

∂x1
+ (Dy + y1)

∂g1

∂y1

)
(Dx + x1)(Dy + y1)
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−
(

(Dx + x1)
∂ f1

∂x1
+ (Dx + x2)

∂ f2

∂x2
+ (Dy + y1)

∂g1

∂y1

+(Dy + y2)
∂g2

∂y2

)2

XY

]
= A2

3

+A2
(

∂g2

∂y2
(Dx + x1)Y + ∂ f2

∂x2
(Dy + y1)X

)

×
(

(Dx + x1)
∂ f1

∂x1
+ (Dy + y1)

∂g1

∂y1

)
(Dx + x1)(Dy + y1)

+B2
(

∂g1

∂y1
(Dx + x2)Y + ∂ f1

∂x1
(Dy + y2)X

)

×
(

(Dx + x2)
∂ f2

∂x2
+ (Dy + y2)

∂g2

∂y2

)
(Dx + x2)(Dy + y2)

+AB

((
∂g2

∂y2

)2

(Dy + y2)
2Y D2

x +
(

∂ f2

∂x2

)2

(Dx + x2)
2 X D2

y

+
(

∂ f1

∂x1

)2

(Dx + x1)
2 X D2

y +
(

∂g1

∂y1

)2

(Dy + y1)
2Y D2

x

+ ∂ f2

∂x2

∂g2

∂y2
(Dx + x2)(Dy + y2)(D2

x Y + D2
y X)

+ ∂ f1

∂x1

∂g1

∂y1
(Dx + x1)(Dy + y1)(D2

x Y + D2
y X)

−2(Dx + x1)(Dx + x2)
∂ f1

∂x1

∂ f2

∂x2
XY − 2(Dx + x1)(Dy + y2)

∂ f1

∂x1

∂g2

∂y2
XY

−2(Dx +x2)(Dy +y1)
∂ f2

∂x2

∂g1

∂y1
XY −2(Dy +y1)(Dy +y2)

∂g1

∂y1

∂g2

∂y2
XY )

)
= A2

3

+
(

A2(Dx + x1)
2(Dy + y1)

2 − 2(Dx + x1)(Dx + x2)Y AB

+(Dx + x2)
2(Dy + y2)

2 B2
)

X
∂ f1

∂x1

∂ f2

∂x2

+
(

A2(Dx + x1)
2(Dy + y1)

2 − 2(Dy + y1)(Dy + y2)X AB

+(Dx + x2)
2(Dy + y2)

2 B2
)

Y
∂g1

∂y1

∂g2

∂y2

+
(

A2(Dx + x1)
3(Dy + y1)Y − 2(Dx + x1)(Dy + y2)XY AB

+(Dx + x2)(Dy + y2)
3 X B2

) ∂ f1

∂x1

∂g2

∂y2

+
(

A2(Dx + x1)(Dy + y1)
3 X − 2(Dx + x2)(Dy + y1)XY AB

+(Dx + x2)
3(Dy + y2)Y B2

) ∂ f2

∂x2

∂g1

∂y1
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+AB

(
(
∂g2

∂y2
)2(Dy + y2)

2Y D2
x + (

∂ f2

∂x2
)2(Dx + x2)

2 X D2
y

+(
∂ f1

∂x1
)2(Dx + x1)

2 X D2
y + (

∂g1

∂y1
)2(Dy + y1)

2Y D2
x + ∂ f2

∂x2

∂g2

∂y2
(Dx + x2)

× (Dy +y2)(D2
x Y +D2

y X)+ ∂ f1

∂x1

∂g1

∂y1
(Dx + x1)(Dy +y1)(D2

x Y +D2
y X)

)
> A2

3

+ (
A(Dx + x1)(Dy + y1) − (Dx + x2)(Dy + y2)B

)2
X

∂ f1

∂x1

∂ f2

∂x2

+ (
A(Dx + x1)(Dy + y1) − (Dx + x2)(Dy + y2)B

)2
Y

∂g1

∂y1

∂g2

∂y2

+
(

A2(Dx + x1)
3(Dy + y1)Y − 2(Dx + x1)(Dy + y2)XY AB

+(Dx + x2)(Dy + y2)
3 X B2

) ∂ f1

∂x1

∂g2

∂y2

+
(

A2(Dx + x1)(Dy + y1)
3 X − 2(Dx + x2)(Dy + y1)XY AB

+(Dx + x2)
3(Dy + y2)Y B2

) ∂ f2

∂x2

∂g1

∂y1

where in the last inequality we replaced Y by (y1 + Dy)(y2 + Dy) and X by (x1 +
Dx )(x2 + Dx ) in the first two terms. Because

A2
3 =

(
∂g1

∂y1
(Dx + x2)B + ∂g2

∂y2
(Dx + x1)A

)2

Y 2

+
(

∂ f1

∂x1
(Dy + y2)B + ∂ f2

∂x2
(Dy + y1)A

)2

X2

+2XY

(
A

∂g2

∂y2
(x1 + Dx ) + B

∂g1

∂y1
(x2 + Dx )

)

×
(

A
∂ f2

∂x2
(y1 + Dy) + B

∂ f1

∂x1
(y2 + Dy)

)
,

we observe that

A3(A1 A2 − A3) − A2
1 A4

>
(

A(Dx + x1)(Dy + y1) − (Dx + x2)(Dy + y2)B
)2

X
∂ f1

∂x1

∂ f2

∂x2

+ (
A(Dx + x1)(Dy + y1) − (Dx + x2)(Dy + y2)B

)2
Y

∂g1

∂y1

∂g2

∂y2
> 0.

This completes the proof of Proposition 2.
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Křivan V, Sirot E (2002) Habitat selection by two competing species in a two-habitat environment. Am Nat
160:214–234
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