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Abstract. This article shows how to apply results of chemical reaction net-

work theory (CRNT) to prove uniqueness and stability of a positive equilibrium
for pairs/groups distributional dynamics that arise in game theoretic mod-

els. Evolutionary game theory assumes that individuals accrue their fitness

through interactions with other individuals. When there are two or more dif-
ferent strategies in the population, this theory assumes that pairs (groups) are

formed instantaneously and randomly so that the corresponding pairs (groups)

distribution is described by the Hardy–Weinberg (binomial) distribution. If
interactions times are phenotype dependent the Hardy-Weinberg distribution

does not apply. Even if it becomes impossible to calculate the pairs/groups

distribution analytically we show that CRNT is a general tool that is very
useful to prove not only existence of the equilibrium, but also its stability. In

this article, we apply CRNT to pair formation model that arises in two player
games (e.g., Hawk-Dove, Prisoner’s Dilemma game), to group formation that

arises, e.g., in Public Goods Game, and to distribution of a single population
in patchy environments. We also show by generalizing the Battle of the Sexes
game that the methodology does not always apply.

1. Introduction. Classic two-player evolutionary game theory [13, 22] assumes
that individuals interact in pairs and, depending on the strategies they use, they
gain or lose payoffs. For example, in two-strategy games, there are three possible
types of pairs: two homogeneous and one heterogeneous pair types. To calculate
individual payoffs at given frequencies of the two strategies in the population, the
theory assumes that pairs are formed at random. This leads to the Hardy-Weinberg
proportions of the three pair types. The situation changes when pairing is not ran-
dom. One reason this can happen is when interaction times are strategy dependent
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[19, 20, 6, 1, 18]. For these models, pair formation dynamics as described by differ-
ential equations are needed for the calculation of individual fitness (i.e., payoff). It
is then important to know that the pair formation dynamics converge to a unique
equilibrium. This can be shown analytically only for the most simple models [e.g.,
19]. For more complex models, [11] gave conditions under which a single positive
equilibrium exists, without showing its stability.

As many of these distributional models are in the form of mass action kinetics,
it is appealing to use powerful results of chemical reaction network theory [10].
This theory originated in the work of F. J. M. Horn [15, 16, 17] and led to the
Deficiency Zero and One Theorems that provide conditions on the structure of the
reaction network that guarantee a unique and locally stable positive equilibrium.
The question of global stability led to the Global Attractor Conjecture that was
proved recently [4]. The chemical reaction network theory is based on constructing
an appropriate Lyapunov function as illustrated by the two examples in Section 2.
In principle, the theory applies to very complex networks and so is not limited to
the small networks considered in these examples.

Křivan et al. [20] consider a two strategy game where individuals are either paired
or single. The time individuals want to stay in the pair depends on their strategies.
The equilibrium distribution at given strategy frequencies and population size re-
quires to solve a system of quadratic equations and the resulting solution can be
obtained using computer algebra software, but it is far too complex for further sta-
bility analysis. Instead, numerical simulations showed that distributional dynamics
were converging to a single interior equilibrium. In this article, we apply chemical
reaction network theory to show that this is really true and we also extend the
result to any number of strategies (Section 2.1).

Our second example (Section 2.2) investigates the group formation process for
multi-player games. Křivan and Cressman [18] showed that in the public goods
game where individuals are free to leave their current group and search for a new
group hoping to receive a higher payoff, there are some counter-intuitive opt-out
rules. In particular, opting out against cooperators is as good as opting out against
defectors. The opting out rules were based on the number of defectors/cooperators
in the current group, and they were fixed at the beginning of the game. Once
again, to calculate fitnesses it was crucial to calculate the distribution of groups
with respect to the number of cooperators they contain. As it was not possible
to calculate analytically the equilibrium distribution, numerical simulations were
performed instead that suggested that there was a unique and stable equilibrium
distribution. Again, we show this result can be proven using chemical reaction
network theory.

Section 3 considers pair formation for two asymmetric games. The first example
(Section 3.1) is the Battle of the Sexes (BoS) game [9] where pair interaction times
and times to care for offspring or for courtship are strategy dependent. Cressman
and Křivan [7] assumed that the resulting distributional equilibrium is unique and
stable and they analysed the Nash equilibria of the game as a function of inter-
action times. Again, using chemical reaction theory (CRNT) we prove that the
distributional equilibrium is stable. The BoS game is somewhat particular in that
it assumes that some interaction times are equal to zero (e.g., Philanderer males do
not interact with Coy females or Philanderer males do not spend any time caring
for offspring) which simplifies the distributional dynamics. As a second example,
we consider a generalised BoS game of [7] where we assume all pair interaction
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times as well as times to recover for disbanded individuals before pairing again can
be positive. Then we show that this additional “mixing” prevents us to apply the
Deficiency Zero Theorem for the resulting distributional dynamics.

Finally, Section 3.3 briefly considers individual movement in a patchy environ-
ment. The results here illustrate that the methods of chemical reaction network
theory apply to biological systems that are not based on pair/group formation.

2. Models for symmetric games. Here we consider two models of pairs/groups
formation in systems with different phenotypes. Both of these models assume that
pairs/groups are formed at random but the time they stay together depends on the
phenotypes involved. Differential equations describing these processes assume mass
action kinetics which is the usual assumption in models of population dynamics. In
both these cases, we prove existence and stability of a single positive equilibrium
using results of chemical reaction network theory [CRNT; 10]. This theory provides
a procedure that leads to differential equations describing an arbitrary chemical re-
action network. It also provides conditions under which these differential equations
have a single positive equilibrium which is globally asymptotically stable [10, 4]. We
also show that this theory is useful to prove stability in distribution of a population
dispersing between several patches. We start with uniqueness and stability of the
pair distribution equilibrium.

2.1. Stability of pair distribution dynamics. Suppose the population has m
possible phenotypes (also called [pure] strategies) i = 1, ...,m. Individuals are either
single or in pairs. Singles meet each other at random with rate λ > 0 and form
pairs. Each ij pair stays together for an expected time τij > 0, i, j = 1, . . . ,m (i.e.,
ij pairs disband at rate τij). Let ni be the number of singles with phenotype i and
nij be the number of (ordered) ij pairs. The distributional dynamics are

dni
dt

= −λni
m∑
j=1

nj +

m∑
j=1

nij
τij

+

m∑
j=1

nji
τji

dnij
dt

=
λ

2
ninj −

nij
τij

.

(1)

where ni and nij are functions of time t. In particular, nij pairs are formed at rate
λ
2ninj since these pairs consist of two individuals.1 For two phenotypes, distribu-
tional dynamics (1) were used, e.g., in [20] to model distribution of single Hawks,
single Doves and their pairs. In fact, we will analyze the following more general
distributional dynamics where singles of phenotypes i and j meet at random at rate

λij = λji (i.e., the rate nij pairs are formed,
λij
2 ninj , depends on the phenotypic

pair)

dni
dt

= −ni
m∑
j=1

λijnj +

m∑
j=1

nij
τij

+

m∑
j=1

nji
τji

dnij
dt

=
λij
2
ninj −

nij
τij

.

(2)

1Here and throughout the article, distributional dynamics such as (1) ignore finite popula-
tion effects by assuming that population sizes are sufficiently large that they evolve according to

expected rates of change.
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Under the condition assumed for the remainder of this section that ij and ji
pairs stay together for the same expected amount of time (i.e., τij = τji for i, j =
1, . . . ,m),

d(nij − nji)
dt

= −nij − nji
τij

.

Thus, all trajectories of the (m + m2)−dimensional dynamics (2) converge to the

invariant m(m+3)
2 −dimensional subspace where nij = nji for i, j = 1, . . . ,m. The

distributional dynamics on this subspace can be rewritten as

dni
dt

= −ni
m∑
j=1

λijnj + 2

m∑
j=1

nij
τij

dnij
dt

=
λij
2
ninj −

nij
τij

.

(3)

We are interested in the equilibria and their stability for this system of differential
equations. The equilibria cannot be calculated analytically except in some special
cases. For instance, if all pairs stay together for the same expected amount of time
and all singles meet at the same rate, we get

Proposition 1. Let τij = τ > 0 and λij = λ > 0 for all i, j = 1 . . . ,m. Then for
each total number of individuals of phenotype i, Ni ≡ ni + 2

∑m
j=1 nij, system (3)

has a unique, positive equilibrium

ni =
2Ni

1 +
√

1 + 4Nλτ
, nij =

2NiNjλτ(
1 +
√

1 + 4Nλτ
)2 , (4)

where N ≡ Σmj=1Nj is the population size.

Proof. When τij = τ and λij = λ for all i, j = 1, . . . ,m, the equilibrium for (3)
satisfies

Ni = ni + 2

m∑
j=1

nij = ni + λτni

m∑
j=1

nj = ni

1 + λτ

m∑
j=1

nj

 (5)

and

N =

m∑
i=1

Ni =

m∑
i=1

ni + λτ

(
m∑
i=1

ni

)2

.

Thus
m∑
i=1

ni =
−1 +

√
1 + 4λτN

2λτ
.

Substituting this expression into (5) yields

Ni = ni

(
1 + λτ

√
1 + 4λτN − 1

2λτ

)
= ni

(
1 +
√

1 + 4λτN

2

)
.

Thus

ni =
2Ni

1 +
√

1 + 4λτN
,

nij =
λτninj

2
=

2λτNiNj(
1 +
√

1 + 4λτN
)2 .
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Notice that, under the conditions of Proposition 1, the total number of pairs at
equilibrium (4) satisfies

m∑
i,j=1

nij =
2λτ(

1 +
√

1 + 4λτN
)2
(

m∑
i=1

Ni

)2

.

Thus, the frequency distribution of unordered pairs pij =
nij+nji∑m
i,j=1 nij

at the unique

equilibrium are given by

pii =
N2
i

(
∑m
i=1Ni)

2
,

pij =
2NiNj

(
∑m
i=1Ni)

2
,

and so satisfy the Hardy-Weinberg principle

piipjj =
1

4
p2
ij . (6)

The purpose of this section is to generalize the existence of this equilibrium to
arbitrary choices of positive τij and λij in (3) and to examine its stability. Unfortu-
nately, an analytic expression for the equilibrium is not feasible in general. One way
to investigate its uniqueness and stability is to treat (3) as the dynamical system
corresponding to the mass action kinetics (MAK) given by the following “reactions”

ni + nj

λij
2−−⇀↽−−
1
τij

nij, i, j = 1, . . . ,m (7)

describing (ordered) pair formation with rate λij/2 and pair disbanding with rate
1/τij .

Following CRNT, there are m + m2 “species” S = {ni, nij | 1 ≤ i, j ≤ m} and

n = m(m+1)
2 + m2 complexes C = {ni + nj |1 ≤ i ≤ j ≤ m} ∪ {nij |1 ≤ i, j ≤ m}.2

The reaction network (7) has ` = m(m+1)
2 linkage classes3 {ni + nj , nij , nji} for

1 ≤ i ≤ j ≤ m (i.e., disjoint subsets of C connected by reaction arrows, see Example
1) [Definition 6.1.1. in 10]. The following example illustrates how (7) generates the
distributional dynamics (2) when m = 2.

Example 1. For two-strategy games (m = 2), the reaction network is

2Note that ni + nj is the same complex as nj + ni but nij and nji are different complexes if

j 6= i.
3If there is a chain of one or more reactions through which two complexes are connected, these

complexes are said to be linked. Being linked induces a partition on the set of complexes into
equivalence of linkage classes.
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2n1

λ11

2

1
τ11

n11

2n2

λ22

2

1
τ22

n22

n1 + n2

λ1
2

2
1
τ1

2

n12

λ
212

1τ
21 n21

(8)

There are 6 species S = {n1, n2, n11, n12, n21, n22}, n = 7 complexes

C = {2n1, 2n2, n11, n12, n21, n22, n1 + n2}

and ` = 3 linkage classes {{2n1, n11}, {2n2, n22}, {n1 + n2, n12, n21}}.
Reaction network (8) defines a kinetics matrix K which has initial complexes in

columns and final complexes in rows and the entries of the matrix are the corre-
sponding reaction rates. With elements of C and S listed in the same order as above,
the kinetics matrix is

K =



2n1 2n2 n1+n2 n11 n22 n12 n21

2n1 0 0 0 1
τ11

0 0 0

2n2 0 0 0 0 1
τ22

0 0

n1+n2 0 0 0 0 0 1
τ12

1
τ21

n11
λ11

2 0 0 0 0 0 0

n22 0 λ22

2 0 0 0 0 0

n12 0 0 λ12

2 0 0 0 0

n21 0 0 λ21

2 0 0 0 0


.

Together with the stoichiometric matrix Y which has complexes in columns and
species in rows with stoichiometric coefficients as entries,

Y =



2n1 2n2 n1+n2 n11 n22 n12 n21

n1 2 0 1 0 0 0 0
n2 0 2 1 0 0 0 0
n11 0 0 0 1 0 0 0
n22 0 0 0 0 1 0 0
n12 0 0 0 0 0 1 0
n21 0 0 0 0 0 0 1

,

CRNT defines differential equations describing the network dynamics for the evolu-
tion of species numbers. This is done through the 6−dimensional vector field

f = Y (K −DiagonalMatrix(K>1))ψ. (9)

Here 1 denotes the vector consisting of 1s, and DiagonalMatrix transforms a vector
into a diagonal matrix where elements of the vector form the matrix diagonal. Vector
ψ has dimension equal to the number of complexes in the network. For each complex,
the corresponding entry in this vector is given as the product of species that compose
the complex. That is, ψ = {n2

1, n
2
2, n1n2, n11, n22, n12, n21}. By performing the



STABILITY OF DISTRIBUTIONAL DYNAMICS 7

matrix calculations in (9), we obtain the right-hand side of the following network
dynamics corresponding to reaction network (8) which assumes λ12 = λ21

dn1

dt
=− n1 (λ11n1 + λ12n2) +

2n11

τ11
+
n12

τ12
+
n21

τ21

dn2

dt
=− n2 (λ21n1 + λ22n2) +

n12

τ12
+
n21

τ21
+

2n22

τ22

dn11

dt
=
λ11n

2
1

2
− n11

τ11

dn22

dt
=
λ22n

2
2

2
− n22

τ22

dn12

dt
=
λ12n1n2

2
− n12

τ12

dn21

dt
=
λ21n1n2

2
− n21

τ21
.

(10)

This is the distribution dynamics (2) when m = 2.

When the kinetics matrix K and stoichiometric matrix Y as well as the vector ψ
are extended to games with a general number m of strategies, f in (9) becomes the
(m + m2)−dimensional vector field for the distributional dynamics (2). To apply
CRNT to this MAK system, we must consider the set of reactions in (7) given by

R = {nij − (ni + nj) | 1 ≤ i, j ≤ m}

as well as the reverse of these reactions (ni + nj) − nij (which we do not list). In
particular, the network is reversible as the arrows in (7) point both ways. The set of
reactions R can be represented as an m2 × (m2 +m) matrix R where each column
corresponds to a species and the m2 rows provide the species coefficients of the
corresponding reaction. If the species columns are arranged to have all singles first
and all the pairs nij last, then the last m2 columns of R form the identity matrix.
Thus, the rank of R is s = m2, an essential fact in the proof of Proposition 2 below.

For Example 1, the set of reactions is R = {n11 − 2n1, n22 − 2n2, n12 − (n1 +
n2), n21 − (n1 + n2)}, where we do not list the reverse reactions for simplicity. The
corresponding reaction matrix is

R =


n1 n2 n11 n22 n12 n21

n11−2n1 −2 0 1 0 0 0
n22−2n2 0 −2 0 1 0 0

n12−n1−n2 −1 −1 0 0 1 0
n21−n1−n2 −1 −1 0 0 0 1


which clearly has rank s = 4.

In what follows we denote by R≥0 the set of non-negative real numbers and by
R+ the set of positive numbers. It is important to note that for fixed positive Ni
(i = 1, . . . ,m), the affine subspace

{(n1, . . . , nm, n11, . . . , n1m, . . . , nm1, . . . , nmm)|Ni = ni +

m∑
j=1

nij , i = 1, . . . ,m}

is invariant for dynamics (3). The intersection of this affine subspace with Rm+m2

+

is called a positive stoichiometric compatibility class [Definition 3.4.6 in 10].
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Proposition 2. Let τij > 0 and λij > 0 for all i, j = 1 . . . ,m. Then for each total
positive number of individuals of phenotype i = 1, . . . ,m, Ni ≡ ni + 2

∑m
j=1 nij,

system (3) has a unique, positive equilibrium (i.e., in Rm+m2

+ ) which is globally

asymptotically stable with respect to Rm+m2

≥0 .

Proof. The existence and uniqueness of the positive equilibrium follows from the
Deficiency Zero Theorem [Theorem 7.1.1 in 10].4 Indeed, network (7) is reversible

and its deficiency, defined as δ = n− `− s = m(m+1)
2 +m2 − m(m+1)

2 −m2 is zero.5

Thus, for each total positive number of individuals of phenotype i = 1, . . . ,m,

Ni = ni+ 2
∑m
j=1 nij , there exists a positive equilibrium n∗ = (n∗i , n

∗
ij) ∈ Rm+m2

+ of

system (3) which is unique. In fact, this equilibrium is in the positive stoichiometric
class defined by N1, . . . , Nm. The same theorem also shows that the equilibrium is
locally asymptotically stable using the Lyapunov function [10]

V =

m∑
i=1

(
ni ln

ni
n∗i
− (ni − n∗i )

)
+

m∑
i,j=1

(
nij ln

nij
n∗ij
− (nij − n∗ij)

)
. (11)

To see this, rewrite system (3) as

dni
dt

=2

m∑
j=1

n∗ij
τij

(
nij
n∗ij
− ninj
n∗in

∗
j

)
, i = 1, . . . ,m

dnij
dt

=
n∗ij
τij

(
ninj
n∗in

∗
j

− nij
n∗ij

)
, 1 ≤ i, j ≤ m.

(12)

since the components of n∗ ∈ Rm+m2

+ satisfy 2
n∗
ij

τij
= λn∗in

∗
j . It is straightforward

to show that V is positive at all interior positive points n = (ni, njk) ∈ Rm+m2

+

where i, j, k = 1, . . . ,m except at V (n∗) = 0. Moreover, the derivative of V along

4Here we state for readers convenience a slightly reworded Deficiency Zero Theorem taken from
Feinberg [10].

Theorem 1. Let us consider a reaction network of deficiency zero.

1. If the network is not weakly reversible, then, for an arbitrary kinetics, the differential equations for

the kinetic system cannot admit a positive equilibrium, nor can they admit a cyclic composition
trajectory containing a composition at which all species concentrations are positive.

2. If the network is weakly reversible (in particular, if it is reversible) and the kinetics is mass
action, then, regardless of rate constant values, the resulting differential equations have the fol-
lowing properties: There exists within each positive stoichiometric compatibility class precisely one

equilibrium; that equilibrium is asymptotically stable; and there cannot exist a nontrivial cyclic
composition trajectory along which all species concentrations are positive.

5For our purposes, these results imply that our model satisfies the conditions of The Deficiency
Zero Theorem (DZT). In particular, since our kinetics are mass action, the resulting differential

equation has precisely one equilibrium which is asymptotically stable regardless of the values of

the rate constants.
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trajectories of (3) is

dV

dt
=

m∑
i=1

dni
dt

ln
ni
n∗i

+

m∑
i,j=1

dnij
dt

ln
nij
n∗ij

=

m∑
i,j=1

n∗ij
τij

(
nij
n∗ij
− ninj
n∗in

∗
j

)(
2 ln

ni
n∗i
− ln

nij
n∗ij

)

=

m∑
i,j=1

n∗ij
τij

(
nij
n∗ij
− ninj
n∗in

∗
j

)(
ln
ni
n∗i

+ ln
nj
n∗j
− ln

nij
n∗ij

)
where the last equality follows from the symmetries nij = nji, n

∗
ij = n∗ji, and

τij = τji (i.e.,
n∗
ij

τij

(
nij
n∗
ij
− ninj

n∗
i n

∗
j

)
is symmetric in ij). Thus, the derivative of V along

trajectories of (12) is

dV

dt
=

m∑
i=1

m∑
j=i

n∗ij
τij

(
nij
n∗ij
− ninj
n∗in

∗
j

)(
ln
ninj
n∗in

∗
j

− ln
nij
n∗ij

)
< 0

except at the equilibrium n∗ where dV/dt = 0. That is, V is a Lyapunov function
and so the equilibrium n∗ is l.a.s.

To prove global stability,6 we need to show that each trajectory which starts

in Rm+m2

≥0 converges to n∗. If this is not the case, there is such a trajectory that
contains an ω− limit point nω other than n∗ since each stoichiometric compatibility
class is compact. Let us first consider points n on the boundary face where ni = 0.
From (3), dni

dt = 2Σmj=1
nij
τij

and Ni = 2Σmj=1nij at any such point. Thus dni
dt ≥

minij{1/τij}Ni on this boundary face, i.e., this face is repelling, which cannot
then contain nω. Moreover, for some ε > 0 and t sufficiently large, ni(t) > ε
for all i. Now consider points n on the boundary face where nij = 0. From (3),
dnij
dt =

λij
2 ninj ≥ 1

2 minij{λij}ε2 for t sufficiently large and 1 ≤ i, j ≤ m. Thus nω

must be in the interior of the stoichiometric compatibility class corresponding to
N1, . . . , Nm. This is impossible since V is strictly decreasing at nω.

Distributional dynamics for two phenotypes (m = 2) and a choice of model pa-
rameters are shown in Figure 1A. The beauty of Proposition 2 is that, qualitatively,
this plot is independent of the values of interaction rates, provided they are positive.
Specifically, all trajectories will converge to the same unique distribution for a given
choice of N1 and N2 along with reaction rates in (8).

2.2. Stability of group distribution dynamics for two strategy games. Now
suppose the population has 2 phenotypes, Cooperate (C) and Defect (D), and that
individuals are either single or in groups of size m.7 The prototypical example of
interactions within a group is the m−player public goods game (PGG) where each
group member contributes a portion of their identical endowment to the public good
and receives an equal share of the total contribution multiplied by an enhancement

6There has been controversy (see Discussion) in the CRNT community whether the equilibrium
arising from a system satisfying the conditions of the Deficiency Zero Theorem is automatically
globally asymptotically stable (g.a.s.) as well as l.a.s., i.e., all trajectories in its stoichiometric com-

patibility class converge to the equilibrium. To avoid this controversy, we provide an independent
proof for our MAK system.

7That is, in this section, m is the group size and not the number of phenotypes as in Section
2.1 where the group size is 2.
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factor r. In the classic set-up for the one-shot PGG, individuals are always in
groups that play the game once. Under the usual assumption that 1 < r < m, it is
best from an individual perspective to contribute nothing given the choices of the
other members of his/her group (i.e., mutual Defection is the only Nash equilibrium
(NE)) [e.g., 8, 23, 18]. PGG then models a social dilemma since it is best for the
group if everyone contributes their entire endowment (i.e., Cooperates).

In this section, groups form and disband at rates dependent on the group compo-
sition. Specifically, we assume that each individual either always plays C or always
D. Let nC and nD be the number of singles playing C and D, respectively, and
ni be the number of (unordered) groups with i Cooperators and m − i Defectors.
We assume that groups with i Cooperators stay together for an expected time τi
(i.e., these groups disband at rate τi). Furthermore, when i Cooperators and m− i
Defectors meet at random, they form a group of size m at rate λi. The group
distributional dynamics are then

dnC
dt

=

m∑
i=1

(
ini
τi
− λiiniCnm−iD

)
dnD
dt

=

m−1∑
i=0

(
(m− i)ni

τi
− λi(m− i)niCnm−iD

)
dni
dt

= λin
i
Cn

m−i
D − ni

τi
, i = 0, . . . ,m.

(13)

An important special case assumes that all singles meet at random and groups
are formed at rate λ. Then λi = λ

m

(
m
i

)
and the distributional dynamics are

dnC
dt

=

m∑
i=1

ini
τi
− λnC(nC + nD)m−1

dnD
dt

=

m−1∑
i=0

(m− i)ni
τi

− λnD(nC + nD)m−1

dni
dt

=
λ

m

(
m

i

)
niCn

m−i
D − ni

τi
, i = 0, . . . ,m.

(14)

For instance, if m = 2 (i.e., groups consist of pairs) and unordered heterogeneous
pairs n1 are replaced by ordered pairs n12 and n21 where n12 = n21, then these group
dynamics (14) are the same as the pair dynamics (3) with appropriate reaction rates
in the case when Section 2.1 has two strategies.

If, in addition, all groups stay together for the same expected amount of time,
we get

Proposition 3. Let τi = τ > 0 and λi = λ
m

(
m
i

)
for all i = 0 . . . ,m. Then for each

total number of Cooperators NC and of Defectors ND, system (14) has a unique
positive equilibrium n = (nC , nD, n1, ..., nm) that is globally asymptotically stable
with respect to Rm+3

≥0 . The distribution of groups at this equilibrium is the binomial

distribution8

ni =
λτ

m

(
m

i

)
niCn

m−i
D

8When m = 2, this distribution satisfies the Hardy-Weinberg principle (6).
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where nC
NC

= nD
ND

= g(NC+ND)
NC+ND

and g(NC + ND) is the unique positive solution for
nC + nD of the implicit equation

NC +ND = nC + nD + λτ(nC + nD)m. (15)

Proof. The existence, uniqueness and stability of n follows from Proposition 4 below.
From (14),

ni =
λτi
m

(
m

i

)
niCn

m−i
D =

λτ

m

(
m

i

)
niCn

m−i
D

since τi = τ for all i = 0 . . . ,m. Thus

NC +ND = nC +

m∑
i=0

ini + nD +

m∑
i=0

(m− i)ni

= nC + nD +m

m∑
i=1

ni = nC + nD + λτ(nC + nD)m.

(16)

Since λτ > 0, Descartes’ rule of signs implies existence of exactly one positive
solution g(NC +ND) for nC + nD of (16) in terms of NC +ND.

Moreover, from (14), NC = nC + Σmi=1ini = nC + λτnC(nC + nD)m−1 =
nC

NC+ND
nC+nD

. By the analogous result for ND, we obtain

nC
NC

=
nD
ND

=
nC + nD
NC +ND

=
g(NC +ND)

NC +ND
. (17)

Although Proposition 3 does not provide the explicit solution for the equilibrium
of (14),9 the implicit solution can be used to determine game outcomes in this special
case. Indeed, if payoffs per unit time are given solely through group interactions,
then (17) implies the game’s payoff functions are the same as those of the one-shot
game (or of a game where singles from disbanded groups instantaneously form new
groups at random) up to a positive constant. Thus, for example, the NE outcome
of PGG under this special random group formation process will remain mutual
Defection when all groups disband at the same rate.

Křivan and Cressman [18] considered a corresponding discrete-time group distri-
bution dynamics for the repeated PGG when groups form instantaneously and the
expected number of rounds a group plays depends on the number of Cooperators in
the group. They showed that the NE outcome of PGG can be mutual coexistence of
Cooperators and Defectors, especially if Defectors display intolerance of Coopera-
tors by disbanding after one round any groups they are in that contain Cooperators.
They based their results on the observation that the discrete-time dynamics has a
unique equilibrium for a given number of Cooperators and Defectors (showing this
analytically for m = 2 and numerically for larger group sizes) but did not address
the question of its stability. Here, we address these questions for system (13).

Again, we follow the chemical reaction network theory to prove stability and
uniqueness of a positive equilibrium when the number of Cooperators NC ≡ nC +

9Explicit solutions can be obtained when group size m is small. For instance, if m = 2, the
equilibrium is given by Proposition 1 when this result is translated to the appropriate notation of

Proposition 3.
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Σmi=0ini and Defectors ND ≡ nD+Σmi=0(m− i)ni is fixed. This network is described
by the following m+ 1 reactions together with their rates

inC + (m−i)nD
λi−−⇀↽−−
1
τi

ni. (18)

There are m + 3 species S = {nC , nD, n0, . . . , nm} and n = 2(m + 1) complexes
C = {ni, inC + (m − i)nD | 0 ≤ i ≤ m}. The reaction network (18) has ` = m + 1
linkage classes given by {inC + (m− i)nD, ni}, 0 ≤ i ≤ m.

The set of reactions in (18) is described by

R = {ni − (inC + (m− i)nD) | 0 ≤ i ≤ m}
as well as the reverse of these reactions which we do not list. In particular, the net-
work is reversible. The reaction network can be represented as an (m+1)× (m+3)
matrix where each row lists the species coefficients of the corresponding reaction. If
the species are arranged in order {n0, . . . , nm nC , nD}, then the sub-matrix consist-
ing of the first m+1 columns of reaction matrix R forms the identity matrix. Thus,
the rank of R is s = m+1, which is the dimension of the stoichiometric subspace L =
spanR. The network deficiency is then δ = n−`−s = 2(m+1)−(m+1)−(m+1) = 0.
Thus, the Deficiency Zero Theorem applies and so there exists a unique, stable equi-
librium {n∗C , n∗D, n∗0, . . . , n∗m} for each stoichiometric compatibility class and each
choice of (positive) reaction rates in (18). Since the null space of the stoichiometric
subspace L is generated by the two vectors corresponding to nC + n1 + · · ·+mnm
and nD +mn0 + · · ·+nm−1 and these expressions equal NC and ND, each stoichio-
metric compatibility class is specified by a fixed choice of NC , ND. The following
Proposition summarizes these facts.

Proposition 4. Let τi > 0 and λi > 0 for all i = 0 . . . ,m. Then for each total
positive number of individuals of phenotype C, NC ≡ nC + n1 + · · ·+mnm and of
D, ND = nD + mn0 + · · · + nm−1, system (13) has a unique, positive equilibrium
(i.e., in Rm+3

+ ) which is globally asymptotically stable with respect to Rm+3
≥0 .

Proof. Once again, the existence and uniqueness of the positive equilibrium follows
from The Deficiency Zero Theorem [Theorem 7.1.1 in 7] because network (18) is
reversible and its deficiency δ = 0. Thus, for each total number of individuals NC
and ND there exists a positive equilibrium n∗ = (n∗C , n

∗
D, n

∗
0, . . . , n

∗
m) ∈ Rm+3

+ of
system (13) which is unique.

For the positive constant reaction rates in (13), global asymptotic stability of the
unique equilibrium follows from Lyapunov methods. Since n∗i = λiτin

∗i
Cn
∗m−i
D , (13)

can be rewritten in the following form

dnC
dt

=

m∑
i=1

in∗i
τi

(
ni
n∗i
−

niCn
m−i
D

n∗iCn
∗m−i
D

)
dnD
dt

=

m−1∑
i=0

(m− i)n∗i
τi

(
ni
n∗i
−

niCn
m−i
D

n∗iCn
∗m−i
D

)
dni
dt

=
n∗i
τi

(
niCn

m−i
D

n∗iCn
∗m−i
D

− ni
n∗i

)
, i = 0, . . . ,m.

(19)

For interior trajectories, we have the following Lyapunov function

V = nC log

(
nC
n∗C

)
−(nC−n∗C)+nD log

(
nD
n∗D

)
−(nD−n∗D)+

m∑
i=0

ni log

(
ni
n∗i

)
−(ni−n∗i )
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since

dV

dt
=

m∑
i=0

n∗i
τi

(
ni
n∗i
−

niCn
m−i
D

n∗iCn
∗m−i
D

)(
log

niCn
m−i
D

n∗iCn
∗m−i
D

− log
ni
n∗i

)
.

Thus, dV/dt < 0 except at the equilibrium where dV/dt = 0 and so the interior
equilibrium is l.a.s.

To prove g.a.s., we show the faces nC = 0 and nD = 0 are repelling if NC and
ND are both positive. Let us consider points n ∈ Rm+3

≥0 on the boundary face where

nC = 0. From (13), dnC
dt =

∑m
i=1

ini
τi

and NC = n1 + · · ·+mnm at any such point.

Thus dnC
dt ≥ mini{1/τi}NC on this boundary face, i.e., this face is repelling and

cannot contain any ω−limit point of a given trajectory of (13) starting in Rm+3
≥0 .

Moreover, for some ε > 0 and t sufficiently large, nC(t) > ε. The boundary face
where nD = 0 is repelling for the same reason. The same ε > 0 can be used for
nD(t) > ε when t is sufficiently large. Now let us consider points on the boundary
face where ni = 0. From (13),

dni
dt

= λin
i
Cn

m−i
D > λiε

m

for t is large enough. Thus, the face where ni = 0 is repelling and so any ω−limit
points of trajectories starting in Rm+3

≥0 must be in the interior.

Example 2. Of particular interest is groups of size four since most game experi-
ments as well as theoretical work involving PGG either assume m = 4 [3, 21, 24]
or emphasize group size four as a special case, e.g. [18]. Species in this case
are S = {nC , nD, n0, n1, n2, n3, n4}, there are n = 10 complexes C = {4nD, nC +
3nD, 2nC + 2nD, 3nC + nD, 4nC , n0, n1, n2, n3, n4}, and the network consists of 5
linkage classes: {4nD → n0 → 4nD}, {nC+3nD → n1 → nC+3nD}, {2nC+2nD →
n2 → 2nC + 2nD}, {3nC + nD → n3 → 3nC + nD}, {4nC → n4 → 4nC}, i.e., the
number of connected components of the network is ` = 5. In addition, the network
is reversible. The reaction matrix (where we do not list the reverse reactions)

R =



nC nD n0 n1 n2 n3 n4

n0−4nD 0 −4 1 0 0 0 0
n1−(nC+3nD) −1 −3 0 1 0 0 0
n2−(2nC+2nD) −2 −2 0 0 1 0 0
n3−(3nC+nD) −3 −1 0 0 0 1 0

n4−4nC −4 0 0 0 0 0 1


has obviously rank r = 5. Therefore, the network deficiency is δ = n − ` − r =
10− 5− 5 = 0.

The stoichiometric matrix is

Y =



4nD nC+3nD 2nC+2nD 3nC+nD 4nC n0 n1 n2 n3 n4

nC 0 1 2 3 4 0 0 0 0 0
nD 4 3 2 1 0 0 0 0 0 0
n0 0 0 0 0 0 1 0 0 0 0
n1 0 0 0 0 0 0 1 0 0 0
n2 0 0 0 0 0 0 0 1 0 0
n3 0 0 0 0 0 0 0 0 1 0
n4 0 0 0 0 0 0 0 0 0 1


,
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the kinetics matrix is

K =



4nD nC+3nD 2nC+2nD 3nC+nD 4nC n0 n1 n2 n3 n4

4nD 0 0 0 0 0 1
τ0

0 0 0 0

nC+3nD 0 0 0 0 0 0 1
τ1

0 0 0

2nC+2nD 0 0 0 0 0 0 0 1
τ2

0 0

3nC+nD 0 0 0 0 0 0 0 0 1
τ3

0

4nC 0 0 0 0 0 0 0 0 0 1
τ4

n0 λ0 0 0 0 0 0 0 0 0 0
n1 0 λ1 0 0 0 0 0 0 0 0
n2 0 0 λ2 0 0 0 0 0 0 0
n3 0 0 0 λ3 0 0 0 0 0 0
n4 0 0 0 0 λ4 0 0 0 0 0


,

and the vector ψ =
{
n4
D, nCn

3
D, n

2
Cn

2
D, n

3
CnD, n

4
C , n0, n1, n2, n3, n4

}
. From (9), the

MAK distributional dynamics corresponding to reaction network (18) when m = 4
is

dnC
dt

=
n1

τ1
+

2n2

τ2
+

3n3

τ3
+

4n4

τ4
− λ1nCn

3
D − 2λ2n

2
Cn

2
D − 3λ3n

3
CnD − 4λ4n

4
C

dnD
dt

=
4n0

τ0
+

3n1

τ1
+

2n2

τ2
+
n3

τ3
− 4λ0 − 3λ1nCn

3
D − 2λ2n

2
Cn

2
D − λ3n

3
CnD

dn0

dt
= λ0n

4
D −

n0

τ0
dn1

dt
= λ1nCn

3
D −

n1

τ1
dn2

dt
= λ2n

2
Cn

2
D −

n2

τ2
dn3

dt
= λ3nCn

3
D −

n3

τ3
dn4

dt
= λ4n

4
C −

n4

τ4
.

(20)

Distributional dynamics for (20) in the special case where λi is given in terms
of binomial coefficients (i.e., λi = λ

4

(
4
i

)
(cf. (14)) are shown in Figure 1B for a

particular choice of τi. As in Panel A, all trajectories will converge to the same
unique distribution for a given choice of NC and ND.

3. Pair formation process for asymmetric games. Section 2 applies CRNT
to the distributionl dynamics of a single population where all individuals are in-
distinguishable except for their strategy. In this section, there are two types of
individuals corresponding to an underlying evolutionary game that is asymmetric.
Here we show that CRNT again proves the existence and global stability of the
distributional equilibrium in a specific example (the Battle of the Sexes (BoS) game
of Section 3.1) but not in general (Section 3.2).

3.1. Pair formation process for battle of the sexes game. Cressman and
Křivan [18] considered the Battle of the Sexes game where duration of interactions
between males and females depend on their strategies. They assumed that inter-
actions between Philanderer males and Coy females do not take any time, while
interactions between Coy females and Faithful males involve time for courtship τc
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Figure 1. Distributional dynamics (10) of pairs (panel A) and
groups of size four (panel B) for PGG (20). Both panels as-
sume that initially there are only singles and initial conditions are
n1(0) = n2(0) = 5 (nC(0) = nD(0) = 5) in panel A (panel B).
Parameters used in Panel A: λ11 = λ12 = λ21 = λ22 = λ = 0.1,
τ11 = 5, τ12 = τ21 = 3, τ22 = 1. Parameters used in Panel B:
λi = λ

4

(
4
i

)
with λ = 0.05, τ0 = 1, τ1 = 2, τ2 = 4, τ3 = 6, τ4 = 15.

and time for rising offsprings, τ2r. Interactions between Faithful males and Fast
females take time τ2r only, as there is no courtship. Duration of interactions be-
tween Philanderer male and Fast female also take no time but the time until ready
to pair again is now sex dependent since it takes no time for the male while females
raise offsprings for time τ1r. Let nm1 be the number of single Faithful males that
are ready to pair and nm2

be the number of single Philanderer males that are ready
to pair. Similarly, let nf1 be the number of single Coy females that are ready to
pair and nf2 be the number of single Fast females that are ready to pair. We call
these individuals “searchers”. Also, let nm1f1 , be the number of Faithful/Coy pairs,
and nm1f2 , be the number of Faithful/Fast pairs. Finally, let nm2

f2
be the number

of females who are raising offspring on their own (note that these arise when Fast
females encounter Philanderer males).

We also denote the (fixed) population sizes of different strategy users as follows:
Nm1 is the number of Faithful males, Nm2 the number of Philanderer males, Nf1
the number of Coy females and Nf2 the number of Fast females. Since Philanderer
males never form pairs or help raise offspring, nm2

= Nm2
.

The pair distribution dynamics in [7] is

dnm1

dt
=− λnm1 (nf1 + nf2) +

nm1f1

τ2r + τc
+
nm1f2

τ2r
dnf1
dt

=− λnm1
nf1 +

nm1f1

τ2r + τc

dnf2
dt

=− λ(nm1 + nm2)nf2 +
nm1f2

τ2r
+
nm2

f2

τ1r
dnm1f1

dt
=λnm1

nf1 −
nm1f1

τ2r + τc
dnm1f2

dt
=λnm1

nf2 −
nm1f2

τ2r
dnm2

f2

dt
=λnm2

nf2 −
nm2

f2

τ1r
.

(21)
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The reaction network corresponding to this pair formation dynamics is

nm1
+ nf1

λ−−−−⇀↽−−−−−
1

τ2r+τc

nm1f1 , nm1
+ nf2

λ−−⇀↽−−−
1
τ2r

nm1f2 , nf2
λ−−⇀↽−−−
1
τ1r

nm2

f2
.

This reaction network has

• 6 species {nm1 , nf1 , nf2 , nm1f1 , nm1f2 , n
m2

f2
}

• n = 6 complexes {nm1
+ nf1 , nm1

+ nf2 , nm1f1 , nm1f2 , nf2 , n
m2

f2
}

• ` = 3 linkage classes {nm1
+ nf1 , nm1f1}, {nm1

+ nf2 , nm1f2}, {nf2 , n
m2

f2
}.

The reaction matrix (with reverse reactions omitted) is

R =


m1 m2 f1 f2 m1f1 m1f2 f

m2
2

nm1+nf1−nm1f1
1 0 1 0 −1 0 0

nm1+nf2−nm1f2
1 0 0 1 0 −1 0

nf2−n
m2
f2

0 0 0 1 0 0 −1


which clearly has rank s = 3. Thus, the reaction matrix has deficiency δ = n−s−` =
6 − 3 − 3 = 0 and so the Deficiency Zero Theorem applies showing there exists a
unique, l.a.s. equilibrium (n∗m1

, n∗f1 , n
∗
f2
, n∗m1f1

, n∗m1f2
, nm1∗
f2

) for each number of
Philanderer males, Faithful males, Coy females and Fast females.

Similar to Section 2, Lyapunov methods can be used with respect to

V =nm1 ln
nm1

n∗m1

− (nm1
− n∗m1

) + nf1 ln
nf1
n∗f1
− (nf1 − n∗f1) + nf2 ln

nf2
n∗f2
− (nf2 − n∗f2)+

nm1f1 ln
nm1f1

n∗m1f1

− (nm1f1 − n∗m1f1) + nm1f2 ln
nm1f2

n∗m1f2

− (nm1f2 − n∗m1f2)+

nm2

f2
ln

nm2

f2

nm2∗
f2

− (nm2

f2
− nm2∗

f2
)

to prove that the equilibrium is g.a.s.
The BoS game is somewhat particular as Philanderer males do not spend any

time interacting with Coy females, which simplifies the distributional dynamics. In
the next section, we consider a generalization of the BoS game that assumes all
interactions take some time and we show this precludes application of the DZT.

3.2. A generalized BoS game for which the Deficiency Zero Theorem does
not apply. In this section, we study a generalized Battle of the Sexes game, where
we assume interactions between males and females can take any positive time and
all disbanded individuals need some recovery time before making new pairs. Let
us consider mi (males) and fj (females) (i, j = 1, 2) strategists. Let τij > 0 be
the time these two individuals stay together (i.e., the first subindex i in τij refers

to the male strategy while the second refers to the female strategy) and τ
fj
mi > 0

(τmifj
> 0) be the time these males (females) need to recover before they are ready

to pair again.10

10This model does not apply to the BoS game of Section 3.1 since many of these times are

0 there. For example, τ22 = 0 for the (Philanderer, Fast) pair and all τ
fj
mi = τ

mi
fj

= 0 except

τm2
f2

= τ1r.
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The corresponding distributional dynamics are

dnm1

dt
=− λnm1

nf1 +
nf1m1

τf1m1

− λnm1
nf2 +

nf2m1

τf2m1

dnm2

dt
=− λnm2

nf1 +
nf1m2

τf1m2

− λnm2
nf2 +

nf2m2

τf2m2

dnf1
dt

=− λnm2
nf1 +

nm2

f1

τm2

f1

− λnm1
nf1 +

nm1

f1

τm1

f1

dnf2
dt

=− λnm2nf2 +
nm2

f2

τm2

f2

− λnm1nf2 +
nm1

f2

τm1

f2

dnm1f1

dt
=λnm1

nf1 −
nm1f1

τ11

dnf1m1

dt
=
nm1f1

τ11
−
nf1m1

τf1m1

dnm1

f1

dt
=
nm1f1

τ11
−
nm1

f1

τm1

f1

dnm1f2

dt
=λnm1

nf2 −
nm1f2

τ12

dnf2m1

dt
=
nm1f2

τ12
−
nf2m1

τf2m1

dnm1

f2

dt
=
nm1f2

τ12
−
nm1

f2

τm1

f2

dnm2f1

dt
=λnm2nf1 −

nm2f1

τ12

dnf1m2

dt
=
nm2f1

τ21
−
nf1m2

τf1m2

dnm2

f1

dt
=
nm2f1

τ21
−
nm2

f1

τm2

f1

dnm2f2

dt
=λnm2

nf2 −
nm2f2

τ22

dnf2m2

dt
=
nm2f2

τ22
−
nf2m2

τf2m2

dnm2

f2

dt
=
nm2f2

τ22
−
nm2

f2

τm2

f2

.

(22)

These 16 equations describing distributional dynamics are in the form of mass-action
kinetics.

The reaction network corresponding to this pair formation dynamics is

nm1
+ nf1 →nm1f1 , nm1f1 → nf1m1

+ nm1

f1
, nf1m1

→nm1
, nm1

f1
→ nf1

nm1 + nf2 →nm1f2 , nm1f2 → nf2m1
+ nm1

f2
; nf2m1

→nm1 , nm1

f2
→ nf2

nm2 + nf1 →nm2f1 , nm2f1 → nf1m2
+ nm2

f1
, nf1m2

→nm2 , nm2

f1
→ nf1

nm2
+ nf2 →nm2f2 , nm2f2 → nf2m2

+ nm2

f2
, nf2m2

→nm2
, nm2

f2
→ nf2 .
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We observe that this network is not reversible, nor weakly reversible11 (for example,
there is no chain of reactions in the reaction network that starts with the complex
nm1

+ nf1 and leads to the same complex) and, consequently, the ZDT does not
apply.

On the other hand, the method of [11] can be generalized to show that there is a
unique distributional equilibrium that numerical simulations suggest is g.a.s. under
the distributional dynamics [7]. As far as we are aware, an analytic proof of this
result is not known.

3.3. Stability of a population distribution in a patchy environment. CRNT
can also be applied to biological systems that do not involve pair or group inter-
actions. Here, we consider a population in a patchy environment consisting of m
patches. We assume that the expected time τi an individual stays in patch i (i.e.,
the residence (or retention) time of patch i) is patch dependent. Individuals leaving
a patch become searchers who move to another patch at random in such a way that
their encounter rate with patch i is λi. For example, they may encounter patch i
at a rate that is proportional to its area Ai, in which case λi = Ai/(A1 + · · ·+Am)
up to a positive constant.

Let ns denote the- number of individuals who are currently searching and ni
those in patch i. Then the distributional dynamics are

n′s =− (λ1 + · · ·+ λm)ns +
n1

τ1
+ · · ·+ nm

τm

n′i =λins −
ni
τi
, i = 1, . . . ,m,

(23)

which corresponds to the reaction network

ns
λi−−⇀↽−−
1
τi

ni, i = 1, . . . ,m. (24)

There are m + 1 species as well as complexes, i.e., S = C = {ns, n1, . . . , nm},
only one linkage class consisting of all complexes, and m independent reactions R =
{n1 − ns, . . . , nm − ns} (we do not list the reverse reactions). Thus n = m+ 1, ` =
1, r = m, and so the deficiency of the network is δ = n − ` − r = 0. Furthermore,
the network is reversible. Thus, for each positive stoichiometric compatibility class,
which is given by the fixed positive number of individuals N = ns + n1 + · · ·+ nm,
there exists a unique positive equilibrium n∗ = (n∗s, n

∗
1, . . . , n

∗
m). CRNT applied to

reaction network (24) yields the following result.

Proposition 5. Let τi > 0 and λi > 0 for all i = 1 . . . ,m. Then, for each positive
total population size N , system (23) has a unique, positive equilibrium n∗ in Rm+1

+

which is globally asymptotically stable with respect to Rm+1
≥0 .

Proof. From (23), the components of n∗ satisfy λin
∗
i =

n∗
i

τi
and so

n∗s =
N

1 +
∑m
i=1 λiτi

, n∗i = λiτin
∗
s. (25)

11Weak reversibility requires that if one complex is connected to another complex through a
chain of reactions, than the final complex is also connected to the original complex [10].
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Global asymptotic stability of n∗ follows from Lyapunov methods. First, (23) can
be rewritten in the following form

dns
dt

=

m∑
i=1

n∗i
τi

(
ni
n∗i
− ns
n∗s

)
dni
dt

=
n∗i
τi

(
ns
n∗s
− ni
n∗i

)
, i = 1, . . . ,m.

(26)

Then the following is a Lyapunov function

V =

(
ns ln

ns
n∗s
− (ns − n∗s)

)
+

m∑
i=1

(
ni ln

ni
n∗i
− (ni − n∗i )

)
.

Indeed, the derivative of V along trajectories of (12) is

dV

dt
=

m∑
i=1

n∗i
τi

(
ni
n∗i
− ns
n∗s

)(
ln
ns
n∗s
− ln

ni
n∗i

)
< 0

except at the equilibrium where dV/dt = 0.

For example, when λi = Ai/(A1 + · · · + Am) and all residence times are equal
(i.e., τi = τ, i = 1, . . . ,m), the equilibrium distribution is

n∗s =
N

1 + τ
, n∗i =

Ai
A1 + ...+Am

Nτ

1 + τ
.

In particular, the equilibrium distribution satisfies

n∗i
n∗1 + · · ·+ n∗m

=
Ai

A1 + · · ·+Am
,

which corresponds to balanced dispersal [14] where the distribution of animals cor-
responds to the distribution of patch areas. The same distribution is obtained when
residence times are proportional to the patch area, i.e., τi ∼ Ai and all λis are the
same. This also corresponds to balanced dispersal [14].

Proposition 5 can also be proved by analyzing (23) as the following linear system
of differential equations.

n′s
n′1
...
n′m

 =


−(λ1 + · · ·+ λm) 1

τ1
1
τ2

. . . 1
τm

λ1 − 1
τ1

0 . . . 0
...

...
...

...
...

λm 0 . . . 0 − 1
τm



ns
n1

...
nm

 . (27)

Indeed, fix N > 0 and let n∗ be given by (25). Then Ln∗ = 0 and so L has eigenvalue
0 with (right) eigenvector n∗. Since the hyperplane H ≡ {n|ns + Σmi=1ni = N} is
invariant under (23), L is invariant on the m−dimensional subspace X ≡ {x =
(xs, x1, ..., xm) ∈ Rm+1|xs + Σmi=1xi = 0}. Moreover, L is nonsingular with respect
to this subspace since n∗ is the unique equilibrium of (23) inH. Thus, all eigenvalues
of L with respect to X are non-zero. On the other hand, by Gershgorin’s Theorem
[25] applied to the columns of L, all eigenvalues of L are either 0 or have negative
real part. Thus, all eigenvalues of L restricted to X have negative real part. That is,
the origin is g.a.s. under (23) restricted to X and n∗ is g.a.s. under (23) restricted
to H.
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4. Discussion. In this article, we applied results of chemical reaction network
theory to show uniqueness and stability of positive equilibrium for pairs/groups
distributional dynamics that arise in game theoretic models.

Evolutionary game theory assumes that individuals accrue their fitness through
interactions with other individuals. When there are two or more different phe-
notypes (strategies) in the population, this theory assumes that pairs or groups
are formed instantaneously and randomly so that the corresponding pairs (groups)
distribution is described by the Hardy–Weinberg (binomial) distribution. If indi-
vidual fitness is defined as payoff per unit time at this distributional equilibrium
(e.g., payoffs may arise solely from pair interactions), we then have an evolutionary
(population) game [19, 6, 1, 2].

In some recent models, it has been argued that interactions times may be pheno-
type dependent [19, 20, 6, 1, 18] and that, in these situations, the Hardy-Weinberg
distribution does not apply. In fact, except in the simplest cases, it becomes impos-
sible to calculate the pairs/groups distribution analytically which raises a question
about uniqueness of the equilibrium and its stability. It has been shown that, for
some particular models, the equilibrium exists and is unique [12, 11]. In this article,
we show that CRNT is a general tool that is very useful to prove not only exis-
tence of the equilibrium, but also its stability through the Deficiency Zero Theorem
(DZT). On the other hand, we also show using the generalized Battle of the Sexes
game that DZT does not always apply to pair formation models.

As mentioned in Section 2.1, there has been controversy in the CRNT commu-
nity whether the equilibrium arising from a system satisfying the conditions of the
Deficiency Zero Theorem is automatically globally asymptotically stable. Horn and
Jackson [17] stated that the interior positive equilibrium is not only locally asymp-
totically stable, but also a global attractor. Horn [16] clarified that the global
stability was not proved and posed this global convergence property as a conjecture
which was later called the Global Attractor Conjecture [5]. The conjecture was
proved in [4].
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