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Selective strategies in food webs
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Food webs are described as control systems where the controls are chosen according
to given myopic strategies. In particular, strategies describing selective feeding and
selective escape are defined. The existence of optimal myopic solutions and their
uniqueness are discussed. Computer simulations modelling 'switching' are given for
a one-predator-two-prey system.
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1. Introduction

Since the time of Lotka and Volterra, interactions among populations and more
generally evolution of ecological systems have been modelled by differential or
difference equations. Since various strategies may influence the interactions among
different populations and thus the fate of the whole system, complex systems
cannot be described by coupling many one-prey-one-predator differential equations.
These strategies are both internal (e.g. due to selective feeding) and external (e.g. due
to interactions of the environment with the system). In the literature, man-made
strategies (i.e. controls) were considered especially in connection with the manage-
ment of renewable resources (see Clark, 1976). Internal strategies were studied in
connection with switching (Legovic, 1989; Murdoch et al., 1975; Oaten & Murdoch,
1975; Pulliam, 1981; Roughgarden, 1979). Several factors may determine feeding
preferences for predators. For example, in the case of Acanthaster planci feeding on
different coral species (Moran, 1986), these factors comprise abundance of corals,
accessibility of corals, nutritional value of corals, etc. In g~neral, it is often believed
that predators forage so as to maximize their short-term rate of resource intake.

In this paper we consider systems of interacting populations, each of which may
utilize several resources and at the same time be a resource for others. Therefore
different populations may adopt different strategies. The main questions are: what is
a strategy and which strategies will be adopted? .Or, in other words, according to
which criteria should be strategies be chosen? It seems reasonable to postulate that
any population optimizes some given quantity. This leads us to adopt the following
procedure. We assume that the various populations choose strategies so that some
given quantities are optimized at any time. In other words, at any instant the system
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is in an optimal situation. We call these strategies myopic, stressing the absence of
any insight in the future. This approach is particularly suitable whenever the
controllers cannot predict the future, their goal thus being to achieve immediate
optimal results.

We stress here that, contrary to the framework above, in the traditional case of
intertemporal optimization, controls are driven on the basis of predictions of the
future and reach optimality on a whole time interval. This is hardly acceptable when
the controls are not driven by human beings.

The strategies above lead to differential inclusions with upper semicontinuous
right-hand sides allowing us to model switching. Under reasonable assumptioQs, these
strategies lead to problems that admit a solution. Trying to keep mathematical
difficulties to a minimum, we show the main features of these strategies.

The next section defines the mathematical model, i.e. the trophic levels, the
equations, and the strategies. Section 3 develops the concept of strategy, while Section
4 deals with switching in predation. A short discussion of the results is presented in
Section 5.

2. Mathematical model

Let us consider an ecosystem consisting of n populations. This section is devoted to
the mathematical formalization of the structure, the dynamics, and the strategy of the
system.

The structure of the ecosystem is described by a set-valued map cp: {1 ,..., n} ~
{1 ,..., n}, called the food web map. This map associates to each index j in {1 ,..., n}
the set of the indices of those populations on which the jth population may feed. For
example, cp(j) is empty whenever the jth population does not feed on any other
population. We call the food web map monotone if

iEcp(j) => i<j, (2.1)

Provided that the numbering of the populations is well chosen, this property is shared
by those ecosystems that contain no cycles. Under (2.1), trophic levels may be
recursively characterized by cp: if Lr denotes the rth trophic level, then

L1 ={iE {1 ,...,n}:cp(i) = 0},

{ r-1 }Lr = i E {1 ,..., n}: cp(i) ~ U L1 for r > 1.

1= 1

The dynamics of the ecosystem is given by the following control system (see also
Kfivan, 1991):

x(t) = f(t, x(t), u(t), u(t) E 011, (2.2)
where

x(t) = (X1(t) ,..., xn(t) is the vector quantifying the populations;
f(t, x, u) = g(t, x, u) - h(t, x, u) is the (n-dimensional) growth function, where
g(t, x, u) is the natality function and h(t, x, u) is the mortality function;

011 is the compact convex set of the admissible values for the controls u.
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More precisely, we consider natality and mortality functions of the following forms:

gj(t, x, u) = ai(t, x) + L Sjj(t, u)bjj(t, Xj)Xj
jetp(j) .(l = 1 ,..., n). (2.3)

hj(t, x, u) = Cj(t, x) + L Sjj(t, u)kijbjj(t, xJXj
jetp - 1

Here ai and Cj are the intrinsic natality and mortality functions respectively; bjj (also
called the trophic function) denotes the natality rate of the jth population due to its
feeding only on the ith population. All the ai' bjj, and Cj are defined on ~+ X ~"+,'
where ~"+ = {x E ~n: Xl ;;:: 0,..., Xn ;;:: O} is the positive octant. To ensure the invari-
ance of ~"+ with respect to (2.2), we require

aj(t,O) = 0 and Cj(t,O) = O. ~or any i = 1 ,..., n, (2.4)

bij(t,O) = 0 for any l,J = 1 ,..., n.

The Sjj(t, u) are defined on ~+ X I1lJ and model how the components of u are
superposed (i.e. combined) at time t to control the interaction between the jth and
the ith populations. We will assume that Sjj is linear in the control. Finally, the kjj
are the given efficiency coefficients. All the functions introduced so far are assumed
to be continuous and nonnegative wherever they are defined.

A myopic strategy is a set-valued map S: ~ + X ~"+ ~ 11lJ, i.e. S associates to any
(t, x) a subset S(t, x) of 11lJ. In other words, it is a rule to select among the admissible
controls. Hence, the actual behaviour of the system is described by the solutions of

x(t) = f(t, x(t), u(t»), u(t) E S(t, x(t»), x(to) = Xo, (2.5)

where (to, xo) E ~+ X ~n+ is some given initial condition.
A result assuring the existence of at least one solution of (2.5) is given in Appendix

A (see }:>roposition 1). This theorem says that in our setting (2.5) has always at least
one solution, provided that the graph of the myopic strategy maps is a closed set.
Let us stress that without assuming the linearity of the maps Sjj in u, (2.5) may have
no solutions at all.

Many different controls may influence the interactions among populations. These
controls may be both internal and external. Assume that m controllers regulate the
system and that I1lJ = 11lJ' X ... X I1lJm, with 11lJ' the convex compact set in which the

controls driven by the Ith controller may vary.
In what follows we will consider myopic strategies defined through optimality

conditions of the form

S(t, x) = { u E 11lJ: d'(t, x, u') = min d'(t, x, v) for I = 1 ,..., m} , (2.6)
ve'f/l

where d': ~ + X ~"+ X I1lJI H ~ is a continuous cost function to be minimized at anyinstant by the Ith controller. .

As we saw, in order to have a solution of (2.5), the graph of the strategy map
S(t, x) must be closed. For S(t, x) defined by (2.6), this is true if all dj(t, x, u) are
convex in u (see Appendix A, Proposition 2). We stress that dj is not required to be
linear in uj.
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In the case where the system must satisfy further constraints of the kind x(t) E K
for some closed K ~ ~"+, viability theory (Aubin, 1992) gives conditions ensuring the
existence of solutions of (2.5) subjected to this constraint. These conditions amount
to adding to the assumptions of Proposition 1 that the map

R:~+ x K~OlJ:(t,x)f--+{uEOlJ:f(t,x,u)ETK(x)}

be lower semicontinuous with convex compact values and R n S be never empty
(Aubin, 1992). Here TK(x) is the contingent cone (see Aubin & Cellina, 1984: p. 176,
Def. 1).

In general, (2.5) may have no global solutions, i.e. solutions defined on [0, .;x). In
fact, the growth of some population may be so fast as to blow up, i.e. to reach infinity
in a finite time. However, this is not possible when the food web map is monotone
and the intrinsic natality functions have linear growth, i.e. ai(t, x) ~ Ai(1 + xJ for
some Ai > 0 (see Appendix A, Proposition 3).

In general, (2.5) may have more solutions. Moreover, to a given evolution x(t)
there may correspond more than one control function u. In this case methods cased
on probability theory, metric likelihood (Cellina & Colombo, 1990), or fuzzy likelihood
(Colombo & Knvan, 1992) may allow us to estimate how much a prediction of the
behaviour of the system is reliable. Nevertheless, in many cases, despite the multivalued
character of the right-hand side of(2.5), right uniqueness (i.e. uniqueness in the future)
for its solutions may still hold. See Appendix B for a discussion on the mathematical
hypotheses implying right uniqueness.

3. Selective feeding and selective escape

In this paper we consider systems driven by internal controllers. Let us note that
system (2.5) together with (2.6) provides a framework which is general enough to
describe not only selective feeding but also selective escape and many other controllers
that may arise. Within this framework we may even consider different controllers for
different populations, for example selective escape for prey and selective feeding for
predators. Indeed, consider Ui = (pi, ei), where pi is a vector of parameters controlling
the predation of the ith population, i.e. it models selective feeding. The vector ei is
a vector whose jth component pJ expresses how much the ith population tries to
feed on the jth prey. Analogously, eJ is the jth component of ei which expresses how
much the ith population tries to escape from the jth predator. We should stress here
that eJ = 0 means maximal escape of the ith population from the jth predator while
eJ = 1 means no escape at all. Therefore

OlJi = ,q,i X $i,
where

,q,i = { pi E [0,1]": pJ = 0 if j ~ cp(i); L pJ = 1 if cp(i) # eJ; i,j = 1 ,..., n}jetp(i)

Gi= { eiE[O,l]":eJ=Oifj~CP-l(i); L eJ=lifCP-l(i)#eJ;i,j=l,...,n
}jetp-l(i)

defines the set of the admissible controls.
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The functions Sij may take different forms; for example

Sij(t, u) = Pij(t)P{ + Yij(t)ej, (3.1)

Pij and Yij being nonnegative continuous functions on ~+. Note that this assumption
implies the independence of the effects of the choices of a population from the choices
of the other populations. Formula (3.1) may be interpreted in two ways:

. the superposition of the choices of the predators and of the prey is given by a
weighted average of their control parameters;

. a first-order approximation of more general and complex functions Sij is considered.

Let us note that in the particular case Pij # 0 and Yij = 0 we recover the selective

feeding.
A different choice of Sij, like for example Sij(t, u)= '1ij(t)p{ej, has totally different

consequences; in this case the feeding may take place only if both the prey and the
predator want it, which is hardly acceptable.

4. Switching during predation

The most studied case in literature is switching when a predator feeds on two or
more prey choosing the 'most conyenient' one at each instant. The 'most convenient'
may have different meanings; for example it may be synonymous with the most
abundant or the most nutritional, etc. Depending on this meaning, we may define
different strategies. Here we will consider only two of them: maximum growth strategy
and maximum density strategy. Some other strategies may be treated in an analogous
way.

First, we consider the maximum growth strategy, which is: each predator maximizes
its own growth. In other words, we model the problem of selective feeding as an
optimization problem, the quantities to be optimized being the growth functions of
the populations. Moreover, we assume that the populations' behaviour is noncoopera-
tive, i.e. any population maximizes its own growth, independently of the others'
choices. Then the set of controls that correspond to this strategy is

SM(t, x) = {p E f!}J :J;(t, x, p) = max J;(t, x, v) for i = 1 ,..., n} .
(vet?:vJ=pJ,j#ij

Note that the maximum of J; is taken, varying only that part of v which depends on
the ith population. Notice that SM(t, x) is the set of points of Nash maxima off over
f!}J for fixed (t, x) (Aubin & Ekeland, 1984).

This strategy is obtained when we set di(t, x, pi) = -J;(t, x, pi). Hence, the existence
of maximal growth solutions follows from Appendix A (Proposition 2).

Another possible strategy, which we call the maximal density strategy, is the one
in which predators feed on the most abundant prey. This leads to the following n cost
functions:

di(t, x, pi) = - L Xjpj.
jetp(ij
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Example. Assume there are three populations whose interaction structure is described
by cp(l) =)25, cp(2) =)25, and cp(3) = {I, 2}; hence LI = {I, 2} and L2 = {3}. The dynamics
of the interaction among the populations and the feeding strategy are described by

. b 3Xl = alxl - 13PIXIX3,

. b 3X2 = a2x2 - 23P2X2X3,

.' 3 3 (4.1)
X3 = kl3bl3PIXIX3 + k23b23P2X2X3 - C3X3,

P E SM(:X;)'

In this example, the only controller is the predator. Assume that al < a2; then we
say that the first population is weaker than the second.

A portrait of the evolution of the system may be obtained through a simple qualita-
tive reasoning. Assume Xl (to) # 0, X2(tO) # 0, and X3(tO) # 0; then the orbit starting
from x(to) eventually enters in {x E ~~: kl3bl3XI = k23b23X2}' More precisely, it

remains there always unless x(t) reaches the critical region defined by

X3 ~ (a2 - aJ/b23' (4.2)

and in this case the orbit enters the region

{xE~~:kI3bI3XI < k23b23X2},

since we assumed a2 > al (see Appendix B).
From the biological point of view, this may be interpreted as follows. The predator

feeds on the 'most convenient' prey, if possible. Otherwise, if neither of the two prey
is more convenient than the other, the predator feeds on both prey as long as possible.
If its density falls below the critical value (4.2), this balanced situation needs to be
abandoned. Hence the predator starts feeding only on the prey with the highest
natality rate. This choice of the predator allows the weaker prey to increase at its
maximum available natality rate, in our case exponentially. After a while, the weaker
prey is again as convenient as the stronger one, and a balanced situation is again
reached. Note that this balancing effect of the predator was not postulated but is a
consequence of the proposed strategy.

A picture of this balancing effect is shown in Fig. 2. We see that the system starts
in a situation decoupled in two subsystems. The first subsystem consists of X2 and
X3 and evolves along a cycle of Lotka-Volterra type, while the second one consists
of Xl alone, which grows exponentially. When Xl is as convenient as X2, the cycle
breaks down and the growth rate of Xl is reduced due to the predation by X3' After
a transient period the system settles into a dynamic equilibrium which moves along
a new cycle.

The results of a numerical simulation for this system are shown in Figs. 1 and 2.
Advanced numerical methods for the treatment of such equations with more examples
are discussed in Kastner-Maresch & Kfivan (1993).

5. Conclusion

This paper presents a deterministic model for the evolution of ecosystems with con-
trols, the controllers being members of the ecosystem or outsiders, or both. Controls
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FIG. 1. Computer simulations for system (4.1), using the Runge-Kutta method. The values of the
parameters are: al = 12; a2 = 40; bl3 = 31; b23 = 37; kl3 = 0.7; k23 = 2; C3 = 50; XI(O) = 0.1; X2(0) = 1;
X3(0) = 2.45. In (a) the densities of the prey (XI, xJ are plotted as functions of time, while in (b) it is the
density of the predator (X3) that is plotted.
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FIG. 2. Phase plot of the simulation from Fig. 1 projected on the (X2, X3) plane. The original Lotka-Volterra
cycle followed by a transient trajectory and the new cycle arising from switching are clear in this plot.

are chosen according to myopic strategies. Such an approach seems particularly
suitable in the case where the controllers do not (or cannot) forecast the future
development of the system. The model presented in this paper is general enough 10
cover complex systems.

This model could also be used to postulate and verify different strategies for
different systems. For example, taking the system described in the Example, we could
estimate all parameters from one-prey-one-predator experiments. Comparing the
results obtained from simulations for a particular strategy with the real data would
allow us to infer the typical strategies for given populations. There may be some
obstacles when applying this approach to real populations, caused for example by
delay in switching and by stochastic effects (especially for small populations). Both
these phenomena may be included in our model. However, this would increase the
mathematical difficulties without affecting the basic properties of out approach.

The effects of switching seem to be particularly relevant during transitory situations
like the entering of a new population in a system. In the long run, switching leads
to dynamic equilibria not easily distinguishable from what is foreseen by the
traditional Lotka-Volterra models. Let us note that switching seems to produce
oscillations in the densities of populations rather than stabilizing the dynamics in an
equilibrium as is generally assumed.

Appendix A

PROPOSITION 1 With the assumptions stated in the paper, if the strategy S has a
closed graph and nonempty convex values, then for any initial condition (to, xo) E
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~+ x ~~ there exist a (strictly) positive 1; an absolutely continuous x: [to, to + T] H

~~, and a bounded measurable u: [to, to + T] H 0/1 that satisfy (2.5).

Proof Corollary 1 on p. 42 of Aubin & Cellina (1984) ensures that S is upper semicon-
tinuous. Due to Proposition 1 onp.41 of the same book, the map Fs(t, x)=f(t, x, S(t, x)
is upper semicontinuous too. Moreover, S has compact convex values and f is
continuous and linear in the third argument; hence also Fs has compact convex values.
Corollary 1 on p. 129 ensures that the Cauchy problem

x(t) E Fs(t, x(t), x(to) = Xo

admits an absolutely continuous solution x on an interval [to, to + T]. Moreover,
(2.4) ensures that x(t) E ~~ for all t. Following Corollary 1 on p. 91 of Aubin & Cellina
(1984), one may prove the existence of a measurable u: [to, to + T] H 0/1 such that
the pair (x, u) is a solution to (2.5). 0

PROPOSITION 2 If the internal strategy S is given by (2.6) and the di (i = 1 ,..., m) are
convex in the third variable, then S satisfies the assumptions of Proposition 1.

Proof The nonemptiness of S(t, x) is straightforward. Theorem 5 on p. 25, Theorem
1 on p. 41, and Proposition 2 on p. 41 of Aubin & Cellina (1984) imply the closedness
of the graph. The convexity of di in Ui implies the convexity of S(t, x). 0

PROPOSITION 3 Let the hypotheses of Proposition 1 hold. Assume, moreover, that
cp satisfies (2.1) and any ai has linear growth, i.e. ai(t, x) ~ Ai(t)(1 + xJ where
Ai: [0 , CX)) H ~ + is continuous. Then any solution to (2.5) may be extended to
[to, CX)).

Proof The proof is by induction on the trophic level. Let i be in Ll' Then Xi ~
Ai(t)(1 + xJ, which ensures the global existence of Xi. Let i be in Lr, with r > 1. Then

Xi ~ Ai(t)(1 + xJ + L Sji(t, U)bji(t, Xj(t)Xi'
jecp(i)

which, owing to the compactness of 0/1, again ensures the global existence of Xi. 0

Appendix B

Right uniqueness for (2.5) follows from the one-sided Lipschitz condition for the map
Fs(t, x) = f(t, x, S(t, x); see Theorem 1 on p.l06 of Filippov (1988) or Kastner-
Maresch & Kfivan (1993). This requirement is not easy to handle in the general
situation described by (2.5) and (2.6). However, if there is only one population that
may choose between only two possibilities (the case discussed in Section 4, for
instance), then right uniqueness is easy to prove.

Consider the myopic strategy map S: ~~ -vvjo 0/1. Let M be the set of those x E ~n
such that S(x) is not single-valued. Assume that M is a smooth manifold that. splits
~n into two parts that we denote Gl and G2. Letft(t, x) denote the unique value of
(2.5) for (t, x) E Gl and similarly forf2(t, x). For (t, x) such that x E M,ft(t, x) denotes
the limit offt at the point (t, x) from the region Gl and similarly for f2. By n(x) we
denote the normal to M at x oriented from G2 towards Gl; (x, y) stands for the scalar
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product in ~". The following is Theorem 2 (p. 110) in Filippov (1988), which ensures
right uniqueness.

PROPOSITION 4 Let M by a C2 manifold, and let the vector lI(t, x) - 12(t, x) be
in CI. If for each t E ~+ at each point x E M at least one of the inequalities
<n(x),12(t, x» > 0 or <n(x),II(t, x» < 0 is fulfilled, then right uniqueness for (2.5)
holds.

Observe that Proposition 4 implies right uniqueness for (4.1). Indeed, M is given
by the equation kI3bI3XI = k23b23X2 and

GI = {x E ~t: kI3b13XI > k23b23X2}, G2 = {x E ~t: k13b13X1 < k23b23X2}.

A normal vector to M is

n = (k13bI3/.J(k13b13)l + (k23b23)l, -k23b23/J(k13bI3)l + (ki3b23)l, 0).

If <1I(t, x), n) ~ 0, then

<12(t, x), n) = <1I(t, x), n) + (bI3kI3XIX3 + k23b~3X2X3)/.J(kI3b13)l + (k23b23f > O.

Due to Proposition 4, (4.1) has a unique solution.
Let us note that a solution cannot leave the manifold M if both <1I(t, x), n) < 0

and <12(t, x), n) > o. Since we assumed a2 > aI' the first inequality is always satisfied,
while the second one gives X3 > (a2 - al)/b23. From this we derive the critical region
defined by (4.2)
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