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Evolutionary game theory is a powerful method for modelling animal conflicts. The original evolutionary
game models were used to explain specific biological features of interest, such as the existence of ritu-
alised contests, and were necessarily simple models that ignored many properties of real populations,
including the duration of events and spatial and related structural effects. Both of these areas have sub-
sequently received much attention. Spatial and structural effects have been considered in evolutionary
graph theory, and a significant body of literature has been built up to deal with situations where the pop-
ulation is not homogeneous. More recently a theory of time constraints has been developed to take
account of the fact that different events can take different times, and that interaction times can explicitly
depend upon selected strategies, which can, in turn, influence the distribution of different opponent types
within the population. Here, for the first time, we build a model of time constraint games which explicitly
considers a spatial population, by considering a population evolving on an underlying graph, using two
graph dynamics, birth–death and death-birth. We consider one short time scale along which frequencies
of pairs and singles change as individuals interact with their neighbours, and another, evolutionary time
scale, along which frequencies of strategies change in the population. We show that for graphs with large
degree, both dynamics reproduce recent results from well-mixed time constraint models, including two
ESSs being common in Hawk-Dove and Prisoner’s Dilemma games, but for low degree there can be
marked differences. For birth–death processes the effect of the graph degree is small, whereas for
death-birth dynamics there is a large effect. The general prediction for both Hawk-Dove and Prisoner’s
dilemma games is that as the graph degree decreases, i.e., as the number of neighbours decreases, mixed
ESS do appear. In particular, for the Prisoner’s dilemma game this means that cooperation is easier to
establish in situations where individuals have low number of neighbours. We thus see that solutions
depend non-trivially on the combination of graph degree, dynamics and game.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary game theory, as conceived by Maynard Smith and
Price (1973), is a powerful method for modelling animal conflicts
(e.g., Maynard Smith, 1982; Dugatkin and Reeve, 1998; Hofbauer
and Sigmund, 1998; Broom and Rychtář, 2013). The original,
two-strategy matrix evolutionary game models were used to
explain specific biological features of interest, such as the existence
of ritualized contests (e.g., the Hawk and Dove model), and were
necessarily simple models that ignored many properties of real
populations, including the duration of events and spatial and
related structural effects. Both of these areas have subsequently
received much attention.

Two-strategy matrix models assume that individuals gain/lose
fitness during pair-wise interactions only. They also assume that
all interactions take the same time which leads to the Hardy–
Weinberg equilibrium distribution of pairs. Fitnesses for the two
strategies are then calculated at this equilibrium distribution
using the payoff matrix. This methodology then leads to the clas-
sical predictions such as that when the cost of a fight is lower
than the value of the contested resource the Hawk strategy (i.e.,
aggressive behaviour) is the evolutionary outcome in the Hawk-
Dove model, or defection is the ESS in the repeated Prisoner’s
dilemma game. Thus, implicitly, two-strategy matrix models
assume time scale separation between pair formation that runs
on a fast time scale and payoff accrual that operates on a slow
time scale.
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These predictions sharply change when interaction times are
not the same (Křivan and Cressman, 2017) in that in both cases
mixed ESS appear. For example, in the case of the repeated
Prisoner’s dilemma game, it is reasonable to assume that indi-
viduals prefer to interact with a cooperator because such an
interaction is more beneficial than interacting with a defector.
If individuals are free to stay or leave the pair after each round
of the game, pairs that contain a defector will last only a single
round, while pairs with two cooperators will last for the maxi-
mum number of rounds. Repeated games where individuals are
free to break interaction with their current partner were also
considered in the literature. E.g., Aktipis (2004) considered the
‘‘walk-away” strategy while Zhang et al. (2016) called such a
game the opting out game. Křivan and Cressman (2017) showed
that opting out promotes the evolution of cooperation, provided
that the probability of another round is high enough (i.e. inter-
acting individuals stay together for long enough). Another game
that models evolution of aggressivity is the Hawk-Dove game
Maynard Smith and Price (1973). When interaction times are
strategy independent, this game predicts that if the cost of fight-
ing is not too high when compared to benefits the individual can
obtain from the fight, all individuals will behave aggressively.
Křivan and Cressman (2017) showed that e.g., when the interac-
tion time between two Hawks is long enough, individuals will
play a mixed strategy, i.e., they will not always fight. In fact,
as the cost, measured in time lost in a fight (or in recovery after
the fight) increases, the probability of aggressive behaviour will
decrease. However, differences in interaction times lead to pair
interaction distributions that are not given by the Hardy–Wein-
berg equation and are much more difficult to calculate (e.g.,
Garay et al., 2017; Křivan and Cressman, 2017; Garay et al.,
2018; Křivan et al., 2018; Cressman and Křivan, 2019; Broom
et al., 2019). Following the classic theory, these models that
assume well mixed populations consider time scale separation
in that payoffs are calculated at the pair equilibrium distribution.
This methodology has been applied also to asymmetric two-
strategy games such as the Owner-Intruder game (Cressman
and Křivan, 2019).

The classical models also assume that every pair of individuals
within a population are equally likely to meet. This is very often
not the case, especially if a population covers a wide area, and indi-
viduals are far more likely to play games against those that are
close to them. Population structure has been included in several
ways, and in particular a general and elegant theory, evolutionary
graph theory, has been developed following Lieberman et al.
(2005). Here a population of N individuals lives on the vertices V
of a graph G ¼ ðV ; EÞ and individuals can only interact with, and
replace, neighbours, i.e., those for which they are connected by
an edge from the edge set E. Fixed fitness models (where there
are no games and the fitness of an individual depends only upon
its type) are much more complicated now (Lieberman et al.,
2005; Broom and Rychtář, 2008), and different structures can have
a significant effect on the evolution of the population, either
enhancing or suppressing selection (increasing/decreasing the
advantage of fitter strategies). The order of selection birth before
death or death before birth (and when fitness acts) which was
not important for well-mixed populations, is now important
(Ohtsuki et al., 2006; Antal et al., 2006; Masuda, 2009). Classical
evolutionary models including the Hawk Dove game (Hauert and
Doebeli, 2004; Broom et al., 2010) and the Prisoner’s dilemma
(Ohtsuki et al., 2006; Santos et al., 2006) have been considered,
and in the latter case a lot of research has gone into finding the
conditions for which cooperation can thrive (see e.g., Santos and
Pacheco, 2005).

In this paper we incorporate time delays and population struc-
ture. In particular we consider two strategy games where each
combination of pure strategies yields both a specific payoff and
specific interaction time for each player. Games are played
between neighbours on a regular graph. Each neighbouring pair
meet at a constant rate, providing that they are both free (i.e.,
not involved in a game with another player). Thus the probability
of facing any given opponent depends both upon the structure
and the strategies played. We assume that the evolution of the
population takes place at a slower timescale than the interaction
dynamics, so that a long period of interactions takes place
between a fixed population of individuals (and we show that
the population converges to a steady state under these
circumstances).

In Section 2 we outline the modelling methodology of evolu-
tionary games with time constraints and extend it to consider a
population evolving on a regular graph. Then in Section 3 we con-
sider evolution following a birth–death and death-birth dynamics.
In Section 4 we consider the evolution of the population to find
the ESSs, and consider two classic evolutionary games, the
Hawk-Dove game and the Prisoner’s Dilemma. Finally, Section 5
is a discussion.
2. Two strategy games with interaction times on regular graphs

Let us consider a population playing a game on a large regular
graph of degree k > 2 (We do not consider the case with k ¼ 2 as
it is simply a large circle graph and is a very special case that would
require some different mathematical treatment). We assume that
each vertex is occupied by a single individual and neighbouring
individuals play a symmetric two-strategy game described by the
payoff matrix
ð1Þ

where e1 and e2 are the two strategies used.
We consider a population involving two types of individuals;

A-type which play e1 with probability p, and B-type which
play e1 with probability pþ h, where h is a small (positive or
negative) number such that 0 6 pþ h 6 1. We denote the pro-
portion of A (B) individuals in the population as a
(0 6 a 6 1; b ¼ 1� a). We particularly consider a resident
monomorphic population of A-type, potentially invaded by a
small proportion of B-type.

By
ð2Þ

with matrix p given in (1), we denote the payoff matrix for the two
types wherePXY is the payoff to an X-type individual when it meets
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a Y-type individual and p ¼ ðp;1� pÞ;q ¼ pþ h ¼ ðpþ h;1� p� hÞ
are strategies of these two individuals.

In our model, allowing h to be small means that our game
can use assumptions based upon the limit of weak selection,
which then allow for the use of good linear approximations to
payoffs. The key assumption for this is that the fitnesses of the
different strategies are vanishingly small. In our model, we do
not have vanishingly small fitness differences between the pure
strategies, but we consider two mixed strategies with probabili-
ties arbitrarily close together, which then also have vanishingly
small fitness differences. Thus the assumption of considering
close mixed strategies makes it possible for the consequences of
the weak selection limit to hold. We note that the time delays
in our model make it fundamentally non-linear in mixed strate-
gies. Similar local linearity could be established through pure
strategies and weak selection, but then this would lead to linear-
ity over the whole range of possible mixtures (the only conclu-
sions then mirroring standard two-player games). It is
important for us to reconstruct the more complex situations that
come about through the games with time-constraints, as we dis-
cuss in Sections 4 and 5.

Classical matrix game models assume that all interactions take
the same time (s) independently of the strategies the interacting
individuals use. Then all interactions finish at a rate 1=s and sin-
gles then search among their neighbours for a partner to interact
with. Let r > 0 be the rate with which a single individual can
meet any given single neighbour. This rate depends, for example,
on the speed with which individuals move. If each individual has
k neighbours, the rate with which it can meet one of its neigh-
bours is rk.

In this article we assume that interactions between different
strategies can take different times. In particular, these times are
given by the symmetric time interaction matrix
ð3Þ
To calculate the fitnesses of A and B individuals, we need to
know the pair distribution. Two neighbours can start a new
interaction only if they are both free, i.e., not involved in some
other interactions and we denote the probability that X and Y
are free by yXY . The list of symbols used in the article is given
in Table 1. Let xXiYj

be the probability that a neighbouring pair
of X-type and Y-type are involved in an interaction where the
X-type uses strategy ei and the Y-type uses strategy ej
(i; j ¼ 1;2). As interactions between these two strategies finish
at a constant rate 1=sij, at the distributional equilibrium, where
the rate with which pairs disband equals the rate with which
pairs are formed, we have
Table 1
List of used symbols.

yXY probability that two neighbours of type X and Y are both free
xXY probability that two neighbours of type X and Y are interacting,

irrespective of what strategy they use
xXiYj

probability that two interacting neighbours of type X and Y
use strategy ei and ej , respectively

qYjX probability that a random neighbour of a focal type X is of type Y
zXjY probability of X being free given its neighbour is of type Y
aðbÞ proportion of type A (B) individuals in the population
EðX; aÞ payoff of type X in a population with proportion of type A being a
r the rate with which a free individual meets with a free neighbour
p strategy of type A, i.e., probability with which type A plays strategy

e1
xA1A1
s11

¼ yAArp
2;

xA1A2
s12

¼ yAArpð1� pÞ;
xA2A2
s22

¼ yAArð1� pÞ2;
xA1B1
s11

¼ yABrpðpþ hÞ;
xA1B2
s12

¼ yABrpð1� p� hÞ;
xA2B1
s12

¼ yABrð1� pÞðpþ hÞ;
xA2B2
s22

¼ yABrð1� pÞð1� p� hÞ;
xB1B1
s11

¼ yBBrðpþ hÞ2;
xB1B2
s12

¼ yBBrðpþ hÞð1� p� hÞ;
xB2B2
s22

¼ yBBrð1� p� hÞ2;

ð4Þ

where we assume that h is such that 0 6 pþ h 6 1. In particular, if
p ¼ 1 (p ¼ 0) then h < 0 (h > 0).

Let us consider a focal individual of X-type and one of its neigh-
bours who is of Y-type (where X, Y are either an A- or B-type indi-
viduals throughout this article). These two individuals are then
interacting with probability

xXY ¼ xX1Y1 þ xX1Y2 þ xX2Y1 þ xX2Y2 when X – Y

xX1X1 þ 2xX1X2 þ xX2X2 when X ¼ Y:

�
ð5Þ

This leads to

xAA ¼ ryAAsAA;
xAB ¼ ryABsAB;
xBB ¼ ryBBsBB;

ð6Þ

where

sAA ¼ gðp;pÞ; sAB ¼ gðp;pþ hÞ; sBB ¼ gðpþ h; pþ hÞ ð7Þ
are the mean interaction times and

gðp; qÞ ¼ ðp;1� pÞTðq;1� qÞ>

¼ pqs11 þ s12ðp� 2pqþ qÞ þ ð1� pÞð1� qÞs22; ð8Þ
with matrix T given in (3). We observe that when all interaction
times are strategy independent and equal to s; xXY ¼ sryXY .

To calculate the fitness of both types we denote by qY jX the con-
ditional probability that a random neighbour of a focal X-type is of
type Y. This was shown by Ohtsuki et al. (2006), under assump-
tions that we discuss below, to be

qAjA ¼ ðk�2þ1
aÞa

k�1 ¼ 1þðk�2Þa
k�1 ;

qBjA ¼ 1� qAjA ¼ k�2
k�1 ð1� aÞ;

qAjB ¼ k�2
k�1 a;

qBjB ¼ 1� qAjB ¼ 1þðk�2Þð1�aÞ
k�1 :

ð9Þ

The above expressions allow us to calculate pair distributions. Let
pXY be the proportion of XY pairs among all pairs. This proportion
depends on the frequency a (b) of type A (B) individuals in the pop-
ulation, the probability qY jX that a random neighbour of an X type
individual is of Y type, and the probability xXY that the two individ-
uals are interacting, i.e.,

pAA � xAAqAjAa;

pAB � xABðqAjBbþ qBjAaÞ;
pBB � xBBqBjBb:

In general, these are not in Hardy–Weinberg proportions due to
the graph structure. We observe that as the graph degree tends
to infinity, i.e., individuals interact at random, pAA � xAAa2;

pAB � 2xABab, and pBB � xBBb
2. If all interaction times are the same,
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i.e., sAA ¼ sAB ¼ sBB, then we show in Appendix A that
xAA ¼ xAB ¼ xBB, and so the pair proportions are at Hardy–Weinberg
equilibrium.

In this article we assume that the population size is very large
(i.e., much larger than is the graph degree k, Ohtsuki et al., 2006),
and we are interested to find out when a finite number of mutants
B can invade under (effective) monomorphism where the propor-
tion of A-type individuals in the population is a ¼ 1, and so the pro-
portion of B individuals is 0, i.e. in the limit of the population size
tending to infinity. For this situation qs in (9) simplify to

qAjA ¼ 1;
qBjA ¼ 0;

qAjB ¼ k�2
k�1 ;

qBjB ¼ 1
k�1 :

ð10Þ

In particular, we observe that the probability that a mutant has a
resident as its neighbour is higher than is the probability that a
mutant has a mutant as its neighbour once k > 3.

If individuals were completely randomly distributed, then
qBjB ¼ qBjA ¼ 1� a and qAjA ¼ qAjB ¼ a, so that for a smaller but very
close to 1, the probability of a B individual having a B neighbour
would seem to be small. Although we assume that individuals start
out allocated randomly, evolution happens such that an individual
is randomly selected to give birth and copies itself into a random
neighbour (the individual there is then replaced). Thus over time
individuals will tend to be near others of their own type (at least
more likely than pure random allocation). In particular, given an
individual is alive, there is a reasonable probability it is connected
to its parent or an offspring, although as we see in Eq. (9), this
effect is strongest for the smallest values of k. In particular
Ohtsuki et al. (2006) showed that the conditional probabilities in
Eq. (9) hold, given the following assumptions: (i) the population
is evolving under weak selection, so that the difference between
the fitnesses of the two types of individuals is (vanishingly) small,
which holds for our model for (vanishingly) small h, (ii) the popu-
lation size N is large, and it is much larger than the degree of the
graph k, and (iii) the graph has no clustering. The pair approxima-
tion was developed for Bethe lattices, regular graphs with no
cycles. In particular the approximation will not be accurate for
heavily clustered graphs, such as triangular lattices. We note that
this means that the usual assumptions about small invading
groups, that almost all interactions are with the resident popula-
tion and so the population can effectively be treated as monomor-
phic, do not automatically hold. We thus consider our analysis for
all possible interactions between individuals of the two types
throughout the sections that follow.

To calculate the probability xXY that two neighbours are inter-
acting we define zXjY to be the conditional probability of an X being
free given its neighbour is of type Y. Let us consider a focal individ-
ual of X-type and one of its neighbours who is of Y-type. These two
individuals can be interacting with probability xXY , or the focal
individual can be free with probability zXjY , or it can be interacting
with one of the other neighbours, that can be either of A- or B-type,
with probability qAjXxXA þ qBjXxXB. We obtain the following equa-
tions for zXjY and yXY

ðqAjAxAA þ qBjAxABÞðk� 1Þ þ xAA þ zAjA ¼ 1;
ðqAjAxAA þ qBjAxABÞðk� 1Þ þ xAB þ zAjB ¼ 1;
ðqAjBxAB þ qBjBxBBÞðk� 1Þ þ xAB þ zBjA ¼ 1;
ðqAjBxAB þ qBjBxBBÞðk� 1Þ þ xBB þ zBjB ¼ 1:

ð11Þ

We shall assume that neighbours are effectively independent,
given not interacting with each other. This is approximately true
for large graphs with no clustering, but this will not be accurate
for highly clustered graphs, i.e., in the same circumstance as when
the approximations in Eq. (9) are not accurate. This then gives for a
pair of neighbours who are of X- and Y-type

P½both X and Y free� ¼ P½not interacting with each other�
� P½X does not interact with another neighbour

� P½Y does not interact with another neighbour

giving

yAA ¼ ð1� xAAÞ zAjA
1�xAA

zAjA
1�xAA

¼ z2AjA
1�xAA

;

yBB ¼ ð1� xBBÞ zBjB
1�xBB

zBjB
1�xBB

¼ z2BjB
1�xBB

;

yAB ¼ ð1� xABÞ zAjB
1�xAB

zBjA
1�xAB

¼ zAjBzBjA
1�xAB

:

ð12Þ

Eqs. (11) and (12) allow us to calculate ys as functions of xs:

yAA ¼ ð1� ðk� 1ÞðqAjAxAA þ qBjAxABÞ � xAAÞ2
1� xAA

;

yBB ¼ ð1� ðk� 1ÞðqAjBxAB þ qBjBxBBÞ � xBBÞ2
1� xBB

;

yAB ¼ ð1� ðk� 1ÞðqAjAxAA þ qBjAxABÞ � xABÞ

� ð1� ðk� 1ÞðqAjBxAB þ qBjBxBBÞ � xABÞ
1� xAB

:

Substituting these formulae in (6) leads to a system of algebraic
equations

xAA ¼ rsAA
ð1�ðk�1ÞðqAjAxAAþqBjAxABÞ�xAAÞ2

1�xAA
;

xBB ¼ rsAB
ð1�ðk�1ÞðqAjBxABþqBjBxBBÞ�xBBÞ2

1�xBB
;

xAB ¼ rsBBð1� ðk�1ÞðqAjAxAA þ qBjAxABÞ� xABÞ ð1�ðk�1ÞðqAjBxABþqBjBxBBÞ�xABÞ
1�xAB

ð13Þ
for equilibrium pair distribution ðxAA; xAB; xBBÞ.

Substituting (10) in (13) leads to the following equations for
equilibrium distribution of interacting pairs

xAA ¼ rsAA ð1�kxAAÞ2
1�xAA

;

xBB ¼ rsBB ð1�ðk�2ÞxAB�2xBBÞ2
1�xBB

;

xAB ¼ rsAB ð1�ðk�1ÞxAA�xABÞð1�ðk�1ÞxAB�xBBÞ
1�xAB

:

ð14Þ

We observe that from (10) and (11) and because all zs are non-
negative

1� kxAA > 0;
1� ðk� 1ÞxAA � xAB > 0;
1� ðk� 1ÞxAB � xBB > 0;
1� ðk� 2ÞxAB � 2xBB > 0:

ð15Þ

We shall be interested in considering evolutionary dynamics
models where individuals can only replace or be replaced by
neighbours. In the next section we derive fitnesses at the equilib-
rium pair distribution for two replacement processes.

3. Fitnesses for two replacement processes

In this section we derive fitnesses for A and B individual types.
These fitnesses depend on the details of the replacement process in
which one individual is replaced by another individual. Here we
consider two types of replacement models: a birth–death replace-
ment process where an individual is selected for birth proportional
to its fitness and then replaces a random neighbour, and a death-
birth process where an individual dies at random and is then
replaced by a copy of a neighbour, with the neighbour selected
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with probability proportional to its fitness. In both cases we
assume that these population processes operate on a time scale
that is much longer than is the time scale at which pairs are
formed. This means that we assume that when a new individual
replaces another individual, the pairs are at their equilibrium dis-
tribution calculated above.

We want to find a strategy p of residents A (i.e., the probability
with which type A individuals play strategy e1), at which any other
strategy that slightly differs cannot invade. To do this we will
assume that frequencies of pairs change on a short time scale
(see Sections 3.1 and 3.2) while frequencies of strategies (Section 4)
change on a long, evolutionary time scale. This assumption corre-
sponds to time scale separation, where frequencies of pairs instan-
taneously track frequencies of strategies. If a mutant strategy
achieves a higher payoff than the resident strategy we assume that
mutants invade, replace the current residents, and become new
residents. This corresponds to the methodology from adaptive
dynamics (Dercole and Rinaldi, 2008; Broom and Rychtář, 2013).
We note, however, that there are also crucial differences. In
unstructured populations any two individuals are neighbours.
Thus, if B represents a small invading mutant group, almost all
interactions for either A or B are with the resident A type so, e.g.,
interactions between two B individuals are not considered. How-
ever, this is not the case in structured populations, where the num-
ber of neighbours stays fixed, as Eqs. (9) and (10) make clear, and
we have to consider all interactions between residents and
mutants.

3.1. Birth–death updating

In this process one individual is chosen to give birth propor-
tional to its fitness and the newborn then replaces a randomly
selected neighbouring individual (Fig. 1A). Here we assume that
the focal individual can interact with all of its neighbours and
obtains payoffs from these interactions even if it is interacting with
the neighbour that will be chosen to die. We calculate the payoff to
a random focal individual in the population for both types

EðAjA; aÞ ¼ r qAjAyAAPAA þ qBjAyABPAB

� �
ðk� 1Þ þ yAAPAA

� �
;

EðAjB; aÞ ¼ r qAjAyAAPAA þ qBjAyABPAB

� �
ðk� 1Þ þ yABPAB

� �
;

EðBjA; aÞ ¼ r qAjByABPBA þ qBjByBBPBB

� �
ðk� 1Þ þ yABPBA

� �
;

EðBjB; aÞ ¼ r qAjByABPBA þ qBjByBBPBB

� �
ðk� 1Þ þ yBBPBB

� �
;

ð16Þ
Fig. 1. Panel A shows Birth–Death updating while panel B shows Death-Birth updating
replacing a randomly chosen neighbour. In DB updating an individual is chosen at random
for the vacant place as shown in Panel B. In both panels the focal individual X is the one
updating X can interact (and it does in panel A) with the individual it replaces, while in D
other. The solid line shows who interacts with whom.
where EðXjY; aÞ is the expected payoff to a type X individual with a
given neighbour of type Y. Here, the first part of each formula
denotes the fitness the focal individual gets from when it interacts
with a neighbour that will not die in that interaction, while the last
term describes the interaction with the individual that will die in
the interaction. For example, assume that the focal individual is of
type A and the individual that will be replaced is of type B. The fit-
ness of the focal individual E(A|B,a) is then calculated as the mean
payoff the individual obtains from interacting with its neighbours.
We consider the start of the contests as a way of finding the payoff
per unit time over a long period, as once a contest has started the
expected payoff associated with it will subsequently be accrued.
The focal individual can interact with a neighbour only if both the
focal individual and the neighbour are free. Also, we know that
the neighbour that will be replaced is of type B, but we do not know
what types the other k� 1 neigbours are. For that reason we need to
take into account the probability that a random neighbour of our
focal type A individual is either of type A (with probability qAjA) or
B (with probability qBjA).

We want to find a strategy p of residents A, at which any other
strategy that slightly differs cannot invade. In a population consist-
ing of residents only (a ¼ 1), the fitness of any other mutant with a
slightly different strategy h– 0 (h small) must satisfy the local ESS
condition EðA;1Þ > EðB;1Þ (see Section 4; Hofbauer and Sigmund,
1998; Broom and Rychtář, 2013). Such a strategy can be either a
strict NE, i.e., p ¼ 1 or p ¼ 0, or it can be an interior strategy with
0 < p < 1. We assume that payoffs (16) and (19) are calculated at
the pair distribution equilibrium. To calculate this equilibrium dis-
tribution xXY ; yXY we consider the situation where mutants B are
infinitesimally different from residents, i.e., effectively we consider
the limiting case where all individuals play the same mixed strat-
egy by setting h ¼ 0. Letting h ! 0 we have that sAB and sBB tend to
sAA, see (7), and thus Eqs. (14) simplify to

xAA ¼ rsAA ð1�kxAAÞ2
1�xAA

;

xBB ¼ rsAA ð1�ðk�2ÞxAB�2xBBÞ2
1�xBB

;

xAB ¼ rsAA ð1�ðk�1ÞxAA�xABÞð1�ðk�1ÞxAB�xBBÞ
1�xAB

:

ð17Þ

We note that for ease of presentation, we keep the same notation as
in (14) even though xXY are calculated from here on at
sAA ¼ sAB ¼ sBB.
Since interactions times are the same for both types, it is not
surprising that the monomorphic resident system (17) where all
individuals play strategy p together with constraints (15) has
(for k > 2, as we assume), a unique solution
. For BD updating an individual is selected to give birth, a copy of that individual
to die, and a neighbour is selected to replace it. Thus, all neighbours are competing
that gives birth and that in the dashed circle is the one that dies. In the case of BD
B updating, after a random death, competing individuals do not interact with each
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xAA ¼ xAB ¼ xBB ¼ 1þ 2sAAkr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sAAðk� 1Þr þ 1

p
2sAAk2r þ 2

; ð18Þ

see Appendix A. We show in Appendix B that following a natural
distributional dynamics, the population converges to this solution.
We observe, that when pairing is instantaneous, i.e., when r tends
to infinity,

lim
r!1

xAA ¼ lim
r!1

xAB ¼ lim
r!1

xBB ¼ 1
k
:

Thus, if there are no singles, the probability that two neighbours are
interacting tends to zero as the graph degree increases.

When a ¼ 1 and we substitute (10) in payoffs (16) we obtain

EðAjA;1Þ ¼ rkyAAPAA;

EðAjB;1Þ ¼ r yAAPAAðk� 1Þ þ yABPABð Þ;
EðBjA;1Þ ¼ r ðk� 1ÞyABPBA þ yBBPBBð Þ;
EðBjB;1Þ ¼ r ðk� 2ÞyABPBA þ 2yBBPBBð Þ:

ð19Þ
3.2. Death-birth updating

In this process one individual is chosen at random to die and it
is replaced by a copy of one of its neighbours. Only the neighbours
of the dying individual are competing for the vacant space (Fig. 1B).
Because the dying individual can be either of type A or type B, we
need to calculate the payoffs of its neighbours that can also be of
both types. Using Eq. (19), we obtain

EðAjA;1Þ � EðBjA;1Þ ¼ rkyAAPAA � r ðk� 1ÞyABPBA þ yBBPBBð Þ ð20Þ
if the dying individual was of type A, and

EðAjB;1Þ � EðBjB;1Þ ¼ r yAAPAAðk� 1Þ þ yABPABð Þ
� r ðk� 2ÞyABPBA þ 2yBBPBBð Þ ð21Þ

if the dying individual was of type B. Since

yAAPAA � yABPBA � yABPAB þ yBBPBB ð22Þ
is of order h2 using Eq. (2), and because yAA ¼ yAB ¼ yBB as all s’s are
the same in (6) and (18), we have that Eqs. (20) and (21) are effec-
tively the same, i.e., the payoff difference between type A vs. type B
does not depend on the dying individual, and we thus simply write
this as

EðA;1Þ � EðB;1Þ ¼ r kyAAPAA � ðk� 1ÞyABPBA � yBBPBBð Þ
where

EðA;1Þ :¼ EðAjA;1Þ ¼ rkyAAPAA;

EðB;1Þ :¼ EðBjA;1Þ ¼ r ðk� 1ÞyABPBA þ yBBPBBð Þ; ð23Þ

see (19).

4. Evolutionary dynamics

Evolutionary dynamics for the BD updating can be described by
an adjusted replicator dynamics

dp
dt

¼ �pð1� pÞsgnðhÞðEðAjB;1Þ � EðBjA;1ÞÞ ð24Þ

with the evolutionary dynamics for the DB updating similarly given
by

dp
dt

¼ �pð1� pÞsgnðhÞðEðA;1Þ � EðB;1ÞÞ: ð25Þ

In the former case individuals play games against the neighbour
that they might replace, and the key factors are the fitness of a type
A given that it is adjacent to a type B, and the corresponding fitness
of a type B given that it is adjacent to a type A.
In the latter case all neighbours compete for the vacant place. If
the dying individual is an A type and there are j As and k� j Bs as
neighbours, the new individual will be an A with probability
jEðA;1Þ=ðjEðA;1Þ þ ðk� jÞEðB;1ÞÞ. This is greater than j=k (so each
A reproduces faster than each B) iff EðA;1Þ � EðB;1Þ > 0, and this
ensures that the population of As increases in the long term.

We should note that we do not necessarily need to select the
above dynamics, and that any alternative dynamics which had
the same sign for all values of p (i.e., where the effect of the payoff
differences ðEðA;1Þ � EðB;1ÞÞ and ðEðAjB;1Þ � EðBjA;1ÞÞ causes evo-
lution to act in the same direction) would yield the same result.

Eqs. (24) and (25) that describe changes in the proportion p of
strategy e1 are adjusted replicator equations with the right hand
side multiplied by �1 (1) when h > 0 (h < 0). The reason for this
adjustment is the following. Let us assume that h > 0, i.e., B-type
individuals use strategy e1 more often than A-type individuals. If
EðA;1Þ > EðB;1Þ this means that the A-type has a higher fitness,
and strategy e1 should be decreasing in proportion. Similarly, if
h < 0 and EðA;1Þ > EðB;1Þ, the A-type uses strategy e1 more often
than the B-type and strategy e1 should be increasing in proportion.

We also note that in Eqs. (24) and (25) we show the start of the
evolutionary dynamics process when the population only com-
prises A-type individuals (a ¼ 1). As is standard in adaptive
dynamics models we assume the mutant strategy is only infinites-
imally different from residents so that we have that all ys are the
same and equal to yAA for all as. Appendix C then shows that the
equilibria of (24) and (25) are independent of the as.

Replicator dynamics (24) and (25), respectively, evaluated at
the equilibrium distribution of interacting pairs (14), form a sys-
tem of algebraic-differential equations that can be solved numeri-
cally. A rest point of the dynamics will occur if and only if there is
an NE (assuming we start with some non-zero number of each of
the As and Bs). In what follows we apply these results to the
Hawk-Dove and repeated Prisoner’s Dilemma games.

4.1. Hawk-Dove game

The Hawk–Dove game is given by the payoff matrix

ð26Þ

where V > 0 denotes the value of the reward and C > 0 is the cost of
the fight. Then the payoff matrix for the two types A and B is

P ¼
V�Cp2H

2
Vð1�hÞ�CpHðpHþhÞ

2

Vð1þhÞ�CpðpHþhÞ
2

V�CðpHþhÞ2
2

2
4

3
5

where pH denotes the frequency of Hawk played by the type A.
For the BD updating, the key payoff terms (19) are

EðAjB;1Þ¼ 1
2r V ðh�1ÞyAB �kyAA þyAAð Þ�CpH hyAB þpHððk�1ÞyAA þyABÞð Þð Þ;

EðBjA;1Þ¼ 1
2r V ð1þhÞðk�2ÞyAB þhyBA þyBA þyBBð Þ�CðpH þhÞ hyBB þpHððk�2ÞyAB þyBA þyBBÞð Þð Þ;

while for DB updating payoffs (23) are

EðA;1Þ ¼ 1
2 kryAA V � Cp2

H

� �
;

EðB;1Þ ¼ 1
2 rV ð1þ hÞðk� 1ÞyAB þ yBBð Þ � CrðpH þ hÞ hyBB þ pHððk� 1ÞyAB þ yBBÞð Þð Þ:

ð27Þ

The equilibrium value of pH as a function of the time an interac-
tion between two Hawks takes (s11) for various graph degrees
(k ¼ 4;10;20;50) are shown in Figs. 2 and 3. The cases with
birth–death updating for small (k = 4) and large (k = 50) degree
are shown in Fig. 2 (panels A and B assume V > C while panels C
and D assume V < C). We see these solutions (as well as other solu-
tions for other graph degree values that are not shown here) are



Fig. 2. Bifurcation diagram for the Hawk-Dove game for birth–death updating when V ¼ 2 > 1 ¼ C (top panels A, B) and V ¼ 1 < 2 ¼ C (bottom panels C, D) for graph degree
k ¼ 4;50. The solid (dashed) line shows the frequency of Hawk pH at a stable (unstable) NE for the adjusted replicator dynamics (24). In all plots r ¼ 1; s12 ¼ s21 ¼ s22 ¼ 1.

M. Broom, V. Křivan / Journal of Theoretical Biology 506 (2020) 110426 7
close to those obtained for unstructured and well-mixed popula-
tions (cf. Fig. 2 vs. Fig. 3, AB in Křivan and Cressman, 2017), and
so there is little variation with changing graph degree.

Fig. 3 (panels A–D assume V > C while panels E and F assume
V < C) corresponds to death-birth updating. For low values of k,
these solutions are qualitative different from those for birth–death
updating. We see in Fig. 3 that for k ¼ 4 (panel A) there is a unique
solution with pure Hawk for low s11, and a mixture with lower
Hawk frequency as s11 increases. As k increases (panels B–D) we
see regions where there are two ESSs, pure Hawk and a mixture,
and for k ¼ 50 we see this over a very large range of s11s (and this
figure is almost identical to the well-mixed population case from
Křivan and Cressman (2017)). Note that the case V > C would yield
a pure Hawk ESS in the game with a well-mixed population with-
out time constraints, and so the above has yielded a markedly dif-
ferent solution. Panels E and F that assume V < C show a mixed
solution as in the equivalent case without time constraints, but
again with Hawk frequency declining with s11. We also observe
that as the graph degree decreases, it takes a shorter interaction
time s11 for Doves to invade. This suggests that death-birth models
are much more sensitive to graph degree than birth–death ones.
Contrary to the death-birth updating case, for birth–death updat-
ing Doves invade for k ¼ 4 at s11 � 5:6 and for k ¼ 50 at
s11 � 4:5, i.e., invasion is slightly less likely as s11 decreases.

The main explanation for this is that for the birth–death pro-
cesses, there is always a direct interaction between replacing and
replaced individuals. Thus irrespective of the number of neigh-
bours an individual has, whenever it is possible to replace/be
replaced by an individual of the other type, it will always interact
with at least one individual of that type. If the other type is rare, as
for new invading groups, this will likely be the only such individ-
ual, whatever the value of the graph degree, and this pairwise
interaction will have a significant effect on the evolutionary out-
come. For death-birth processes, a random individual first dies,
and those competing for the vacant space are not directly interact-
ing. The number, and proportion (see Eq. (9) which holds for both
processes), of opponents of each type then changes much more
with the value of k. We can see this by comparing Eqs. (23), (25)
with Eqs. (16), (24). Eqs. (16), (24) include both the specific indi-
vidual to be replaced and others in the neighbourhood, but Eqs.
(23), (25) contain the other individuals only. Thus for the death-
birth model the degree plays a more important role.
4.2. Prisoner’s Dilemma

Here we consider the single shot Prisoner’s Dilemma game
given by the payoff matrix

ð28Þ

where b is the benefit and c is the cost of cooperation. Following
Křivan and Cressman (2017) (see also Broom et al., 2019), we con-
sider a repeated PD where individuals are free to decide if they want
to play the game the next round with the same partner or not. This
is the opting out game (Zhang et al., 2016). The entries of interac-
tion matrix (3) are now interpreted as the average number of
rounds the two players stay together. Then, the payoff matrix per
interaction (which can consist of several rounds) is

ð29Þ

If pC denotes the probability with which an individual of type A
cooperates, payoffs to a random individual for the birth–death pro-
cess are



Fig. 3. Bifurcation diagram for the Hawk-Dove game for death-birth updating when V ¼ 2 > 1 ¼ C in panels A–D and V ¼ 1 < 2 ¼ C in panels E and F for graph degree
k ¼ 4;10;20;50. The solid (dashed) line shows the frequency of Hawk pH at a stable (unstable) NE for the adjusted replicator dynamics (25). In all plots
r ¼ 1; s12 ¼ s21 ¼ s22 ¼ 1.
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Fig. 4. Bifurcation diagram for the PD game for birth–death updating for graph degree
(unstable) NE for the adjusted replicator dynamics (24). Other parameters used in simu
k ¼ 4;50. The solid (dashed) line shows the frequency of Cooperate pC at a stable
lations: b ¼ 2; c ¼ 1; r ¼ 1;l ¼ 1.



EðAjB;1Þ ¼ r yAAðb� cÞpC ðpCs11 þ ð1� pCÞs12Þðk� 1Þ þ yABððb� cÞpCððpC þ hÞs11 þ ð1� pC � hÞs12Þ þ bhs12Þð Þ;
EðBjA;1Þ ¼ r yABððb� cÞpCððpC þ hÞs11 þ ð1� pC � hÞs12Þ � chs12Þðk� 2Þ þ yBBðb� cÞðpC þ hÞððpC þ hÞs11 þ ð1� pC � hÞs12Þð Þ þ yABððb� cÞpCððpC þ hÞs11 þ ð1� pC � hÞs12Þ � chs12Þð Þ

Fig. 5. Bifurcation diagram for the PD game for death-birth updating for k ¼ 4;10;20;50. The solid (dashed) line shows the frequency of Cooperate pC at a stable (unstable) NE
for the adjusted replicator dynamics (25). Other parameters used in simulations: b ¼ 2; c ¼ 1; r ¼ 1.
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while for the death-birth process
EðA;1Þ ¼ yAArkðb� cÞpC pCs11 þð1�pCÞs12ð Þ;
EðB;1Þ ¼ rðk�1ÞyABðbpCððpC þhÞs11 þð1�pC �hÞs12Þ� cðpC þhÞðpCs11 þð1�pCÞs12ÞÞþ ryBBðb� cÞðpC þhÞððpC þhÞs11 þð1�pC �hÞs12Þ:

ð30Þ
Here we focus on the case where only interactions between two
cooperators take more rounds, i.e., s11 P 1 and s12 ¼ s22 ¼ 1 (note
that s22 does not occur in the payoff functions directly, but affects
them indirectly through the interaction probabilities yXY ). Depen-
dence of pC on the number of rounds the game is played s11 is
shown for birth–death updating in Fig. 4 and for death-birth
updating in Fig. 5. For this model there are significant changes in
outcome as k varies for both birth–death and death-birth models,
although again those for the death-birth model are much larger.
Besides Defect, that is always an ESS for both birth–death and
death-birth models, there is also a stable mixed solution for suffi-
ciently large s11 in both models. The difference between the two
updating rules is that Cooperation evolves at a lower number of
rounds s11 for the death-birth updating when compared with the
birth–death model.
5. Discussion

We have developed a new approach to the theory of two-player
symmetric evolutionary games with two strategies on regular
graphs that explicitly considers duration of interactions between
players. We applied this theory to the Hawk-Dove and Prisoner’s
dilemma games. In the case of the Hawk-Dove game we showed
that when the cost of fighting is low in which the classic model
predicts all individuals will play the Hawk strategy, a mixed strat-
egy where individuals play both the Hawk and Dove strategy
exists. Similarly, for the repeated Prisoner’s dilemma cooperation
evolves. In both cases we showed that the results are sensitive to
the graph degree and to the updating process that can be either
death-birth or birth–death. For the Hawk-Dove model and death-
birth updating from Fig. 3 we observe that at fixed s11 aggressivity
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at the interior equilibrium increases with the graph degree. This
means that more neighbours an individual has, the more aggres-
sive it will be. However, this prediction changes for birth–death
updating. In this case when the cost of fighting is low when com-
pared with the cost of the reward (C < V), the level of aggressivity
at the interior NE decreases with the graph degree. However, when
C > V , the effect of the graph degree on the interior equilibrium is
almost negligible. For the repeated Prisoner’s dilemma game we
obtained similar results in that for both updating rules the level
of cooperativity at the interior NE decreases with increasing graph
degree (Figs. 5 and 4).

When graph degree is high, i.e., when everybody can interact
with a large number of individuals, our results fit with those
obtained for unstructured well mixed populations (e.g., cf.
Fig. 3B, D vs. Fig. 3A, B in Křivan and Cressman, 2017). The differ-
ence is that mixed equilibria occur at lower interaction times when
graph degree is finite. This makes sense because for example in the
case of the repeated Prisoner’s dilemma game Hamilton’s rule (e.g.,
Hamilton, 1964; Broom and Křivan, 2018) states that two players
must interact long enough for cooperation to evolve. Thus, cooper-
ation is more likely to evolve on graphs where individuals have
lower number of neighbours, i.e., the same individuals do interact
more often (Pacheco et al., 2006). On the other hand, we observe
that at the interior NE for the PD game (Figs. 5 and 4) the level
of cooperative behaviour decreases with the number of neigh-
bours, i.e., the level of defection increases. An explanation for this
is that the more neighbours an individual has, the less time it
spends interacting with any given individual, and the lower the
contribution to future rewards of interactions from this individual.
Thus the penalty for defecting from reciprocal behaviour by any
individual is lower, so the temptation to defect is correspondingly
higher.

A separation of timescales is central to the models of evolution-
ary game theory for well-mixed populations that assume that pay-
offs are calculated at the Hardy–Weinberg distribution of
interacting pairs. This is also true for evolutionary models that
assume dependence of interaction times on strategies (e.g., Garay
et al., 2017; Křivan and Cressman, 2017; Garay et al., 2018;
Křivan et al., 2018; Cressman and Křivan, 2019; Broom et al.,
2019), and as we wish to compare our work to these, this is how
we do this in the current paper too. The introduction of structure,
at least for regular graphs as we consider, does not actually make a
huge deal of difference per se. We can see this from comparing
Figs. 2 and 4 for the birth–death process with analogous figures
in Křivan and Cressman (2017). It is Figs. 3 and 5 for the death-
birth process which are really different, and the cause here is that
the individuals competing for the vacant space after an individual
has died do not interact with each other.

An interesting comparator for our model is the work of Taylor
and Nowak (2006) which models an infinite unstructured popula-
tion with non-constant interaction rates. Given the population is
unstructured, the more direct comparison is with Křivan and
Cressman (2017), which as we have discussed in Section 4, is a lim-
iting case for our model as k becomes large. The model of Taylor
and Nowak (2006) considered two strategies where individuals
encountered others at different rates, so that each of the three pos-
sible pairs formed at different rates (rAA; rAB and rBB). This is actually
the practical consequence of the time constraints in the Křivan and
Cressman (2017) paper, where the length of interactions depends
on strategies individuals play. Calculation of fitnesses in evolution-
ary game theory is based on an implicit assumption that the pair
distribution corresponds to Hardy–Weinberg equilibrium (e.g.,
Křivan and Cressman, 2017). When pairing is preferential or pairs
take different times, the resulting pair distribution does not corre-
spond to Hardy–Weinberg equilibrium and fitness functions are
not linear in strategies. Although fitnesses used in Taylor and
Nowak (2006) are also non-linear in strategies, they do not con-
sider the pair distribution. In Taylor and Nowak (2006) the payoffs
are simply an average of the payoffs over all of the games played;
the main focus is the novel idea that repairing is not random, and
so they do not follow the potential underlying dynamical system in
detail (there would be lone individuals, and some would get more
pairings than others). In contrast, in Křivan and Cressman (2017)
payoffs explicitly depend upon the times that interactions take,
through explicit calculation of the pair distribution, beyond just
through their effect on the relative pairing probabilities (pairing
is instantaneous in Křivan and Cressman (2017) and so there are
no lone individuals, although these are an important feature of
the later work Křivan et al., 2018). We should also note that the lat-
ter paper is perhaps the simplest example in a recent series of arti-
cles (Garay et al., 2017; Křivan and Cressman, 2017; Garay et al.,
2018; Křivan et al., 2018; Cressman and Křivan, 2019) on a time
constraint problem.

We have only considered two dynamics here, birth–death and
death-birth, with selection operating at the birth event in each
case. In fact there are a number of possible dynamics, and in
particular we can consider selection on the death event, so that
we have a set of four dynamics BDB (birth–death with selection
on the birth), DBB as we have considered, but also BDD and
DBD. We have not explicitly included the other two dynamics
because for weak selection on regular graphs it is where selec-
tion occurs (on the first or second event) that matters, and so
BDD is the same as DBB and DBD is the same as BDB (Ohtsuki
et al., 2006).

Other researchers have considered the two dynamics that we
have considered, and their effect on the evolution of cooperation
(when there are no time constraints) in great detail. The popula-
tion structure allows positive assortment among cooperators
(Santos and Pacheco, 2005) which allows cooperators to poten-
tially evolve, and this is particularly true for irregular graphs with
heterogenous individuals, allowing hubs of individuals to form
(Santos et al., 2008). In general for regular graphs and weak selec-
tion, cooperation can be favoured when selection occurs on the
second event, but not on the first (Ohtsuki et al., 2006). In our
model this corresponds to the death-birth dynamics, but not the
birth–death one (see Zukewich et al. (2013) for some exploration
of this issue). In more complex scenarios this selection on the first
versus second event does not always hold (for example in the
structured population framework of (Broom and Rychtář, 2012)
the result seems to hold for static structures (Pattni et al., 2017)
but not mobile populations (Pattni et al., 2018)). Clearly with the
introduction of time constraints in our model, again this result
does not hold.

There are a number of ways that mathematical modelling has
demonstrated that cooperation can occur (Nowak, 2006); one key
way is through the presence of population structure, which can
mean that cooperative individuals are more likely to interact with
other cooperators, which makes them resistant to exploitation by
defectors (Ohtsuki et al., 2006; Santos and Pacheco, 2005). In par-
ticular, this is true for structures where individuals are heteroge-
neous (Santos et al., 2008) allowing hubs or clusters of
cooperators to form. The dynamics that one uses are also impor-
tant; for example Ohtsuki et al. (2006) showed that death-birth
or birth–death dynamics with selection on the second event pro-
motes cooperation but not when selection happens in the first
event.

There has also been past work on graphs where the interactions
depend upon the type of individuals (e.g., Pacheco et al., 2006; Wu
et al., 2010). There different pairs of individuals interact at differ-
ent rates, due to the fact that links can be formed and broken, and
individuals have different propensities to form links with individ-
uals of different types. Thus payoffs depend upon a rescaling of the
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payoff matrix using the long-term distribution of links which is
similar to our rescaled payoff matrix (29) for the repeated Prison-
er’s dilemma game, where the rescaling is with respect to the
number of rounds the two individuals stay together. Thus, there
are a number of differences between their work and ours, both
in terms of assumptions and consequences. Wu et al. (2010) con-
sider two mechanisms. The first mechanism assumes that pairs
break with some probabilities denoted by kXY and new pairs are
formed at random. The similarity with our work is that our inter-
action times are inversely proportional to their disbanding proba-
bilities, i.e., sXY � 1=kXY . The crucial difference is that Wu et al.
(2010) allow re-wiring of the graph after a pair disbands, i.e.,
one of the singles from the disbanded pair forms a new pair with
any single individual, while this is not possible in our model. Thus,
their graph is varying in time and not of fixed degree. This makes it
difficult to compare our results with theirs. Their Fig. 6 shows that
if rewiring happens quite often then (almost) no cooperation
evolves. This is quite understandable, because re-wiring happens
in their model at random, so with more re-wiring they should tend
to the classic PD game where individuals meet at random. The ran-
dom re-wiring in Wu et al. (2010) leads in their model to Hardy–
Weinberg proportions of interacting pairs when disbanding rates
are equal. As we show in Section 2 this holds in our model only
if we assume the graph degree tends to infinity. When graph
degree is finite, distribution of pairs is not in Hardy–Weinberg
equilibrium.

In Pacheco et al. (2006) individuals play games with all of their
neighbours, and so receive an average over whichever neighbours
they have. In our work, only one individual can be played at a time,
and this leads to significant differences. For instance if in their
model there is an individual that breaks a link to one neighbour
at a high rate and to another at a low rate, it will (approximately)
simply receive the payoff for the game against the latter individual.
This compares to having fights against two individuals that take a
very long time or very short time, respectively, for our model. But
here, having two such neighbours would lead to a very low payoff,
as eventually the first individual will eventually become involved
in a long contest, which then prevents it gaining payoffs from a
short one; the consideration of interaction times is again
fundamental.

Finally, we note that, in common with most work on structured
population models, mutations occur rarely, and so at any one time
a population only consists of two type, a resident and a mutant,
with the contest settled in favour of one or the other before a
new mutation event. Most authors assume players are pure-
strategists, and this has generally led them to consider two strat-
egy games only. However our population involves mixed strategy
players, and so is readily extendable to games with multiple pure
strategies, the Rock-Scissors-Paper game being one possible exam-
ple. Thus we believe that our methodology is widely applicable
in situations where both spatial factors and the duration of events
are relevant, which we would argue is the case for a large range of
biological situations.
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Appendix A. Proof of uniqueness of distributional equilibria
(18)

Here we prove uniqueness of the resident distribution (18). The
first equation in (14) has a unique solution

xAA ¼ 2sAAkr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sAAðk� 1Þr þ 1

p
þ 1

2sAAk2r þ 2
ðA:1Þ

that satisfies the constraint 0 6 xAA � 1=k, see (15). From the last
equation in (11) it follows that zBjB ¼ 1� ðk� 2ÞxAB � 2xBB P 0 and
the second equation in (14) can be written in the form

xAB ¼ 1
k� 2

1� 2xBB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xBBð1� xBBÞ

rsAA

s !
ðA:2Þ

and so

@xAB
@xBB

¼ 1
k� 2

�2� 1� 2xBB

2sAAr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�xBBÞxBB

sAAr

q
0
B@

1
CA:

From (15) it follows that for any valid solution we have that
xBB < 1=2, and so we can write the above as

@xAB
@xBB

¼ � 2
k� 2

� gðxBBÞ < � 2
k� 2

;

where gðxBBÞ > 0. We thus have the corresponding derivative of xBB
with respect to xAB satisfying

0 >
@xBB
@xAB

P � k� 2
2

:

From the third equation in (14) we calculate

xBB ¼ 1� ðk� 1ÞxAB � ð1� xABÞxAB
sAArð1� ðk� 1ÞxAA � xABÞ : ðA:3Þ

We know from (15) that the denominator is positive. Similarly
from the third inequality in (15), at any valid solution xAB < 1=2
(since we assume k P 3), and so the third term can be rewritten
as minus a positive and increasing function of xAB. Thus it will have
a positive derivative, and we have

@xBB
@xAB

¼ �ðk� 1Þ � f ðxABÞ < �ðk� 1Þ:

where f ðxABÞ > 0.
A solution to (14) then corresponds to an interesection of lines

(A.2) and (A.3). From the above we can see that (A.3) descends fas-
ter than (A.2) in the valid region of solutions, and so there can be at
most one solution. We have found a solution, and so this must be
unique.

Appendix B. Convergence to the distribution equilibria

Here we consider a polymorphic population consisting of types
A and B. For any pair distributional dynamics we can assume that
Eqs. (11) and (12) hold for any combinations of xAA; xAB and xBB.
However Eq. (14) only holds at the pair distributional equilibrium.
In particular the distributional dynamics will satisfy the following
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differential equations, as fighting pairs are continually formed and
broken.

x0AA ¼ ryAA � xAA
sAA

;

x0AB ¼ ryAB � xAB
sAB

;

x0BB ¼ ryBB � xBB
sBB

:

ðB:1Þ

Substituting for the yXY terms given in (12), we obtain

x0AA ¼ r
z2AjA

1�xAA
� xAA

sAA
;

x0AB ¼ r zAjBzBjA
1�xAB

� xAB
sAB

;

x0BB ¼ r
z2BjB

1�xBB
� xBB

sBB
:

ðB:2Þ

Substituting for zAjA from (11) into the equation for x0AA in (B.2)
yields

x0AA ¼ r
ð1� kxAAÞ2
1� xAA

� xAA
sAA

; ðB:3Þ

which has the following unique, stable equilibrium

x�AA ¼ 1þ 2krsAA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk� 1ÞrsAA þ 1

p
2þ 2k2rsAA

that satisfies 1=k > x�AA > 0.
In addition, the derivative of the right hand-side of (B.3) with

respect to xAA evaluated at the equilibrium is

rð1� ðk� 1ÞxAAÞ
ð1� xAAÞ2

ðk� 1ÞxAA � ð2k� 3Þð Þ

� 1
sAA

<
rð1� ðk� 1ÞxAAÞ

ð1� xAAÞ2
2ð2� kÞð Þ < 0; ðB:4Þ

because of (15) and so the equilibrium is stable.
Thus, xAA converges to this equilibrium, and in the following we

will assume that xAA ¼ x�AA. We are thus left with considering the
following two dimensional dynamical system:

x0AB ¼ r
1�ðk�1Þx�AA�xABÞð1�ðk�1ÞxAB�xBBÞ

1�xAB
� xAB

sAB
;

x0BB ¼ r ð1�ðk�2ÞxAB�2xBBÞ2
1�xBB

� xBB
sBB

:
ðB:5Þ

Calculating the Jacobian, we get (for k P 3)

@x0
AB

@xAB
¼ rð1�ðk�1Þx�

AA
�xABÞð1�ðk�1ÞxAB�xBBÞ
ð1�xABÞ2

� ðk�1Þrð1�ðk�1Þx�
AA

�xABÞ
1�xAB

� rð1�ðk�1ÞxAB�xBBÞ
1�xAB

� 1
sAB

;

@x0
AB

@xBB
¼ �rð1�ðk�1Þx�

AA
�xABÞ

1�xAB
;

@x0BB
@xAB

¼ �2ðk�2Þrð1�ðk�2ÞxAB�2xBBÞ
1�xBB

;

@x0BB
@xBB

¼ rð1�ðk�2ÞxAB�2xBBÞð2xBB�3�ðk�2ÞxABÞ
ð1�xBBÞ2

� 1
sBB

:

Setting sAA ¼ sAB ¼ sBB ¼ s as we must have for the limiting case
h ! 0 and xAA ¼ xAB ¼ xBB ¼ x as at the resident-only equilibrium.
Let

d ¼ 1� kx
1� x

< 1: ðB:6Þ

We remark that from (15) we have 1� kx > 0, thus d > 0. In
addition, �ð3þ ðk� 4ÞxÞ < �2, since 1þ ðk� 4Þx > 0. Then we
have

@x0AB
@xAB

¼� rðk�1Þð1�kxÞ
ð1�xÞ2 �1

s¼� rðk�1Þ
1�x d�1

s¼�rðk�1Þd�1
s<�rðk�1Þd<0;

@x0AB
@xBB

¼� rð1�kxÞ
1�x ¼�rd<0;

@x0BB
@xAB

¼�2rðk�2Þð1�kxÞ
1�x ¼�2ðk�2Þrd<0;

@x0BB
@xBB

¼� rð3þðk�4ÞxÞð1�kxÞ
ð1�xÞ2 �1

s¼� rð3þðk�4ÞxÞ
1�x d�1

s<�2rd�1
s<�2rd:

Thus the determinant of the Jacobian satisfies
DetðJÞ > ð�ðk� 1ÞrdÞð�2rdÞ � ð�rdÞð�2ðk� 2ÞrdÞ ¼ 2r2d2
> 0

ðB:7Þ
which implies together with the above that the equilibrium is
stable.

Appendix C. Equilibria of replicator Eqs. (24) and (25) are
independent of a.

We assume that the mutant strategy is only infinitesimally dif-
ferent from residents so that we have that all yAA ¼ yAB ¼ yBB in (12)
for all as. From (16) then

EðAjA; aÞ ¼ rðk� 1ÞyAA ðqAjAPAA þ qBjAPABÞ þ PAA
k�1

� �
;

EðAjB; aÞ ¼ rðk� 1ÞyAA ðqAjAPAA þ qBjAPABÞ þ PAB
k�1

� �
;

EðBjA; aÞ ¼ rðk� 1ÞyAA ðqAjBPBA þ qBjBPBBÞ þ PBA
k�1

� �
;

EðBjB; aÞ ¼ rðk� 1ÞyAA ðqAjBPBA þ qBjBPBBÞ þ PBB
k�1

� �
:

Thus

EðAjB; aÞ � EðBjA; aÞ ¼ rðk� 1ÞyAAðPABðqBjA þ
1

k� 1
Þ þ qAjAPAA

�PBAðqAjB þ
1

k� 1
Þ � qBjBPBBÞ:

Since from (9) qAjA ¼ qAjB þ 1
k�1 and qBjB ¼ qBjA þ 1

k�1

EðAjB;aÞ�EðBjA;aÞ ¼ rðk�1ÞyAAðqAjAðPAA �PBAÞþqBjBðPAB �PBBÞÞ:

Since from (2)PAA �PBA ¼ PAB �PBB(neglecting terms of order h2),

EðAjB; aÞ � EðBjA; aÞ ¼ rðk� 1ÞyAAðqAjA þ qBjBÞðPAA �PBAÞ
¼ rkyAAðPAA �PBAÞ:

This is independent of a, so we can just consider a ¼ 1 as we have
done.

A similar procedure works for Eq. (25), where we find that

EðA; aÞ � EðB; aÞ ¼ ryAAððk� 1ÞðPAA �PBAÞ þ ðPAA �PBBÞÞ:
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Broom, M., Rychtář, J., 2008. An analysis of the fixation probability of a mutant on
special classes of non-directed graphs. Proc. R. Soc. A 464, 2609–2627.
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