
J. Math. Biol. (1999) 39: 493}517

Lyapunov functions for Lotka+Volterra
predator+prey models with optimal
foraging behavior

David S. Boukal, Vlastimil Kr\ ivan

Department of Theoretical Biology, Institute of Entomology, Academy of Sciences of
the Czech Republic, and Faculty of Biological Sciences USB, Branis\ ovskaH 31, 370 05
C[ eskeH Bude\ jovice, Czech Republic. e-mail: boukal@entu.cas.cz; krivan@entu.cas.cz

Received: 23 March 1999

Abstract. The theory of optimal foraging predicts abrupt changes in
consumer behavior which lead to discontinuities in the functional
response. Therefore population dynamical models with optimal forag-
ing behavior can be appropriately described by di!erential equations
with discontinuous right-hand sides. In this paper we analyze the
behavior of three di!erent Lotka}Volterra predator}prey systems with
optimal foraging behavior. We examine a predator}prey model with
alternative food, a two-patch model with mobile predators and resi-
dent prey, and a two-patch model with both predators and prey
mobile. We show that in the studied examples, optimal foraging
behavior changes the neutral stability intrinsic to Lotka}Volterra
systems to the existence of a bounded global attractor. The analysis is
based on the construction and use of appropriate Lyapunov functions
for models described by discontinuous di!erential equations.
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1. Introduction

Lotka}Volterra one-predator-one-prey type di!erential equations
have played a prominent role in theoretical population biology. This is
mainly due to the fact that for such equations one may "nd the "rst
integral as well as Lyapunov functions which allow for global analysis
of the model. However, when examining more complicated cases where



there are more food types available for predator, or where there are
more predator types feeding on a particular prey type, classical
Lotka}Volterra equations do not re#ect the consequences of adaptive
behavior of individuals. Standard models of optimal foraging theory
such as prey and patch models assume that animals are perfect opti-
mizers maximizing a quantity (e.g., the rate of energy intake) which is
directly related to the "tness [14]. The basic prey}choice paradigm
assumes that prey are homogeneously distributed across the space and
predators encounter various prey types sequentially; such a model
addresses the question whether a predator should attack a prey
upon an encounter. The basic patch paradigm assumes that prey are
distributed in patches and asks how long a predator should stay in
a patch. Both types of models are examined in examples given in this
paper.

Introducing optimal individual behavior in population dynamics
often leads to di!erential inclusions [1, 2, 6, 7] rather than to di!eren-
tial equations due to the non-uniqueness of the optimal strategy [5].
For example in [9] and [11], the in#uence of optimal foraging on the
dynamics of a system consisting of one predator type feeding on two
prey types was studied. Following the optimal foraging theory [4] it
was assumed there that when the density of the more pro"table prey
type decreases under a certain threshold, the less pro"table prey type
will be included in the predator's diet. This phenomenon leads to the
non-uniqueness in the functional response, because optimal strategy at
the moment of inclusion of the latter prey in the diet is not uniquely
de"ned by maximization of the optimality criterion. Due to the ap-
pearance of the Holling type II functional response, global stability
analysis of such a model was not possible but several biologically
relevant observations relating to the stability, persistence and partial
preferences were obtained. In this paper we will study a simpler model
which assumes that the density of the alternative food type is constant.
Such a model was introduced in [18]. Based on numerical simulations
it was suggested there that the presence of the alternative food may
lead to the persistence of predator}prey dynamics which would be
otherwise violated. In this paper we show that under certain conditions
the above model leads to a Lotka}Volterra type di!erential inclusion
which may be globally studied using an appropriate Lyapunov
function.

A similar situation appears when we study the dynamics of a pred-
ator population in a patchy environment [10]. Assuming that each
predator settles in the patch where its rate of energy intake is maxi-
mized leads to switching sensu Murdoch [12, 13]. The distribution of
predators at equilibrium where they will experience the same energy
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intake in all patches is called &&ideal free distribution'' [8]. This model
again leads to a Lotka}Volterra type di!erential inclusion and may be
globally studied via an appropriate Lyapunov function. Following
[10] we will also give a Lyapunov function for the case where not only
predators but also prey are free to move between patches.

In mathematical language, the dynamics of the above models is
typically described by a system of di!erential equations whose right-
hand sides are set valued along a smooth manifold of codimension one.
For such a type of di!erential inclusions, theorems ensuring existence
and uniqueness of solutions were given in [7]; special cases arising in
food web models were also treated in [5]. However, global qualitative
analysis of such models is rather complicated due to the discontinuity
of right-hand sides. Despite this fact, qualitative methods which are
based on the use of an appropriate Lyapunov function can be imple-
mented (see, e.g., [1] and [7] for general theory).

2. Stability results

In this section we recall some basic facts concerning discontinuous
di!erential equations and stability. We also state the LaSalle invari-
ance principle that will enable us to examine the models given in
following sections. Various other versions of the LaSalle invariance
principle were formulated for discontinuous di!erential equations [7,
15, 16]. We refer the reader to the Appendix for proofs of the proposi-
tions given in this and subsequent sections.

We will consider the autonomous Cauchy problem

xR (t)"f (x(t))
x(0)"x

0
3Rn

`
,

(1)

where Rn
`
"Mx3Rn Dx

1
'0,2, x

n
'0N, and a "nite set of smooth,

pairwise disjunct, open manifolds Mi, i3I (where I is a given index set)
that divide the state space Rn

`
in pairwise disjunct, open regions

Gj, j3J, and continuous vector "elds f j: GjPRn such that f"f j
on Gj.

Because of the piecewise de"nition, f is not continuous and (1) may
not have a solution. Filippov de"ned solutions of (1) as solutions of the
di!erential inclusion

x@(t)3K (x(t)), (2)
where

K(x)" Y
d;0

Y
kN/0

co f (B (x; d)CN).
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Here co stands for the convex hull, B(x; d) is the open d-neighbourhood
of x, and k denotes the Lebesgue measure; see also [7], p. 85. Solutions
of (2) are called Filippov solutions of (1). In this paper &&solution''
always means a Filippov solution.

Due to its de"nition, the set-valued map K is upper semicontinuous
with non-empty compact convex values; consequently, (2) has at least
one solution [7]. In general there may be more solutions of (2);
uniqueness of solutions follows if, e.g., K satis"es a one-sided Lipschitz
condition. In all examples considered in this paper, the solutions of the
Cauchy problem (1) are unique and de"ned for all t70.

We denote the solution of (1) by mxÒ
and the u-limit set of a

given x0 by u`(x0). Moreover S`(G) :"Z
tJ0

AG(t) (where AG(t)"
Mx3Rn

`
Dx"m

xÒ
(t) for some x

0
3GN is the attainable set) denotes the

positive image of GLRn
`

.
By the term sliding domain we denote a (connected) set S, SLMi

for some i3I, such that for all x
0
3S, infMq70Dm

xÒ
leaves the mani-

fold Mi at time qN'0, i.e., once a solution enters a sliding domain, it
stays there (at least locally) and follows the sliding mode.

The three basic types of solutions behavior along a single dis-
continuity manifold (that is the transversal motion with solutions
passing from one region Gi to another, the sliding mode, and the case of
non-unique solutions) are summarized in Fig. 1.

In order to determine the behavior of trajectories along M analyti-
cally, we take a vector n normal to M and oriented in direction from
G1 towards G2 and we examine the scalar products of this vector with
f 1 and f 2. Generically, there are three possibilities for the behavior of
trajectories of (1) when they fall on M:

(i) Sn, f 1T(0, Sn, f 2T(0 (or Sn, f 1T'0, Sn, f 2T'0), and trajec-
tories of (1) will pass through M in direction from G2 to G1 (or
from G1 to G2); see Fig. 1 (Transversal motion)

(ii) Sn, f 1T'0, Sn, f 2T(0, and trajectories of (1) will stay in M; see
Fig. 1 (Sliding mode)

(iii) Sn, f 1T(0, Sn, f 2T'0 which means that trajectories of (1)
starting on M can move either to G1 or to G2; see Fig. 1
(Non}uniqueness).

We remark that the case (iii) of non-unique solutions does not
occur in our examples.

We will use the following notion of a Lyapunov function:

De5nition 1. A function <3C1(Rn
`
) is called a ¸yapunov function of (1)

on XLRn
`

if it is non-negative on X and for all x3X

<Q w(x) :"max
g|K(x)

S+<(x), gT60.
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Fig. 1. Basic types of behavior along the discontinuity manifold. The discontinuity
manifold M divides the state space in two regions, G1 and G2, with the respective
vector "elds f 1 and f 2. The set K is a convex combination of the two vectors at each
point of M in this case. The bold arrows represent Filippov solutions. Note that in the
case of non}unique trajectories, there are trajectories that leave each point of M to
both G1 and G2.
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=e also de,ne the following set attributed to a given ¸yapunov function:

K"K(<, X) :"Mx3XM D<Q w(x)"0N.

Remark. In the above de"nition, we assume for simplicity that < is
di!erentiable because all Lyapunov functions we will construct satisfy
this assumption. The case where < is Lipschitz (with some additional
requirements) was treated in [16] and [7] while [15] treated the case
where a Lyapunov function need not to be even continuous.

Proposition 1 (¸aSalle Invariance Principle). ¸et GLRn
`

be an open set
satisfying

u`(G) :"Z
x|G

u`(x)LS`(G)

and let every Filippov solution m
xÒ

, x
0
3G, of (1) be unique and de,ned

for all t70. ¸et < : Rn
`
PR be a ¸yapunov function of (1) on S`(G).

¹hen u`(G) is a subset of the largest positively invariant subset of KM .

Corollary 1. Suppose that Rn
`
CG is repelling in the sense that all solu-

tions exit Rn
`
CG in a ,nite time (i.e., for every x

0
3Rn

`
CG exists t(x

0
)'0

such that for all t7t (x
0
), m

xÒ
(t)3G). Suppose further that G and

< : Rn
`
PR satisfy conditions of the above proposition, and that

u`(Rn
`
)"u`(G) is bounded.

¹hen the set u`(Rn
`

) is globally asymptotically stable (i.e., stable and
a global attractor).

3. Predator+prey model with an alternative food

Let us consider one predator type feeding on two prey types. The
density of the two prey types are denoted by x

1
and x

2
and the

predator density is denoted by x
3
, respectively. We will assume that

foraging on the second prey type does not have any e!ect on its
density, i.e., x

2
is constant through time. This may be the case of many

arthropod predators when feeding on alternative food like pollen or
honey dew. The "rst population is assumed to grow exponentially in
the absence of predators. The dynamics of such a system can be
described as follows:

x@
1
"a

1
x
1
!

p
1
j
1
x
1
x
3

1#p
1
h
1
j
1
x
1
#p

2
h
2
j
2
K

x@
2
"0

x@
3
"

p
1
e
1
j
1
x
1
x
3
#p

2
e
2
j
2
Kx

3
1#p

1
h
1
j
1
x
1
#p

2
h
2
j
2
K

!mx
3
,
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see [18]. Here x
2
"K is the constant density of prey type 2, p

i
denotes

the probability that a predator will attack prey type i upon an en-
counter, j

i
is the search rate of a predator for the i-th prey type, e

i
is

the expected net energy gained from the i-th prey type and h
i
is the

expected handling time spent with the i-th prey type. Setting handling
time for the "rst prey to be zero (h

1
"0) we get

x@
1
"a

1
x
1
!

p
1
j
1
x
1
x
3

1#p
2
h
2
j
2
K

(3)

x@
3
"

p
1
e
1
j
1
x
1
x
3
#p

2
e
2
j
2
Kx

3
1#p

2
h
2
j
2
K

!mx
3
.

Following the optimal foraging theory we assume that the control
parameters p

1
, p

2
are such that

x@
3

x
3

Pmax. (4)

Since we assume that h
1
"0, it follows that the "rst prey type is more

pro"table for predators (the pro"tability is the energy/handling time
ratio) and that it will always be included in the diet, i.e., p

1
"1. The

alternative prey type will be included in the predator's diet (i.e., p
2
"1)

only if

x
1
(xw

1
:"

e
2

j
1
e
1
h
2

. (5)

If x
1
'xw

1
then p

2
"0, and if x

1
"xw

1
then p

2
may be anywhere in the

interval [0, 1]. Thus p
2

as a function of the density of the "rst prey type
is a step-like function and (3) is a di!erential inclusion [1, 2, 7].

Consequently, we split the (x
1
, x

3
) space in three parts: G1:"

M(x
1
, x

3
)Dx

1
(xw

1
N, G2 :"M(x

1
, x

3
)Dx

1
'xw

1
N and M :"M(x

1
, x

3
)Dx

1
"xw

1
N.

Thus, if the state of the system is in G1, the diet of predators will consist
of both prey types while in G2 it will consists only of the "rst, more
pro"table prey type. When the state of the system reaches M, the diet
composition is not uniquely given by (4). The dynamics of the system in
G1 is described by

x@
1
"a

1
x
1
!

j
1
x
1
x
3

1#h
2
j
2
K

(6)

x@
3
"

e
1
j
1
x
1
x
3
#e

2
j
2
Kx

3
1#h

2
j
2
K

!mx
3

and in G2 by
x@
1
"a

1
x
1
!j

1
x
1
x
3 (7)

x@
3
"e

1
j
1
x
1
x
3
!mx

3
.
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We note that both (6) and (7) are Lotka}Volterra equations if
e
2
(mh

2
#m/(j

2
K).

Considering the scalar products of the vector n"(1, 0) normal to
M and oriented from G1 towards G2 with f 1 and f 2 (i.e., the right-hand
sides of (6) and (7), respectively), we get that the system (3) driven by
optimal foraging strategy possesses a unique trajectory for every initial
condition [5, 7]. The sliding domain S is the interval

M(xw

1
, x

3
) Dq1 :"

a
1

j
1

(x
3
(

a
1

j
1

(1#j
2
Kh

2
)": q2N,

together with one or both endpoints depending on the sign of
mh

2
!e

2
.

The non-trivial equilibrium of (6) is

E(6)"A
m#j

2
K(mh

2
!e

2
)

e
1
j
1

,
a
1

j
1

(1#h
2
j
2
K)B

and the non-trivial equilibrium of (7) is

E(7)"A
m

e
1
j
1

,
a
1

j
1
B.

We note that if mh
2
'e

2
, both equilibria belong to G2 while if

mh
2
(e

2
(mh

2
#m/(j

2
K) they belong to G1. Solutions leave the

sliding domain S in one of the endpoints } either in (xw

1
, q1), where

Sn, f 2T"0, or in (xw

1
, q

2
), where Sn, f 1T"0, depending on the sign of

mh
2
!e

2
. If mh

2
"e

2
then the equilibria E(6), E(7) belong to M and

S : E(7) coincides with the lower end point (xw

1
, q1) of the sliding domain

S while E(6) coincides with the upper end point (xw

1
, q2) of S. Since

the dynamics in the sliding domain is described by x@
1
"0 we may

compute the corresponding control p
2

which governs the dynamics in
S and get:

x@
1
"0

(8)

x@
3
"A

e
2

h
2

!mBx
3
.

It follows from (8) that if mh
2
"e

2
then all points in S are equilibria for

(3). If mh
2
'e

2
then trajectories in sliding domain move &&downwards''

(x
3

decreases) while if mh
2
(e

2
(mh

2
#m/(j

2
K) they move &&upwards''

(x
3

increases).
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The global behavior of (3) is obtained from the knowledge of an
appropriate Lyapunov function. We set

<
2
(x

1
, x

3
)"e

1
j
1C!

m
e
1
j
1

lnA
e
1
j
1
x
1

m B#x
1
!

m
e
1
j
1
D

#j
1C!

a
1

j
1

lnA
j
1
x
3

a
1
B#x

3
!

a
1

j
1
D

and

<
1
(x

1
, x

3
)"

e
1
j
1

1#h
2
j
2
K C!

m#j
2
K(mh

2
!e

2
)

e
1
j
1

lnA
e
1
j
1
x
1

m#j
2
K(mh

2
!e

2
)B

#x
1
!

m#j
2
K(mh

2
!e

2
)

e
1
j
1

D#
j
1

1#h
2
j
2
K

]C!
a
1

j
1

(1#h
2
j
2
K) lnA

j
1
x
3

a
1
(1#h

2
j
2
K)B

#x
3
!

a
1

j
1

(1#h
2
j
2
K)D.

Functions<
1

and <
2

are Lyapunov functions for di!erential equations
(6) and (7) in the usual sense. Using these two functions we may
construct (several) Lyapunov functions for (3) driven by optimal
foraging strategy.

Proposition 2. If mh
2
'e

2
then <

2
is a ¸yapunov function on R2

`
for (3), and

u`(R2
`

)"M(x
1
, x

3
) D<

2
(x

1
, x

3
)6<

2
(xw

1
, q1)NLG2X(xw

1
, q1),

see Fig. 2A.
If mh

2
(e

2
(mh

2
#m/j

2
K then <

1
is a ¸yapunov function on

R2
`

for (3), and

u`(R2
`
)"M(x

1
, x

3
) D<

1
(x

1
, x

3
)6<

1
(xw

1
, q2)NLG1X(xw

1
, q2),

see Fig. 2B.
If mh

2
"e

2
then <

1
#<

2
is a ¸yapunov function on R2

`
for (3), and

u`(R2
`
)"S.

Moreover the set u`(R2
`

) is the global attractor for the system (3) in
all three cases.

Remark. If mh
2
'e

2
(see Fig. 2A) the dimensionality of the state space

(n"2) also implies that trajectories cannot cross the largest invariant
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Fig. 2. Dynamics of the predator}prey model (3) with a "xed density of the alternative
food. In A parameters are such that mh

2
'e

2
. Trajectory shown in the "gure enters the

sliding domain S in the point (xw

1
, q2). Dark grey area denotes the global attractor

u`(R2
`
), middle grey area denotes the largest positively invariant set of G2XM. In

B parameters are such that mh
2
(e

2
(mh

2
#m/(j

2
K). Trajectory shown in the "gure

enters the sliding domain S in the point (xw

1
, q1). Dark grey area denotes the global

attractor u`(R2
`
), middle grey area denotes the largest positively invariant set of

G1XM.
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cycle ["border of the global attractor u`(R2
`

)] and for all initial
conditions x

0
Nu`(R2

`
) thus holds:

u`(x
0
)OL(u`(R2

`
)),M(x

1
, x

3
) D<

2
(x

1
, x

3
)"<

2
(xw

1
, q1)N.

A similar statement holds for mh
2
(e

2
(mh

2
#m/(j

2
K), see Fig. 2B.

The biological interpretation of the dynamics yields the following
results (see also [9], [11] and [18] for more discussion). If the alterna-
tive food is not su$ciently &&attractive'' or is &&low-valued'' for the
predator (m'e

2
/h

2
, i. e., predator mortality is larger than the pro"t-

ability of the second prey type), then no alterative food is taken after the
transient period (see Fig. 2A) and we then observe a specialist predator.
On the contrary, if the alternative food is &&attractive'' or &&high-valued''
but not &&overcompensating'' (with e

2
j
2
K/(1#h

2
j
2
K)(m(e

2
/h

2
)

then the alternative food is permanently included in the predator's
diet in the limit behavior and the predator becomes a generalist (see
Fig. 2B). In both cases, the system with initial conditions outside the
global attractor always exhibits a "nite period of transient behavior
after which the solution enters its limit cycle } the largest Lotka}
Volterra cycle that is contained in the invariant set K. Importantly, the
presence of the alternative food leads to a partial stabilization of the
system in the sense of reducing the amplitude of oscillations of solu-
tions compared to the same system from which the alternative food
would be taken out. In the singular case m"e

2
/h

2
, solutions also

exhibit transient behavior but the solutions then enter a "xed point
belonging to the manifold M in which a nontrivial portion (0(p

2
(1)

of the alternative food is eaten by the (generalist) predator. Finally, if
m6e

2
j
2
K/ (1#h

2
j
2
K), then the presence of the alternative food

destabilizes the system. The predator mortality is overcompensated by
the natality induced by the alternative food and consequently the prey
x
1

dies out (x
1
P0) while the predator grows exponentially with

tP#R. Of course, for such parameter values the model would have
to be altered to meet more realistic results, e.g., by changing the
predator natality to a logistic function.

4. Patch model: only predators are free to move

Here we consider a system consisting of two prey patches, with pred-
ators moving freely between these two patches, the time of travel
between patches being zero. Using the Lyapunov function approach,
we are able to rigorously show the limiting behavior of the system
announced in [10].
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The dynamics of such a system after an appropriate rescaling can
be described by the following system of di!erential equations:

x@
1
"a

1
x
1
!j

1
u
1
x
1
x
3

x@
2
"a

2
x
2
!j

2
u
2
x
2
x
3

(9)

x@
3
"(x

1
!m

1
)u

1
x
3
#(x

2
!m

2
)u

2
x
3
.

Here x
1
, x

2
are prey in patch 1 and 2, and x

3
is predator population

abundance, respectively. We assume that a
1
7a

2
. Controls u

1
, u

2
de-

note the fraction of a lifetime that a predator spends in patch 1 or in
patch 2, respectively. Again we assume that predators are perfect
optimizers, i.e., they maximize their instantaneous growth rate (4). The
values of control are [10]:

(u
1
, u

2
)"G

(1, 0) if x
1
!m

1
'x

2
!m

2
(0, 1) if x

1
!m

1
(x

2
!m

2
(u

1
, u

2
), u

1
#u

2
"1 if x

1
!m

1
"x

2
!m

2
.

(10)

This means that if x
1
!m

1
'x

2
!m

2
then all predators aggregate in

patch 1 while if x
1
!m

1
(x

2
!m

2
then all predators are in patch 2. If

x
1
!m

1
"x

2
!m

2
then the exact distribution of the predator popula-

tion between the two patches is not a priori given. The existence and
uniqueness of solutions of (9) follows from [5].

Before applying the Proposition 1, we "rst determine the space
structure and sliding domains of (9). We set

G1 :"M(x
1
, x

2
, x

3
)3R3

`
Dx

1
!m

1
'x

2
!m

2
N

G2 :"M(x
1
, x

2
, x

3
)3R3

`
Dx

1
!m

1
(x

2
!m

2
N

M :"M(x
1
, x

2
, x

3
)3R3

`
Dx

1
!m

1
"x

2
!m

2
N.

We denote the right}hand side of (9) in Gi by f i (x), i"1, 2.
We note that since the second population grows exponentially

while the growth of the "rst and third one is bounded in G1, solutions
starting from G1 must necessarily hit the set M. The same also holds
when solutions start in G2. In order to determine the sliding domain
SLM, we take the vector n"(1, !1, 0) which is perpendicular to
M and oriented in direction from G2 towards G1 and get:

Sn, f 1(x)T"x
1
(a

1
!a

2
!j

1
x
3
)!a

2
(m

2
!m

1
)

Sn, f 2(x)T"a
1
x
1
!(a

2
!j

2
x
3
) (m

2
!m

1
#x

1
).
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Thus

Sn, f 2(x)T'0 if x
3
'g

1
(x

1
) :"

x
1
(a

2
!a

1
)#a

2
(m

2
!m

1
)

j
2
(x

1
#m

2
!m

1
)

(11)

Sn, f 1(x)T(0 if x
3
'g

2
(x

1
) :"

a
1
!a

2
j
1

#

a
2
(m

1
!m

2
)

j
1
x
1

.

Both g
1

and g
2

are well de"ned, smooth functions on R
`

since
on M we have x

1
#m

2
!m

1
"x

2
'0. The interior of the sliding

domain is then the set intS"Mx3MDx
3
'maxMg

1
(x

1
), g

2
(x

1
)NN.

The behavior of trajectories on M depends on the relation between
m

1
and m

2
.

If m
1
'm

2
then g

2
(x

1
)'0'g

1
(x

1
) always holds since

x
1
"x

2
#m

1
!m

2
, and consequently Sn, f 2T'0 on M. For x3M

there are the following possibilities (see Fig. 1A in [10]):

(i) If x3intS then trajectory m
x

(locally) stays in intS;
(ii) If xNintS (i. e., x

3
(g

2
(x

1
)) then m

x
crosses M in direction from

G2 towards G1;
(iii) If x3LS, and x

3
"g

2
(x

1
) then m

x
either stays in intS or it enters G1.

To show that on LS only (iii) may hold, we realize that Sn, f 2(x)T'0
there; it follows that trajectories cannot enter G2 at these points.

If m
1
6m

2
then g

1
is decreasing while g

2
is increasing for x

1
'0,

and the two functions intersect at the point

P
1
"

a
2
(m

2
!m

1
)

a
1
!a

2

'0,

with g
1
(P

1
)"g

2
(P

1
)"0. In this case the following behavior of trajec-

tories on M occurs (see Fig. 1B in [10]):

(i@) If 0(x
3
(g

2
(x

1
) which can happen only if x

1
'P

1
then the

corresponding trajectory crosses M in direction from G2 towards
G1

(ii@) If 0(x
3
(g

1
(x

1
) which can happen only if 0(x

1
(P

1
then the

trajectory crosses M in direction from G1 towards G2
(iii@) If x3 intS then the trajectory (locally) stays in intS.
(iv@) If x3LS, x

3
"g

2
(x

1
) and x

1
'P

1
then the trajectory either stays

in intS or enters G1
(v@) If x3LS, x

3
"g

1
(x

1
) and x

1
(P

1
then the trajectory either stays

in intS or enters G2.
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We may compute the corresponding control in the sliding domain
using x@

1
"x@

2
:

u
1
(x

1
, x

2
, x

3
)"

a
1
x
1
#(m

1
!m

2
!x

1
) (a

2
!j

2
x
3
)

((j
1
#j

2
)x

1
#j

2
(m

2
!m

1
))x

3

.

The dynamics in the sliding regime is described by

x@
1
"

x
1
(m

1
!m

2
!x

1
) (j

1
j
2
x
3
!a

1
j
2
!a

2
j
1
)

x
1
(j

1
#j

2
)#j

2
(m

2
!m

1
)

(12)
x@
3
"(x

1
!m

1
)x

3

with the following non-trivial equilibrium

E(12)"Am1
, m

2
,
a
2
j
1
#a

1
j
2

j
1
j
2

B.
We note that E(12)3S regardless of the values of system parameters.
The following proposition shows the global behavior of the system:

Proposition 3. Function

<(x
1
, x

2
, x

3
)"j

2Ax1
!m

1
!m

1
ln

x
1

m
1
B#j

1Ax2
!m

2
!m

2
ln

x
2

m
2
B

#j
1
j
2
x
3
!(a

1
j
2
#a

2
j
1
)!(a

1
j
2
#a

2
j
1
) ln

j
1
j
2
x
3

a
1
j
2
#a

2
j
1

is a ¸yapunov function on R3
`

for (9), and u`(R3
`
)"Mx3SDm

x
stays in SN.

Moreover the set u`(R3
`

) is the lobal attractor for the system (9).

It follows from S+<(x), gT"0 for all g3K(x) and x3M that the
set u`(R3

`
) consists of closed cycles <(x

1
, x

2
, x

3
)"const which are

contained in S.
Therefore we again see that the neutral stability of the classical

Lotka}Volterra system is partially lost, since the u-limit set cannot be
outside the largest invariant cycle contained in S.

The situation is particularly simple when m
1
"m

2
"m. In this case

g
1
(x

1
)"

a
2
!a

1
j
2

(0, g
2
(x

1
)"

a
1
!a

2
j
1

'0,

and (12) is a Lotka}Volterra equation. The (closed) set u`(R3
`

)LS is
then given by the largest Lotka}Volterra cycle of (12) which is not
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below the line x
3
"(a

1
!a

2
)/j

1
:

u`(R3
`
) :"G(x1

, x
1
, x

3
) Dx

1
!mlnx

1
#

j
1
j
2

j
1
#j

2

x
3
!

a
1
j
2
#a

2
j
1

j
1
#j

2

lnx
3

6m (1!lnm)#
j
2

j
1
#j

2

(a
1
!a

2
)!

a
1
j
2
#a

2
j
1

j
1
#j

2

ln
a
1
!a

2
j
1
H.

In this case it is also easy to see that there are only two possibilities:
either a trajectory falls at a certain moment in u`(R3

`
) and then it

follows the corresponding Lotka}Volterra cycle of (12), or it ap-
proaches the set u`(R3

`
) from outside.

We brie#y recall here that the optimal foraging of predators en-
sures the coexistence of all three species and again reduces oscillations
of the underlying Lotka}Volterra model.

5. Patch model: both predators and prey are moving between
two patches

Now we assume that both predators and prey are free to move
between the two patches and their travel time is negligible. Such
a system was described in [10] by the following system of di!erential
equations:

x@"(a
1
!j

1
u
1
y)v

1
x#(a

2
!j

2
u
2
y)v

2
x

(13)
y@"(e

1
j
1
v
1
x!m

1
)u

1
y#(e

2
j
2
v
2
x!m

2
)u

2
y

u
1
, v

1
, u

2
, v

2
70, u

1
#u

2
"v

1
#v

2
"1.

Again, we assume the densities x of prey and y of predator to have
positive initial values and, without loss of generality, a

1
7a

2
. Controls

u
1

and v
1

denote fractions of the population of predators and prey
which are in the patch 1 at time t, respectively (similarly for u

2
, v

2
).

Since for each population "tness is given by the instantaneous growth
rate, this leads to maximization of

(a
1
!j

1
u
1
y)v

1
#(a

2
!j

2
(1!u

1
)y) (1!v

1
)Pmax

vÇ
,

(14)
(e

1
j
1
v
1
x!m

1
) u

1
#(e

2
j
2
(1!v

1
) x!m

2
) (1!u

1
)Pmax

uÇ
,

in the sense of achieving Nash equilibrium. We recall that at the Nash
equilibrium in a non-cooperative game, no individual can increase its
"tness by changing its strategy unilaterally. A pair (uJ

1
, vJ

1
) is therefore

considered to be optimal if the following inequalities hold for all u
1

Lotka}Volterra systems with optimal foraging 507



and v
1
:

(e
1
j
1
vJ
1
x!m

1
)uJ

1
#(e

2
j
2
(1!vJ

1
) x!m

2
) (1!uJ

1
)

7(e
1
j
1
vJ
1
x!m

1
) u

1
#(e

2
j
2
(1!vJ

1
) x!m

2
) (1!u

1
),

(a
1
!j

1
uJ
1
y)vJ

1
#(a

2
!j

2
(1!uJ

1
) y) (1!vJ

1
)

7(a
1
!j

1
uJ
1
y) v

1
#(a

2
!j

2
(1!uJ

1
) y) (1!v

1
).

Provided m
1
7m

2
the Nash equilibrium N (x, y)"(vJ

1
, uJ

1
) for

system (13) is [10]:

(1) N (x, y)"(1, 0) if x(xw

(2) N (x, y)"(1, 1) if x'xw, y(yw

(3) N (x, y)"(vw

1
, uw

1
) if x'xw, y'yw

(4) N (x, y)"M(1, u
1
) Du

1
3[0, 1]N if x"xw, y6yw

(5) N (x, y)"M(1, u
1
) Du

1
3[0, uw

1
]N if x"xw, y'yw

(6) N (x, y)"M(v
1
, 1) Dv

1
3[vw

1
, 1]N if x'xw, y"yw

where

xw
"

m
1
!m

2
e
1
j
1

, yw
"

a
1
!a

2
j
1

,

uw

1
"

a
1
!a

2
#j

2
y

(j
1
#j

2
)y

, vw

1
"

m
1
!m

2
#e

2
j
2
x

(e
1
j
1
#e

2
j
2
)x

.

If m
1
(m

2
, then the Nash equilibrium is:

(1@) N (x, y)"(0, 1) if x(xww, y'yw

(2@) N (x, y)"(1, 1) if y(yw

(3@) N (x, y)"(vw

1
, uw

1
) if x'xww, y'yw

(4@) N (x, y)"M(v
1
, 1) Dv

1
3[0, 1]N if x6xww, y"yw

(5@) N (x, y)"M(v
1
, 1) Dv

1
3[vw

1
, 1]N if x'xww, y"yw

(6@) N (x, y)"M(0, u
1
) Du

1
3[uw

1
, 1]N if x"xww, y'yw

where

xww
"

m
2
!m

1
e
2
j
2

.

Let us "rst consider the case m
1
7m

2
. We set

G1 :"M(x, y)3R2
`

Dx(xwN

G2 :"M(x, y)3R2
`

Dx'xw, y(ywN

G3 :"M(x, y)3R2
`

Dx'xw, y'ywN
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Fig. 3. Dynamics of the patch model (13) where both predators and prey behavior is
adaptive. In this "gure m

1
'm

2
, and a trajectory that enters both sliding domains

before following the largest invariant cycle in G3 is shown. Dark grey area denotes the
global attractor u`(R2

`
), middle grey area denotes the largest positively invariant set of

G3XM1XM2.

M1 :"M(x, y)3R2
`

Dx"xwN

M2 :"M(x, y)3R2
`

Dx'xw, y"ywN

(G1 and M1 being empty for m
1
"m

2
) and denote the righthand side

of (13) in Gi, i"1, 2, 3, by f i(x, y) (see Fig. 3).
Before constructing a Lyapunov function, we point out some

properties of the system (13). All trajectories leave the region G1 in
a "nite time as the system (13) takes in G1 the following form:

x@"a
1
x

(15)
y@"!m

2
y.

The system (13) turns in Lotka}Volterra equations both in G2

x@"(a
1
!j

1
y)x

(16)
y@"(!m

1
#e

1
j
1
x)y

and in G3

x@"A
a
1
j
2
#a

2
j
1

j
1
#j

2

!

j
1
j
2

j
1
#j

2

yBx

(17)

y@"A!
e
1
j
1
m

2
#e

2
j
2
m

1
e
1
j
1
#e

2
j
2

#

e
1
j
1
e
2
j
2

e
1
j
1
#e

2
j
2

xBy.
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The respective nontrivial "xed points of the two systems

E(16)"(x(16), y(16))"A
m

1
e
1
j
1

,
a
1

j
1
B

(18)

E(17)"(x(17), y(17))"A
e
1
j
1
m

2
#e

2
j
2
m

1
e
1
j
1
e
2
j
2

,
a
1
j
2
#a

2
j
1

j
1
j
2

B,
are both in G3 as

x(17)'x(16)'xw

(19)
y(17)'y(16)'yw.

Moreover, there are two sliding domains

S1LM1, S1 :"M(x, y) Dx"xw, y'y(17)N
S2LM2, S2 :"M(x, y) Dy"yw, x(16)6x(x(17)N.

On S1, we may derive from x@"0 and vJ
1
"1 that (uJ

1
, vJ

1
)"

(a
1
/(j

1
y), 1); similarly on S2 we get (uJ

1
, vJ

1
)"(1, m

1
/(e

1
j
1
x)). It follows

that y@"!m
2
y on S1 and x@"a

2
x on S2. We denote the righthand

side of (13) on Si by f Si.
The situation is essentially the same in the case where m

1
(m

2
. The

state space R2
`

then decomposes as follows:

G1 :"M(x, y)3R2
`

Dx(xww, y'ywN

G2 :"M(x, y)3R2
`

Dy(ywN

G3 :"M(x, y)3R2
`

Dx'xww, y'ywN

M1 :"M(x, y)3R2
`

Dx"xww, y'ywN

M2 :"M(x, y)3R2
`

Dy"ywN.

Systems in G2 and G3 are again governed by the equations (16) and
(17), respectively. The only di!erences are that the coe$cients of the
system (13) in G1 are di!erent from those of (15):

x@"a
2
x

(20)
y@"!m

1
y,

that y@"!m
1
y on S1 and that x(16)'xww is not generally satis"ed. It

means that the "xed point E(16) may, depending on the values of
parameters involved, lie in G1 and the sliding domain S2 extends in
such a case beyond the line x"xww.

Qualitative behavior of the above system is characterized by an
appropriate Lyapunov function.
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Proposition 4. ¸et us denote

A
1
"

a
1
j
2
#a

2
j
1

j
1
#j

2

, ¸
1
"

j
1
j
2

j
1
#j

2 (21)

N
1
"

e
1
j
1
m

2
#e

2
j
2
m

1
e
1
j
1
#e

2
j
2

, E
1
"

e
1
j
1
e
2
j
2

e
1
j
1
#e

2
j
2

and let us consider functions

<
2
(x, y)"e

1
j
1
x!m

1
!m

1
ln A

e
1
j
1
x

m
1
B#j

1
y!a

1
!a

1
lnA

j
1
y

a
1
B,

<
3
(x, y)"E

1
x!N

1
!N

1
ln A

E
1
x

N
1
B#¸

1
y!A

1
!A

1
lnA

¸
1
y

A
1
B,

P (x)"<
3
(x, yw)!<

2
(x, yw).

¹hen the function <(x, y),

<(x, y) :"G<2(x, y)#P (x) if y6yw

<
3
(x, y) if y'yw (22)

is a ¸yapunov function for system (13) on R2
`

CG1, and the set u`(R2
`
),

u`(R2
`
)"G

M(x, y) D<
3
(x, y)6minM<

3
(xw, y(17)), <

3
(x(17), yw)NN

LG3X(xw, y(17))X(x(17), yw) for m
1
'm

2
M(x, y) D<

3
(x, y)6minM<

3
(xww, y(17)), <

3
(x(17), yw)NN

LG3X(xww, y(17))X(x(17), yw) for m
1
(m

2
M(x, y) D<

3
(x, y)6<

3
(x(17), yw)NLG3X(x(17), yw)

for m
1
"m

2
,

is the global attractor for the system (13), see Fig. 3.

Remark. Many biological aspects of the dynamics were discussed in
[10]. Here we note that the resulting dynamics strongly resembles that
one obtained in the predator}prey model with an alternative food (see
Figs. 2 and 3). As in the latter case, the global attractor u`(R2

`
) consists

of neutrally stable Lotka}Volterra trajectories and the dimensionality
of the problem (n"2) again implies that trajectories cannot enter the
interior of the attractor from outside and for all x

0
Nu`(R2

`
) thus holds:

u`(x
0
)"L(u`(R2

`
))

"G
M(x, y) D<

3
(x, y)"min(<

3
(xw, y(17)), <

3
(x(17), yw))N for m

1
Om

2
M(x, y) D<

3
(x, y)"<

3
(x(17), yw)N for m

1
"m

2
.
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The solutions with initial conditions outside the global attractor
again exhibit a "nite transient period after which they enter a limit
Lotka}Volterra cycle that constitutes the border of the global attrac-
tor. After the transient period, both prey and predators are permanent-
ly distributed in both patches (although in a time-#uctuating ratio),
that is the limiting strategy of both populations is always mixed, and
the switching again leads to persistence and partial stabilization of the
system.

6. Conclusion and remarks

In this paper we showed how Lyapunov functions for di!erential
inclusions can be used to describe global behavior of &&piecewise''
Lotka}Volterra di!erential inclusions. Such equations are obtained
when we apply principles of optimal foraging theory in population
dynamics. We considered two basic types of models: prey and patch
models. In both cases it was shown [9}11] that adaptive foraging
behavior enhances permanence of the system. Moreover, the resulting
Lotka}Volterra di!erential inclusions behave qualitatively di!erent
from the classical Lotka}Volterra di!erential equations, for which the
trajectories are closed curves centered around the equilibrium (and no
bounded attractor exists). The e!ect of optimal foraging typically
reduces the amplitude of such oscillations, i.e., it leads to &&partial
stabilization'' of the system.

The reduction of the oscillation amplitude is given by the emerg-
ence of the global bounded attractor which consists of neutrally stable
Lotka}Volterra cycles centered around an equilibrium point in all
studied cases. If the initial conditions lie in the respective attractor,
then the system follows usual Lotka}Volterra dynamics with a peri-
odic trajectory. If the initial conditions lie outside the attractor, then
the trajectory either enters the attractor in a "nite time or approaches
the attractor from outside.

Obviously, the loss of the neutral stability of the original
Lotka}Volterra system and its change to a globally stable dynamics
can be achieved by other alterations of the original system, such as
adding density dependent terms for the prey. However, it should be
emphasized that the inclusion of optimal individual behavior in the
system can give rise to a qualitatively new behavior, such as the
appearance of alternative equilibria in the sliding mode. This is the case
of the two-patch model considered in Section 4; there are no non-trivial
equilibria in the corresponding model with predators behaving at
random (i.e., with the controls u

i
"xed), and the system is then not
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persistent as one of the prey populations always dies out [10]. In a
host-parasitoid system examined in [17], the optimal adaptive behav-
ior was also shown to stabilize an otherwise unstable and non-persist-
ent dynamics for a range of parameter values, again giving rise to
a locally stable equilibrium in the sliding mode.

This contrasts strikingly with a statement in [3], where the authors
claim that &&in a continuous-time framework, when migration is fast,
optimal migration decisions by predators have little in#uence on the
stability of predator}prey systems''. It is also stated in [3] that &&In
Krivan's (1997) framework, . . . di!erences in predator mortality be-
tween patches play an important role on persistence of this model (i.e.,
model presented in Section 4): when predator mortalities do not di!er,
persistence is still possible but under much restricted conditions.'' As
we proved in this paper (see also [5], [10]), the latter statement is
obviously incorrect: the existence of a global attractor and persistence
of the system is not qualitatively a!ected by the predator mortality
rates.

The biological phenomena arising from our models agree well with
intuitive assessment of the respective models which can be summed up
in the phrase &&if there is a good place, go there; if there is a good prey,
take it''. In the case of the predator}prey model with an alternative
food, the predator ultimately becomes either generalist (Fig. 2B), feed-
ing on both prey types if the alternative food is &&high-valued'', or
specialist (Fig. 2A), avoiding the alternative food if the latter is
&&low-valued''. In the two patch model where only predators are free to
move, predator population ultimately uses both resources and splits
(and permanently partly moves) among both prey patches. Finally, in
the two patch model with both predators and prey moving between
patches, both populations occupy both niches (Fig. 3), again in a time-
#uctuating ratio.

Acknowledgements. This work was supported by GA C[ R (Grant No. 201/98/0227).
The stay of authors at the Faculty of Biological Sciences was in the framework of the
program &&PosmH lenmH vyH zkumu na VS[ '' (VS 96086) by MS[ MT C[ R.

7. Appendix

7.1. Proof of Proposition 1

The proof is a variant of known proofs for ordinary di!erential
equations with continuous right-hand side; we utilize the relation
<Q (x)6<Q w(x). See, e.g., [16] for details. h

Lotka}Volterra systems with optimal foraging 513



7.2. Proof of Corollary 1

The properties of < ensure that the compact set u`(Rn
`

) is stable and
attracts all points in G. Moreover m

xÒ
(t)Pu`(Rn

`
) for all x

0
3Rn

`
follows from the repelling condition. h

7.3. Proof of Proposition 2

It su$ces to show that conditions of Proposition 1 and Corollary 1 are
satis"ed.

If mh
2
'e

2
, then

S+<
2
(x

1
, x

3
), f 1(x

1
, x

3
)T"

j
2
K

1#h
2
j
2
K

(a
1
(e

1
j
1
h
2
x
1
!e

2
)

#(e
2
!mh

2
)j

1
x
3
)(0

for (x
1
, x

3
)3G1,

S+<
2
(x

1
, x

3
), f 2(x

1
, x

3
)T"0 for (x

1
, x

3
)3G2,

sup
0IaI1

S+<
2
(x

1
, x

3
), af 1(x

1
, x

3
) #(1!a) f 2(x

1
, x

3
)T"0

for (x
1
, x

3
)3M.

It follows that <Q w(x)60 for all x3R2
`

and that ""G2XM. We
conclude that the largest positively invariant subset of K is the set
M(x

1
, x

3
)3KD<

2
(x

1
, x

3
)6<

2
(xw

1
, q2)N. Due to the sliding mode behavior

(see Fig. 2A) and the neutral stability of Lotka}Volterra cycles in G2,
the set

u`(R2
`
)"M(x

1
, x

3
) D<

2
(x

1
, x

3
)6<

2
(xw

1
, q2)NLG2X (xw

1
, q1).

Finally u`(R2
`
) is closed which completes the proof.

If mh
2
(e

2
(mh

2
#m/(j

2
K), then

S+<
1
(x

1
, x

3
), f 1(x

1
, x

3
)T"0 for (x

1
, x

3
)3G1,

S+<
1
(x

1
, x

3
), f 2(x

1
, x

3
)T"!

j
2
K

1#h
2
j
2
K

(a
1
(e

1
j
1
h
2
x
1
!e

2
)

#(e
2
!mh

2
)j

1
x
3
)(0

for (x
1
, x

3
)3G2,

sup
0IaI1

S+<
1
(x

1
, x

3
), af 1(x

1
, x

3
)#(1!a) f 2(x

1
, x

3
)T"0

for (x
1
, x

3
)3M,

and the reasoning is completed similarly as in the case of mh
2
'e

2
.
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Finally if mh
2
"e

2
, then

S+ (<
1
#<

2
) (x

1
, x

3
), f 1(x

1
, x

3
)T"

j
2
Ka

1
1#h

2
j
2
K

(e
1
j
1
h
2
x
1
!e

2
)(0

for (x
1
, x

3
)3G1,

S+ (<
1
#<

2
) (x

1
, x

3
), f 2(x

1
, x

3
)T"!

j
2
Ka

1
1#h

2
j
2
K

(e
1
j
1
h
2
x
1
!e

2
)(0

for (x
1
, x

3
)3G2,

sup
0IaI1

S+(<
1
#<

2
) (x

1
, x

3
), af 1(x

1
, x

3
)#(1!a) f 2(x

1
, x

3
)T"0

for (x
1
, x

3
)3M;

thus K"M. As MCS are points of transversal motion and S consists of
"xed points, we get the results. h

7.4. Proof of Proposition 3

It holds that

S+<(x), f 1(x)T"a
2
j
1
(m

1
!m

2
!x

1
#x

2
)(0 for x3G1

S+<(x), f 2(x)T"a
1
j
2
(x

1
!x

2
#m

2
!m

1
)(0 for x3G2.

Moreover, S+<(x), gT"0 for all g3K (x) and x3M, which implies
""M and the proof is then completed in the same way as in the case
of Proposition 2. h

7.5. Proof of Proposition 4

It su$ces to verify the conditions of Proposition 1 and Corollary 1. As
G1 is repelling, we take G"S`(G)"R2

`
CG1; obviously the condi-

tions (i)}(iii) of Proposition (1) are satis"ed and the function <(x, y) is
non-negative, with min <(x, y)"0 at E(17). Moreover it is easy to see
that <(x, y)3C1(R2

`
), and thus locally lipschitz and regular in S`(G).

First we consider the case m
1
Om

2
. If m

1
'm

2
, it holds that

S+<(x, y), f3(x, y)T"0 for (x, y)3G3

S+< (x, y), f 2(x, y)T"
e
1
j
1

e
1
j
1
#e

2
j
2

(e
1
j
1
x!m

1
#m

2
) (j

1
y!a

1
)

(0 for (x, y)3G2,
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and on the discontinuity manifolds M1 and M2:

sup
0IaI1

S+<(x, y), af 1(x, y)#(1!a) f 2(x, y)T"0

for (x, y)3M1, y(yw,

sup
0IaI1

S+<(x, y), af 1(x, y)#(1!a) f 3(x, y)T"0

for (x, y)3M1, y'yw,

sup
0IaI1

S+<(x, y), af 2(x, y)#(1!a) f 3(x, y)T"0

for (x, y)3M2.

It follows that K"G3XM1XM2. It is then easy to verify that the
largest positively invariant subset of K is G3 except the graph of
trajectories that cross M2 with x(x(16), and the attractor is the set

A"M(x, y) D<
3
(x, y)6minM<

3
(xw, y(17)), <

3
(x(17), yw)NN

LG3X (xw, y(17))X(x(17), yw).

If m
1
(m

2
then the preceding holds except that on the manifolds:

sup
0IaI1

S+<(x, y), af 1(x, y)#(1!a) f 3(x, y)T"0

for (x, y)3M1,

sup
0IaI1

S+<(x, y), af 1(x, y)#(1!a) f 2(x, y)T"

!

e
1
j
1
a
2

e
1
j
1
#e

2
j
2

(e
1
j
1
x!m

1
#m

2
)(0

for (x, y)3M2, x(xww,

sup
0IaI1

S+<(x, y), af 2(x, y)#(1!a) f 3(x, y)T"0

for (x, y)3M2, x'xww.

Finally, using the same procedure and taking in mind that
G1"M1"0 for m

1
"m

2
, we get the results. h
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